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ABSTRACT

The design of accurate, conservative, consistent and monotone operators

for remapping scalar fields between computational grids on the sphere has

been a persistent issue for global modeling groups. This problem is espe-

cially pronounced when mapping between distinct discretizations (such as

finite volumes or finite elements). To this end, this paper provides a novel

unified mathematical framework for the development of linear remapping op-

erators. This framework is then applied in the development of high-order con-

servative, consistent and monotone linear remapping operators from a finite

element discretization to a finite volume discretization. The resulting scheme

is evaluated in the context of both idealized and operational simulations and

shown to perform well for a variety of problems.
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1. Introduction21

The unique characteristics of the atmosphere, ocean and land surface have led the global mod-22

eling community to design component models with distinct numerical methods and meshes. In-23

creasingly there has been a further push towards using different numerical meshes for particular24

physical processes in order to improve accuracy and efficiency of the modeling system. In ei-25

ther case, some mechanism for communication between these meshes is necessary to couple these26

components and allow for proper accounting of globally conserved quantities. Consequently, the27

design of conservative, consistent and monotone remapping operators for translating between dif-28

ferent computational grids on the sphere (hereafter referred to as the remapping problem), has29

been a persistent issue for global modeling groups.30

This manuscript is the first in a series describing the new TempestRemap software package for31

accurate remapping between meshes on the sphere. Remapping operators are usually constructed32

via a two-stage process: First a search algorithm determines which regions on the source mesh33

are geometrically “close” to regions on the target mesh. This procedure is performed to ensure34

that the mapping maintains geometrical locality. Second, a mapping is defined between source35

regions and target regions which accounts for sub-grid-scale variation of the source field. See, for36

example, Jones (1999); Margolin and Shashkov (2003); Ullrich et al. (2009); Farrell et al. (2009);37

Farrell and Maddison (2011); Dong and Wang (2013).38

A robust search algorithm can be particularly difficult to define, since special cases such as co-39

incident grid lines, small overlap regions and the non-linearity of spherical geometry can quickly40

lead to conditioning issues. The search problem can be simplified by using dimension splitting41

to approximate overlap regions (Lauritzen and Nair 2007), restricting the choice of source and42

target meshes (Ullrich et al. 2009), or by using approximations to grid lines (Jones 1999). The43
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implementation of TempestRemap described in this paper follows the Earth System Modeling44

Framework (Hill et al. 2004) by restricting the geometry to meshes composed exclusively of re-45

gions whose edges consist of great circle arcs, although there are future plans for supporting grid46

lines of constant latitude.47

Non-conservative mapping operators are generally easy to construct using bilinear interpolation48

(if monotonicity preservation is required) or high-order finite-differencing techniques. However,49

these operations are not well suited for arbitrary resolution source and target meshes, and when50

used in conjunction with ad hoc global conservation fixers can produce strange non-localized51

behavior. To define a conservative mapping operator, a common approach has been to use the52

Gauss-Green theorem (Dukowicz and Kodis 1987) to transform area integrals into line integrals53

around the boundary of the integration region. This approach has been successfully applied for the54

conservative remapping problem in the Spherical Coordinate Remapping and Interpolation Pack-55

age (Jones 1999, SCRIP), and was later used by Ullrich et al. (2009) to define a geometrically56

exact remapping operator between cubed-sphere and regular latitude-longitude meshes. Unfortu-57

nately, the use of the Gauss-Green theorem requires that an analytical potential function be found58

that accounts for the underlying geometry. This is generally only possible for certain simple cases,59

and is particularly difficult on completely unstructured meshes. To overcome this problem, Erath60

et al. (2013) instead proposed using a non-conservative remapping operator defined from inexact61

area integration via quadrature which was then re-scaled to produce a conservative operator. This62

approach avoided the ill-conditioning that arose at higher spatial resolutions from line-integral ap-63

proach (Ullrich et al. 2013), but led to a loss of consistency of the remapping operator. In order64

to overcome this problem TempestRemap uses a quadrature-based approach to produce a “first65

guess” operator which is then projected onto the space of conservative and consistent solutions66

using a novel least-squares formulation. The resulting method avoids the need for line integrals67
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and can be used to guarantee conservation and consistency (and, if desired, monotonicity) of the68

linear map.69

The remapping problem is closely connected to conservative advection of scalar fields, using a70

technique known as semi-Lagrangian advection. This technique is employed by, for instance, the71

Conservative Semi-Lagrangian Multi-tracer Transport Scheme (CSLAM) (Lauritzen et al. 2010;72

Ullrich et al. 2013; Erath et al. 2013). By defining the source or target mesh as the location of73

Lagrangian fluid parcels at two different points in time, conservative remapping can be employed74

to define a conservative advection operator.75

The outline of this paper is as follows. Section 2 describes the mathematical theory under-76

lying linear remapping operators, and how conservation, consistency and monontonicity can be77

described in terms of the coefficients of the remapping matrix. One particular example of the con-78

struction of an arbitrarily high-order conservative and consistent (and possibly monotone) remap-79

ping operator is then pursued in section 3: Namely, the map that takes a discrete field from a nodal80

finite element mesh to a finite volume target mesh. The results of testing the resulting algorithm is81

then presented in section 4 followed by conclusions in section 5. The appendices provide a simple82

example of the construction of a linear map and provide additional details on the search algorithm83

for the overlap grid.84

2. Mathematical Foundations85

Consider some surface Ω, such as the unit sphere. Functions ψ : Ω→ R are discretized by86

sampling ψ at discrete nodes, via pointwise sampling, or over discrete regions, via an area aver-87

age. The finite set of discrete nodes or regions is then referred to as the degrees of freedom of88

a discretization. Note that this definition requires that degrees of freedom be associated with the89

values of ψ , and not with secondary information such as derivatives of ψ or the coefficients of90
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a spectral expansion (unless those coefficients also correspond to point values, such as the case91

of nodal finite element methods). Conserved quantities, such as mass, are represented via a local92

density variable stored at each degree of freedom. The complete set of all discrete density values93

is denoted by the vector ψ. The operation of discretizing ψ to ψ is denoted by ψ = D[ψ].94

In the remapping problem, discretizations are defined for the source and target meshes. Let F t
i95

denote the degrees of freedom on the target mesh, where i ∈ [1, . . . , f t ] and f t is the total number96

of degrees of freedom. The set of all degrees of freedom is denoted F t . Each degree of freedom is97

then associated with a local weight Jt
i . For finite volumes the local weight Jt

i would represent the98

geometric area of the associated region. For nodal finite elements, the local weight Jt
i represents99

the value of the global Jacobian, or some global integral of the associated basis function. The local100

weights then induce an integration operator (or quadrature rule) denoted by It [·] and defined as101 ∫
Ω

ψdA≈ It [ψt ]≡
f t

∑
i=1

ψ
t
i Jt

i , (1)

where ψt denotes the discretization of ψ on the target mesh, with components ψ t
i . On the unit102

sphere, one would expect that the degrees of freedom would have complete coverage of the surface,103

i.e. if 1 denotes the vector where every entry is 1 then104

It [1] =
f t

∑
i=1

Jt
i = 4π, (2)

although this is not necessarily the case in practice. In particular, since integration over finite105

elements is governed by the truncation error of the underlying reconstruction, one may observe106

that (2) only holds approximately. Similar quantities are then defined for the source mesh: Let F s
j107

denote the degrees of freedom on the source mesh, with j ∈ [1, . . . , f s] and total count f s, total set108

F s, associated weights Js
j and integration operator Is[ψs].109

To remap fields from the source mesh to the target mesh, a remapping operator R is defined,110

ψt = Rψs, (3)
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whereψt andψs are discretizations of ψ on the target and source mesh, respectively. Although the111

remapping operator can be specified arbitrarily, we are motivated to define a remapping operator112

that is somehow consistent with the geometry of the underlying problem. That is, we expect113

Dt [ψ]≈ RDs[ψ], (4)

where Dt and Ds denote the discretizations of ψ on the target and source mesh, respectively.114

Equivalence of (3) and (4) is not guaranteed since information is generally lost during a discretiza-115

tion operation. Three desirable properties of the remapping operator are now defined: namely,116

conservation, consistency and monotonicity. These properties are defined as follows.117

118

Definition 1: A remapping operator R is conservative iff the global mass of any field is maintained119

across the remapping operation:120

R conservative ⇐⇒ ∀ ψs, Is[ψs] = It [Rψs]. (5)

Definition 2: A remapping operator R is consistent iff the constant field is maintained across the121

remapping operation:122

R consistent ⇐⇒ 1t = R1s. (6)

Definition 3: A remapping operator R is monotone iff the remapping operation cannot introduce123

additional global extrema:124

R monotone ⇐⇒ ∀ ψs ∀ i ∈ [1, . . . , f t ] minψs ≤ ψ
t
i ≤maxψs. (7)
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a. Linear remapping operators125

This paper focuses on linear remapping operators. That is, where R can be written as a matrix-126

vector multiply operation,127

ψt = Rψs ⇐⇒ ψ
t
i =

f s

∑
j=1

Ri jψ
s
j , (8)

where Ri j denotes the coefficients of R. In this context, the three properties described above have128

a clear meaning in terms of the coefficients of R.129

130

Proposition 1: The linear remapping operator R is conservative iff131

∀ j ∈ [1, . . . , f s]
f t

∑
i=1

Ri jJt
i = Js

j . (9)

Proof: From (5) and the definition of the integration operator (1), conservation can be written as132

∀ ψs
f s

∑
j=1

ψ
s
jJ

s
j =

f t

∑
i=1

ψ
t
i Jt

i . (10)

Then using (8),133

f s

∑
j=1

ψ
s
jJ

s
j =

f t

∑
i=1

Jt
i

f s

∑
j=1

Ri jψ
s
j =

f s

∑
j=1

ψ
s
j

f t

∑
i=1

Ri jJt
i . (11)

However, since (11) must hold for all fields ψs
j , equivalence implies (9). �134

135

Proposition 2: The linear remapping operator R is consistent iff136

∀ i ∈ [1, . . . , f t ]
f s

∑
j=1

Ri j = 1. (12)

Proof: From (6) and (8),137

1t = R1s ⇐⇒ 1 =
f s

∑
j=1

Ri j. � (13)
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138

Proposition 3: The linear remapping operator R is monotone iff it is consistent and139

∀ (i, j) ∈ [1, . . . , f t ]× [1, . . . , f s] Ri j ≥ 0. (14)

Proof: Assume R is monotone. The field 1s satisfies min1s =max1s = 1 and so ∀i,ψt =Rψs =⇒140

1≤ ψ t
i ≤ 1, which in turn implies ψt = 1t and so consistency is satisfied. To show ∀(i, j) Ri j ≥ 0141

assume ∃(i, j) such that Ri j < 0. Let ψs
j = 1 and ψs

k = 0 ∀ k 6= j. Then142

ψ
t
i =

f s

∑
k=1

Rikψ
s
k = Ri j < 0, (15)

which contradicts (7).143

Now assume R is consistent and satisfies (14). Then144

min
i

ψ
t
i = min

i

f s

∑
j=1

Ri jψ
s
j ≥min

j
ψ

s
j

(
f s

∑
j=1

Ri j

)
= min

j
ψ

s
j , (16)

where the inequalities hold due to non-negativity of Ri j and the last equality holds due to consis-145

tency. The result is analogous for maxi ψ t
i . �146

Note that if R is conservative and consistent, it also follows that the source and target meshes147

must have the same area:148

Is[1] =
f s

∑
j=1

Js
j =

f s

∑
j=1

f t

∑
i=1

Ri jJt
i =

f t

∑
i=1

Jt
i

f s

∑
j=1

Ri j =
f t

∑
i=1

Jt
i = It [1]. (17)

This result further implies that for source and target meshes that do not have the same area it is149

impossible to define a linear remapping operator which is both conservative and consistent.150

To clarify the mathematical notation used here, an example linear remapping operator is pro-151

vided in Appendix A.152
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b. Local conservation153

In order to introduce the concept of local conservation, one needs to first define some notion of154

geometric locality. Geometric regions associated with degrees of freedom F t
i and F s

j are denoted155

as Ωt
i and Ωs

j. The set of all geometric regions on the target and source meshes are denoted as Ωt
156

and Ωs. The overlap region associated with Ωt
i and Ωs

j is denoted by Ωov
i, j = Ωt

i ∩Ωs
j (see Figure157

1). If Ωov
i, j 6=∅ then F t

i and F s
j are said to be local. The set of all overlap regions is referred to as158

the overlap mesh and denoted by Ωov (note that the overlap mesh is sometimes referred to as the159

supermesh in the literature). Analogous to the source and target meshes, regions on the overlap160

mesh are associated with corresponding local weights Jov
i, j , which must satisfy161

Js
j =

f t

∑
i=1

Jov
i, j, and Jt

i =
f s

∑
j=1

Jov
i, j. (18)

The definition of Ωs and Ωt is sensitive to the choice of discretization (finite volume versus finite162

element), as follows.163

• For finite volume discretizations, Ω is subdivided into regions that have a one-to-one cor-164

respondence with degrees of freedom by encoding the volume average. Hence, for finite165

volumes one can say that F t
i and F s

j are local if there is any geometric overlap between166

corresponding regions Ωt
i and Ωs

j.167

• For nodal finite element discretizations, degrees of freedom are encoded as pointwise values,168

or equivalently as coefficients associated with a particular characteristic function (a modal169

characterization). An analogous definition of locality to finite volumes is obtained in terms of170

the support of the characteristic function associated with a particular degree of freedom; that171

is, Ωs
j and Ωt

i associated with particular degrees of freedom F s
j and F t

i are the geometric re-172

gions where the corresponding characteristic functions are non-zero, along with their closure.173
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Note that finite volumes specialize this definition under the imposition that each region has174

only one degree of freedom encoded via the constant characteristic function.175

Local weights Jov
i, j may be calculated via integration over the overlap region,176

Jov
i, j =

∫
Ωov

i, j

Cs
j(x)C

t
i (x), (19)

where Cs
j(x) and Ct

i (x) are functions associated with the degrees of freedom F s
j and F t

i that satisfy177

∫
Ω

Cs
j(x) = Js

j ,
∫

Ω

Ct
i (x) = Jt

i . (20)

For a finite volume discretization Cs
j is equal to 1 within the associated region Ωs

j (and analogously178

if discretized on the target mesh), whereas for a finite element discretization Cs
j is defined by the179

characteristic function associated with the degree of freedom (more on this in section 3a). Note180

that numerical errors may make exact computation of (19) difficult without the use of an advanced181

numerical integration technique, particularly in a manner that is consistent with (18). However,182

when mapping from a finite element mesh to a finite volume mesh this paper will only rely on183

knowing overlap areas |Ωov
i, j|, which can be computed exactly.184

The notion of locality then motivates the definition of a locally conservative operator:185

186

Definition 4: The linear remapping operator R is locally conservative if it is conservative and187

Ω
ov
i, j =∅=⇒ Ri j = 0. (21)

c. Local sub-maps188

The notion of locality is particularly handy when constructing the remapping operators, since189

the global linear map R can be constructed using linear sub-maps R̂ that are only associated190

with a limited set of degrees of freedom from the source mesh. Local sub-maps further possess191
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analogues of conservation and consistency which are helpful for building global linear maps:192

193

Definition 5: A linear sub-map operator R̂ is conservative in A⊆ [1, . . . , f s] if194

j ∈ A⇒
f t

∑
i=1

R̂i j

(
∑
`∈A

Jov
i,`

)
= Js

j and j 6∈ A⇒
f t

∑
i=1

R̂i j

(
∑
`∈A

Jov
i,`

)
= 0. (22)

195

This definition could hold for any set of points A, but typically the set A consists of points that196

share a common geometric region Ωs
i , such as in the case of a finite element discretization. For a197

finite volume discretization, source elements are usually considered in isolation and so the set A198

consists of only a single degree of freedom.199

200

Definition 6: A linear sub-map operator R̂ is consistent in B⊆ [1, . . . , f t ] if201

i ∈ B⇒
f s

∑
j=1

R̂i j = 1 and i 6∈ B⇒
f s

∑
j=1

R̂i j = 0. (23)

202

When constructing linear sub-maps, the set B is typically the set of degrees of freedom on the203

target mesh which are local to degrees of freedom A on the source mesh.204

205

Definition 7: A set of linear sub-maps R̂(1), . . . , R̂(N) is complete if (i) A(1)∪·· ·∪A(N)= [1, . . . , f s],206

(ii) B(1)∪ ·· · ∪B(N) = [1, . . . , f t ], (iii) n 6= m implies A(n)∩A(m) = ∅ (iv) R̂(n) is conservative in207

A(n) for 1≤ n≤ N, and (v) R̂(m) is consistent in B(m) for 1≤ m≤ N.208

209

These definitions then motivate the following result, which is the fundamental theory for con-210

structing global remapping operators as a combination of local sub-maps:211

212
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Theorem 1: Let R̂(1), . . . , R̂(N) be a complete set of linear sub-maps which are conservative in213

A(1), . . . ,A(N). Then the global linear map constructed via214

Ri j =
1
Jt

i

N

∑
k=1

R̂(k)
i j

(
∑

`∈A(k)

Jov
i,`

)
(24)

is conservative and consistent.215

Proof: To show consistency we use property (i), (ii) and (v) (Definition 7) and (23):216

f s

∑
j=1

Ri j =
1
Jt

i

f s

∑
j=1

N

∑
k=1

R̂(k)
i j

(
∑

`∈A(k)

Jov
i,`

)

=
N

∑
k=1

1
Jt

i

(
∑

`∈A(k)

Jov
i,`

)
f s

∑
j=1

R̂(k)
i j

=
N

∑
k=1

1
Jt

i

(
∑

`∈A(k)

Jov
i,`

)
δ

B(k)

i (R̂(k) consistent in B(k))

= 1 (property (i) and (ii)).

Here δ B(k)

i is an indicator that is 1 if i ∈ B(k) and 0 otherwise.217

Conservation follows almost immediately from property (ii), (iii) and (v) (Definition 7) and (22),218

which collectively imply that only one linear sub-map will have a non-zero weighted column sum:219

f t

∑
i=1

Ri jJt
i =

N

∑
k=1

f t

∑
i=1

R̂(k)
i j

(
∑

`∈A(k)

Jov
i,`

)
= Js

j . �

Note that if the linear sub-map is monotone then the global composition will inherit some notion220

of local monotonicity. Local monotonicity is even stronger than the global monotonicity described221

in Definition 3, in that the global map will not introduce additional local extrema.222

3. Remapping Finite Elements to Finite Volumes223

A global mapping operator from finite elements to finite volumes is now developed using the224

theory of section 2. Consistent with the notion of degrees of freedom representing the values of225
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ψ , this paper focuses specifically on nodal finite element methods over the set of Gauss-Lobatto-226

Legendre (GLL) nodes. The set of degrees of freedom on the source mesh are defined at the N2
p227

GLL nodes within the reference element (see Figure 2). The operator is first developed for discon-228

tinuous finite elements (i.e. admitting co-located degrees of freedom between adjacent elements);229

if continuous finite elements are used, as in the case of the spectral element method, the rows of the230

discontinuous remapping operator can be combined via direct stiffness summation (Deville et al.231

2002) without affecting conservation, consistency or monotonicity of the operator. As a conse-232

quence of (17), a conservative map from finite elements to finite volumes only exists if the degrees233

of freedom of the source (finite element) mesh satisfy some notion of geometric consistency:234

235

Definition 8: A finite element on the source mesh with region Ωs
j and degrees of freedom A ⊆236

[1, . . . , f s] is geometrically consistent if237

|Ωs
j|= ∑

k∈A
Js

k. (25)

238

This definition implies that the geometric area of the finite element mesh must be exactly239

distributed over all degrees of freedom. Following on this definition, it is guaranteed that there240

exists at least one conservative, consistent and monotone linear sub-map:241

242

Theorem 2: There exists at least one consistent, conservative, monotone linear sub-map from a243

geometrically consistent GLL finite element of order Np to the target mesh.244

Proof: By construction. Consider a single GLL element with N2
p nodal degrees of freedom, taken245

from a subset of all degrees of freedom on the source mesh via the indexing function σ : (p,q)→246

[1, . . . , f s] with (p,q) ∈ [0, . . . ,Np−1]2 and (p1,q1) 6= (p2,q2)⇒ σ(p1,q1) 6= σ(p2,q2). A linear247
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sub-map is defined by a weighted average over all GLL nodes:248

R̂0
i j =


Js

j

[
Np−1

∑
p=0

Np−1

∑
q=0

Js
σ(p,q)

]−1

, if ∃ (p,q) such that σ(p,q) = j and Ωov
i, j 6=∅,

0 otherwise.

(26)

Consistency over B = {i : F t
i ∩F s

j local} is easily demonstrated from (23). Conservation over249

A = {σ(p,q) : (p,q) ∈ [0, . . . ,Np−1]2} follows by observing R̂0
i j = 0 for j 6∈ A and250

∑
`∈A

Jov
i,` = |Ω

s
j|, (27)

which in turn implies251

f t

∑
i=1

R̂0
i j

(
∑
`∈A

Jov
i,`

)
= Js

j

[
Np−1

∑
p=0

Np−1

∑
q=0

Js
σ(p,q)

]−1

|Ωs
j|= Js

j . (28)

Monotonicity follows since R̂0
i j is consistent and all entries of R̂0

i j are non-negative. �252

253

Although the linear sub-map R̂0 satisfies conservation, consistency and monotonicity, it is254

undesirable as a linear remapping operator since it “averages out” the sub-grid-scale variation255

associated with the finite element discretization. Consequently the remainder of this section will256

focus on constructing an improved linear sub-map operator. To this end, the following basic257

algorithm is followed:258

259

Given SourceMesh and TargetMesh calculate OverlapMesh260
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For each source region fi in SourceMesh

Compute a "first guess" conservative and consistent linear sub-map

from fi to the OverlapMesh

Project the "first guess" map onto the space of exactly conservative

and consistent linear sub-maps

If monotonicity is required, adjust coefficients accordingly

Compose the linear sub-map in the global remapping operator R

Store global remapping operator R261

262

The generation of the overlap mesh follows the algorithm described in Appendix B. Since the263

global map is simply a composition of sub-maps which are defined over source elements on the264

finite element mesh, the remainder of this section will simply focus on construction of sub-maps265

with the desired properties.266

a. Choice of basis functions267

Construction of an approximately conservative map relies on the use of basis functions to pro-268

vide a continuous analogue to the nodal discretization. Two requirements are imposed on these269

functions: First, the basis functions must also be characteristic functions – that is, at each GLL270

node exactly one basis function must take the value 1 and all other basis functions must have value271

0. Second, for sake of consistency, the basis functions must be a partition of unity over the finite272

element. Besides these two requirements, the choice of basis is at the discretion of the user.273

For quadrilateral elements we choose basis functions defined via a tensor product, wherein Np274

1D basis functions Cm(x) (m = 0, . . . ,Np−1) are cross-multiplied to yield N2
p 2D basis functions275
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and a corresponding reconstruction,276

ψ
s
j(x) =

Np−1

∑
m=0

Np−1

∑
n=0

(ψs
j)(m,n)Cm(α(x))Cn(β (x)), (29)

The coordinates α(xk) and β (xk) are defined implicitly via the coordinate transform of Guba et al.277

(2014). For a quadrilateral region on the source mesh with corner points xk (k = 1, . . . ,4) arranged278

in counter-clockwise order,279

x̂(α,β ) = x1(1−α)(1−β )+x2(1+α)(1−β )+x3(1+α)(1+β )+x4(1−α)(1+β ),

x(α,β ) =
x̂(α,β )

‖x̂(α,β )‖
. (30)

Choosing basis functions which are polynomials of maximum degree (the cardinal functions over280

GLL points and the standard nodal finite element basis) leads to a non-monotone remapping281

operator of the highest formal order-of-accuracy; whereas choosing a set of basis functions with282

the limited range [0,1] leads to a low-order, but monotone, operator. Approximate conservation is283

enforced by choosing a basis whose global integral equals its associated nodal weight. Consis-284

tency follows as long as the set of all basis functions is a partition of unity. Herein two choices of285

basis functions are made:286

287

(i) Non-monotone basis: Our non-monotone basis over GLL elements is given by the cardinal288

functions over GLL nodes (Boyd 2001, Appendix F). In terms of the Legendre polynomials of289

order Np−1, denoted PNp−1(x), these are290

Cm(x)≡
(x2−1)

Np(Np−1)PNp−1(x j)(x− x j)

dPNp−1(x)
dx

, (31)

with corresponding weights291

wm ≡
∫ 1

−1
Cm(x)dx =

2

Np(Np−1)
[
PNp−1(x j)

]2 . (32)
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The cardinal functions are plotted in Figure 3 (a,c) for Np = 3,4. For 2D GLL finite elements,292

these cardinal functions and weights are written via tensor product,293

Cm,n(x,y) =Cm(x)Cn(y), wm,n = wmwn. (33)

Given some local notion of area J(x) (such as the Jacobian associated with a coordinate transform),294

the local weight Js
j at the GLL point xm,n is typically approximated as the product J(xm,n)wm,n.295

However, since this notion of Js
j is not geometrically consistent, we instead suggest a closely296

related, but modified definition Js
j = |Ωs

j|wm,n.297

(ii) Monotone basis: The monotone basis uses a set of monotonized cardinal functions Ĉm(x)298

which resemble the standard non-monotone cardinal functions (31) under the further constraint299

0≤ Ĉm(x)≤ 1. However, to enforce conservation we further require300

∫ 1

−1
Ĉm(x)dx = wm. (34)

For Np = 2, Ĉm = Cm actually satisfies these criteria. However, for larger values of Np it is the301

case that C j(x) < 0 over some interval, and so the standard cardinal functions do not satisfy the302

desired monotone property. Consequently a new set of basis functions are constructed which303

satisfy consistency and conservation but with the limited range [0,1]. For Np = 3 there is a unique304

solution for piecewise quadratic polynomials given by305

Np = 3 : Ĉ0(x) =


1
2(x

2− x) x < 0,

0 x≥ 0,

Ĉ1(x) = 1− x2, (35)

Ĉ2(x) = Ĉ0(−x).

For Np = 4 there is no solution with piecewise quadratic polynomials. Piecewise cubic poly-306

nomials admit one free parameter, which we arbitrarily choose so that the reconstruction is C1
307
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continuous. This choice yields the solution308

Np = 4 : Ĉ0(x) =


1
16

{[
(1+
√

5)+(5+
√

5)x
]
(1−5x2)

}
x <−1/

√
5,

0 x≥−1/
√

5

Ĉ1(x) =


1−Ĉ0(x), x <−1/

√
5,

1
4

(
2−3

√
5x+5

√
5x3
)
, −1/

√
5≤ x≤ 1/

√
5,

0 x≥ 1/
√

5

Ĉ2(x) = Ĉ1(−x), (36)

Ĉ3(x) = Ĉ0(−x).

Monotonized cardinal functions can be similarly specified for Np > 4. These functions are plotted309

in Figure 3 (b,d) for Np = 3,4.310

One curious result emerges from this construction: Although for Np = 2 the monotone basis can311

correctly capture linear variation over a finite element, for Np > 2 all monotone basis functions312

have zero derivative at interior GLL nodes, and consequently cannot represent linear variations313

within the element. This suggests that smoothly varying fields may be more poorly captured when314

construction a monotone map with Np > 2 (as we shall see later). The choice of a monotone basis315

that avoids this problem is confounded by the need for conservation, automatically eliminating the316

second-order bilinear interpolant as an option.317

b. Building a “first guess” sub-map318

The “first guess” sub-map required by this algorithm only needs to satisfy the conservation and319

consistency property approximately. Here it is constructed by using high-order triangular quadra-320

ture to integrate each characteristic function over all polygonal regions on the overlap mesh via321

polygonal subdivision (see Figure 4). The triangular quadrature rules employed by this package322
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are given by Dunavant (1985), and depicted in Figure 5 for triangular quadrature rules of order 1,323

4 and 8. The triangular quadrature rule should at least match the order of accuracy of the finite ele-324

ment method to ensure the map exhibits the correct order-of-accuracy. Only triangular quadrature325

rules with nonnegative weights are considered, since the use of negative weights could lead to a326

loss of monotonicity. Given a triangular region with corner points (xov
i, j)k (k ∈ {1,2,3}) connected327

via great circle arcs, the quadrature rule (ŵk, α̂k, β̂k, γ̂k) is applied via328 ∫
F ov

i, j

ψ
s
j(x)dA≈

Nq

∑
k=1

ψ
s
j(xk)ŵkJov

i, j, (37)

with xk = (xov
i, j)1α̂k +(xov

i, j)2β̂k +(xov
i, j)3(1− α̂k− β̂k),

where ψs
j(xk) is defined in (29). This procedure yields a sub-map which is consistent as long as the329

basis functions are a partition of unity, but non-conservative since inexact quadrature is employed.330

c. Consistency and Conservation Enforcement331

Since conservation is not guaranteed by the above procedure, we now enforce conservation by332

orthogonal projection of the sub-map onto the space of conservative and consistent maps. In some333

sense, this projected solution is optimal since the projected map is closest (in the sense of Euclidian334

distance) to the “first guess” map. The projection operation is performed by solving a least squares335

problem for all coefficients in the sub-map. This highlights a key strength of dividing the global336

map into sub-maps; namely enforcement of global conservation and consistency requires the solu-337

tion of a large number of small, inexpensive optimization problems (one for each sub-map), rather338

than one very expensive global optimization problem.339

Given an arbitrary linear sub-map R̂∗i j with f̂ s = |A| source elements and f̂ t = |B| target elements,340

the corresponding conservative and consistent remapping operator R̂i j is obtained as follows:341

Minimize
f̂ t

∑
i=1

f̂ s

∑
j=1

1
2
(R̂i j− R̂∗i j)

2 subject to conservation (22) and consistency (23). (38)
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The least squares problem is solved directly via the Lagrangian. Vectors λ and κ are defined with342

elements λi, i ∈ [1, . . . , f̂ t ], and κ j, j ∈ [1, . . . , f̂ s−1] respectively. Note that the result (17) implies343

that the consistency and conservation conditions are linearly dependent, and so conservation is344

only imposed for the first f̂ s−1 elements. The Lagrangian takes the form345

L (R,λ,κ) =
f̂ t

∑
i=1

f̂ s

∑
j=1

1
2
(R̂i j− R̂∗i j)

2−
f̂ t

∑
i=1

λi

[(
f̂ s

∑
j=1

R̂i j

)
−1

]
︸ ︷︷ ︸

consistency

−
f̂ s−1

∑
j=1

κ j

[(
f̂ t

∑
i=1

R̂i jJt
i

)
− Js

j

]
︸ ︷︷ ︸

conservation

. (39)

The unique minimizer of the Lagrangian is then obtained by differentiating with respect to all346

coefficients R̂i j, λi and κ j and leads to the linear system347

 I CT

C 0




R̂i j

λ

κ

=


R̂∗i j

−1

−Js

 , (40)

where C is the ( f̂ t + f̂ s−1)× f̂ t f̂ s matrix defined by the derivatives ∂L /∂λ and ∂L /∂κ. This348

system can be solved efficiently via Schur complement,349

R̂i j = R̂∗i j−CT (CCT )−1

CR̂∗i j +

 1

J s


 . (41)

Note that to further improve the efficiency of this calculation, the matrix CCT can be specified350

directly. If we define351

S2 =
f̂ t

∑
i=1

(Jt
i )

2, (42)
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then352

CCT =



f̂ s 0 Jt
1 · · · Jt

1

. . . ...
...

0 f̂ s Jt
f̂ t · · · Jt

f̂ t

Jt
1 · · · Jt

f̂ t S2 0

...
... . . .

Jt
1 · · · Jt

f̂ t 0 S2



f̂ t entries

( f̂ s−1) entries

. (43)

d. A note about convergence353

An advantage of using the least squares procedure is that it does not affect the accuracy (in the354

sense of convergence) of the “first guess” map, in accordance with the following theorem.355

356

Theorem 3: If R̂∗ is constructed using the non-monotone reconstruction in (31) with a triangular357

quadrature rule of at least order Np, then ψt = R̂Ds[ψ] is convergent with order Np.358

Sketch of Proof: For a sufficiently smooth field ψ define the exact map via359

R̂exactDs[ψ] = Dt [ψ]. (44)

By construction, R̂exact must be conservative and consistent. Note that since order Np quadrature360

is used for constructing R̂∗, ψt will converge to Dt [ψ] with order O(∆xNp). However, since (38)361

represents the closest sub-map (in the sense of Eulerian distance) to R̂∗ that is conservative and362

consistent, then363

‖R̂− R̂∗‖2 < ‖R̂exact− R̂∗‖2 = O(∆xNp), (45)

and so R̂ is also convergent with order Np. �364
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e. Monotonicity Preservation365

In order to impose monotonicity, the least squares problem (38) can be augmented with an366

additional boundedness condition given by (14). Solving the resulting constrained and bounded367

least-squares problem can then be done via an interior point method (see, for example, Boyd368

and Vandenberghe (2009)). However, this additional criteria can be computationally taxing, and369

so another approach is used in practice. After computing the unique conservative and consistent370

sub-map from (38) using the procedure described above, the resulting linear sub-map may contain371

small negative values which need to be removed. To do so, the following theorem is used:372

373

Theorem 4: If R̂(1)
i j and R̂(2)

i j are conservative and consistent linear sub-maps over A(1) = A(2)
374

and B(1) = B(2) respectively, then for ω ∈ [0,1], R̂i j = ωR̂(1)
i j + (1−ω)R̂(2)

i j is a consistent and375

conservative linear sub-map.376

Proof: By linearity of (22) and (23). �377

378

Consequently, if R̂s
i j is the conservative and consistent linear sub-map obtained from the least379

squares procedure then the linear sub-map constructed via380

R̂i j = ωR̂0
i j +(1−ω)R̂s

i j (46)

is also conservative and consistent. Monotonization of R̂s
i j then simply relies on finding a value of381

ω sufficiently large that R̂i j has no negative entries. In fact, the choice382

ω = max
i, j

[
max

(
−R̂s

i j

|R̂0
i j− R̂s

i j|
,0

)]
. (47)

meets this criterion and so is used to define a monotone sub-map.383
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4. Numerical Results384

The meshes used for validation of the linear maps are plotted in Figure 6, although only meshes385

(a)-(c) will be used for the idealized study. These include (a) an equiangular cubed-sphere mesh,386

(b) a great circle latitude-longitude mesh and (c) a geodesic mesh. The great circle latitude-387

longitude mesh is constructed analogous to a regular latitude-longitude mesh, but all edges are388

approximated as great circle arcs (note that in a regular latitude-longitude mesh lines of constant389

latitude are not great circle arcs). This approximation has the greatest deviation from the regular390

latitude-longitude mesh in the polar region (Ullrich et al. 2009). The geodesic mesh is constructed391

by taking the dual of an icosahedral mesh, which is in turn obtained by subdividing the triangular392

faces of an icosahedron into sub-triangles. The resulting mesh is composed largely of hexagons,393

with exactly 12 pentagons appearing due to the icosahedral corner nodes.394

The analysis mirrors the approach of Lauritzen and Nair (2007): We consider three idealized395

test cases of varied complexity to understand the error measures produced by the linear maps396

from GLL elements to finite volumes. The three analytical fields studied are depicted in Figure 7.397

Following Jones (1999) and Lauritzen and Nair (2007) the first field is a relatively smooth function398

resembling a spherical harmonic of order 2 and azimuthal wavenumber 2, given by399

ψ = 2+ cos2
θ cos(2λ ), (Y 2

2 ). (48)

The second field is a relatively high frequency wave similar to a spherical harmonic of order 32400

and azimuthal wavenumber 16, given by401

ψ = 2+ sin16(2θ)cos(16λ ), (Y 16
32 ). (49)

These fields are used to test performance for a smooth well-resolved field and a high-frequency402

poorly resolved field with rapidly changing gradients. The third field is a dual stationary vortex403
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(Nair and Machenhauer 2002). The field is given by404

ψ = 1− tanh
[

ρ ′

d
sin(λ ′−ω

′t)
]
, (Vortex) (50)

where the radius ρ ′ = r0 cosθ ′, with angular velocity405

ω
′(θ ′) =


0 if ρ ′ = 0,

Vt
ρ ′ if ρ ′ 6= 0,

(51)

and normalized tangental velocity406

Vt =
3
√

3
2

sech2
ρ
′ tanhρ

′. (52)

The (λ ′,θ ′) refer to a rotated spherical coordinate system with a pole located at (λ0,θ0). Following407

Lauritzen and Nair (2007) we choose (λ0,θ0) = (0,0.6), r0 = 3, d = 5 and t = 6.408

Standard error measures are employed:409

L1 ≡
It
[∣∣∣RDs[ψ]−Dt [ψ]

∣∣∣]
It
[∣∣∣Dt [ψ]

∣∣∣] , L2 ≡

√
It

[∣∣∣RDs[ψ]−Dt [ψ]
∣∣∣2]√

I
[∣∣∣Dt [ψ]

∣∣∣2] , (53)

410

L∞ ≡
max

∣∣∣RDs[ψ]−Dt [ψ]
∣∣∣

max
∣∣∣Dt [ψ]

∣∣∣ , (54)

411

Lmin ≡
min(Dt [ψ])−min(RDs[ψ])

max
∣∣∣Dt [ψ]

∣∣∣ , Lmax ≡
max(RDs[ψ])−max(Dt [ψ])

max
∣∣∣Dt [ψ]

∣∣∣ (55)

In some general sense, the error measures L1 identifies errors in large-scale features, L2 identifies412

errors in small-scale features and L∞ identifies the largest pointwise error. The error measures Lmin413

and Lmax identify undershoots and overshoots, respectively, by taking on positive values when the414

global extreme values are enhanced.415

In the following sections the source discretization Ds[ψ] is generated by sampling ψ at each416

nodal GLL point on the source mesh. The results of the remapping operation are compared to a417
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target discretization Dt [ψ] generated via 8th order triangular quadrature over each polygon on the418

target mesh. The default configuration further use a 4th-order triangular quadrature rule is used to419

construct the “first guess” map.420

a. Cubed-sphere mesh to great circle latitude-longitude mesh (non-monotonic)421

Figure 8 shows standard error measures for the conservative and consistent linear map from the422

cubed-sphere grid with ne× ne elements per panel (ne = 15,30,60) to the great circle latitude-423

longitude grid with 1◦ grid spacing (consisting of 360 longitudinal elements and 180 latitudinal424

elements). The number of GLL nodes per element (and hence the order of accuracy of the linear425

map) is given by Np = 2,3 or 4. All results are conservative to machine truncation (not shown).426

Error measures are smallest for the smooth Y 2
2 field, as expected. All fields further show pro-427

gressively decreasing error norms with increasing ne and Np. Further, the Y 16
32 and Vortex meshes428

show convergence rates which closely match O(n−Np
e ). The convergence rate for the Y 2

2 field is429

almost O(n−Np
e ), except for the fourth-order scheme which is not quite fourth-order convergent430

at the finest resolution. The loss of perfect convergence is due to insufficient resolution on the431

target grid, which affects both the construction of the “first guess” map and the evaluation of the432

reference solution.433

Figure 9 shows Lmin and Lmax for the mapping problem above. In general there is a consistent434

decrease in the errors of the extreme values of each field, although these results are far less con-435

sistent than the results for the Lp norms. Overshoots and undershoots are observed in many of the436

simulations with Np > 2 and are identified by circled data points.437
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b. Cubed-sphere mesh to great circle latitude-longitude mesh (monotonic)438

Figure 10 provides error norms for the cubed-sphere to great circle latitude-longitude grid map-439

ping described above, except here with strict monotonicity enforced on the linear map via the440

procedure described in section 3e. The error norms are significantly worse, compounded by the441

fact that any monotone method is limited to at most second-order convergence. As expected (fol-442

lowing the discussion in section 3a), the Np > 2 results are actually worse than the Np = 2 results443

for the Y 2
2 field. Figure 11 shows Lmin and Lmax for the conservative, consistent and monotone map.444

These error norms are always negative, which confirms that the global minimum and maximum445

are not enhanced by the linear map.446

c. Cubed-sphere mesh to geodesic mesh (non-monotonic)447

To verify robustness of the algorithm, remapping has also been performed from the cubed-sphere448

grid to the Ni = 72 geodesic mesh (generated from Ni triangular elements along each face of the449

icosahedron). Standard error measures are plotted in Figure 12 along with Lmin / Lmax in Figure450

13. The error norms show generally consistent behavior as with the previous study, suggesting451

that the results are largely independent of the target mesh.452

d. Refined cubed-sphere mesh to great circle latitude-longitude mesh (real data)453

To test if the algorithm performs well in practice, the software is tested for remeshing of data454

from a variable-resolution cubed-sphere mesh (Figure 6d) to the great circle latitude-longitude455

grid (Figure 6b). The variable resolution mesh has been designed for a study of California cli-456

matology, and so provides an enhancement to 0.25◦ resolution over California from 1◦ global457

resolution. Integration has been performed using the Community Earth System Model spectral458

element dynamical core (Neale et al. 2010) using the variable resolution capability described in459
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Zarzycki et al. (2014). The result of the remapping algorithm is plotted in Figure 14, showing460

a relatively smooth field (surface pressure) and a highly discontinuous field where monotonicity461

preservation is necessary (percentage plant functional type). Overall the algorithm performs well,462

with no obvious grid imprinting apparent on the result.463

5. Conclusions464

A mathematical theory underlying for conservative and consistent (and optionally monotone)465

linear maps between meshes on the sphere has been presented. To demonstrate the applicability of466

this theory, an algorithm has been developed for constructing arbitrary-order conservative and con-467

sistent linear maps between finite-element and finite-volume meshes. This method was then tested468

using a cubed-sphere source mesh and a great circle latitude-longitude target mesh or geodesic469

target mesh. The resulting remap scheme has been demonstrated to have the correct convergence470

rate for polynomials up to cubic degree (fourth-order), although there is no fundamental limit on471

the order of the scheme. A technique for constructing conservative, consistent and monotone maps472

was also discussed and led to second-order convergent linear maps. Testing was also performed473

on real data and the results observed to be satisfactory for real applications.474

This algorithm has been extended for generating linear maps from finite-volumes to finite-475

volumes and/or finite-elements, which will be the topic of a future manuscript. It is also anticipated476

that the search algorithm and quadrature rule will be extended to support grid lines of constant lat-477

itude. This work will be used as a basis for constructing a semi-Lagrangian advection scheme on478

the sphere which provides high-order accuracy on arbitrary meshes.479
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APPENDIX A493

An Example Linear Map494

This appendix provides a simple 1D example of a finite element to finite volume linear map.495

Consider the 1D interval Ω = [0,1] covered by one finite element with Np = 4 and divided into496

three finite volumes of equal width. The regions on the finite element mesh are regions of support497

for the non-monotone basis functions,498

Ω
s
1 = Ω

s
2 = Ω

s
3 = Ω

s
4 = [0,1], (A1)

and on the finite volume mesh are regions of equal width,499

Ω
t
1 =

[
0, 1

3

]
, Ω

t
2 =

[1
3 ,

2
3

]
, Ω

t
3 =

[2
3 ,1
]
. (A2)

Degrees of freedom on the finite element mesh are stored at nodal points500

xs
1 = 0, xs

2 =
1
2 −

1
10

√
5, xs

3 =
1
2 +

1
10

√
5, xs

4 = 1. (A3)

Local weights on the source mesh are given by (32),501

Js
1 =

1
12 , Js

2 =
5
12 , Js

3 =
5
12 , Js

4 =
1

12 , (A4)

and on the target mesh by the geometric area,502

Jt
1 = Jt

2 = Jt
3 =

1
3 . (A5)

Observe that these local weights satisfy (17) and geometric consistency (Definition 8), for A =503

[1,2,3,4]. By using exact integration over the characteristic functions on this finite element we504

can then obtain a linear mapping operator,505

R =


35

108
35

108 +
5

27

√
5 35

108 −
5

27

√
5 3

108

− 11
108

65
108

65
108 − 11

108

3
108

35
108 −

5
27

√
5 35

108 +
5

27

√
5 35

108

 . (A6)
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Note that since exact integration is used, this operator is already conservative and consistent and506

so is unaffected by the least squares procedure (section 3.c). The operator is not monotone, as is507

apparent from negative entries R1,3, R2,1, R2,4 and R3,2. If an inexact integration procedure were508

used, the least squares projection could be necessary to enforce conservation.509

510

APPENDIX B511

Overlap Mesh Generation Algortihm512

This appendix provides an outline of the algorithm used for generating the overlap mesh.513

For serial overlap mesh generation this approach is far from optimal, but is potentially easier514

to parallelize than other methods, such as the advancing front method described in Farrell and515

Maddison (2011). Improved overlap mesh generation remains a topic for future work. The516

main function simply loops through all faces on the first mesh, first generating a path around the517

boundary of each face which accounts for intersections with the second mesh, and then follows518

the path to generate all faces contained within the path. The pseudocode for this algorithm is as519

follows:520

521

GenerateOverlapMesh()522

for all faces f in FirstMesh523

OverlapPath p = GenerateOverlapPath(f)524

GenerateOverlapFaces(p, OverlapMesh)525

GenerateOverlapPath(FirstFace)526
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OverlapPath = {}527

CurrentNode = first node of FirstFace528

CurrentSegment = line connecting CurrentNode to second node of FirstFace529

Find SecondFace on SecondMesh from CurrentNode530

for all edges e1 in FirstFace531

while segments still remain in edge532

for all edges e2 of SecondFace533

if CurrentSegment intersects e2534

determine intersection node NextNode535

add new edge [CurrentNode, NextNode] to OverlapPath536

update CurrentNode, CurrentSegment537

if CurrentSegment does not intersect any edges of SecondFace538

set next FirstFace edge539

break segment loop540

GenerateOverlapFaces(OverlapPath, OverlapMesh)541

for all remaining edges e in OverlapPath542

remove edge e from OverlapPath543

if e intersects an edge on SecondMesh544

follow SecondMesh edges until re-intersect with OverlapPath545

else continue546

if a closed element has been completed547

add a new Face to OverlapMesh548

add all Faces from SecondMesh interior to OverlapPath to OverlapMesh549
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FIG. 2: (a) Geometric distribution of degrees of freedom in a fourth-order Gauss-Lobatto-
Legendre finite element. (b) Degrees of freedom in the fourth-order Gauss-Lobatto-Legendre
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FIG. 3: Third- and fourth-order GLL basis functions used for the continuous reconstruction.
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FIG. 4: Subdivision of a quadrilateral and pentagon into triangles.
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FIG. 5: First-, fourth- and eighth-order triangular quadrature nodes.

42



(a) (b)

(c) (d)

FIG. 6: A depiction of the four meshes studied in this manuscript: (a) Cubed-sphere, (b) Great-
circle latitude-longitude, (c) Icosahedral / geodesic and (d) Refined cubed-sphere.
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FIG. 7: Contour plots of the three test fields used in this study. Fields (a) and (b) take on values in
the range [1,3]. Field (c) takes on values in the approximate range [0.46, 1.54].
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FIG. 8: Standard L1, L2 and L∞ error norms reported for conservative and consistent remapping
of the three idealized fields from the cubed-sphere mesh to the 1◦ great circle latitude-longitude
mesh for cubed-sphere resolutions ne = 15,30,60 and for three orders of accuracy Np = 2,3,4.
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FIG. 9: Absolute Lmin and Lmax error norms reported for conservative and consistent remapping
of the three idealized fields from the cubed-sphere mesh to the 1◦ great circle latitude-longitude
mesh for cubed-sphere resolutions ne = 15,30,60 and for three orders of accuracy Np = 2,3,4.
Circled data points indicate that the global minimum / maximum has been enhanced (i.e. that
monotonicity was not maintained).
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FIG. 10: Standard L1, L2 and L∞ error norms reported for conservative, consistent and strictly
monotonic remapping of the three idealized fields from the cubed-sphere mesh to the 1◦ great
circle latitude-longitude mesh for cubed-sphere resolutions ne = 15,30,60 and for three orders of
accuracy Np = 2,3,4.
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FIG. 11: Absolute Lmin and Lmax error norms reported for conservative, consistent and strictly
monotonic remapping of the three idealized fields from the cubed-sphere mesh to the 1◦ great
circle latitude-longitude mesh for cubed-sphere resolutions ne = 15,30,60 and for three orders of
accuracy Np = 2,3,4.
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FIG. 12: Standard L1, L2 and L∞ error norms reported for conservative and consistent remapping
of the three idealized fields from the cubed-sphere mesh to the Ni = 72 geodesic mesh for cubed-
sphere resolutions ne = 15,30,60 and for three orders of accuracy Np = 2,3,4.
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FIG. 13: Absolute Lmin and Lmax error norms reported for conservative and consistent remapping
of the three idealized fields from the cubed-sphere mesh to the Ni = 72 geodesic mesh for cubed-
sphere resolutions ne = 15,30,60 and for three orders of accuracy Np = 2,3,4.
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FIG. 14: Two “real data” tests for remapping from the variable resolution cubed-sphere mesh (Fig-
ure 6d) with Np = 4 to a 0.25◦ great circle latitude-longitude grid (Figure 6b). (a) Surface pressure
from a variable resolution simulation using conservative and consistent remapping. Observe that
the detail of the result is much finer between 135W and 90W in the Northern hemisphere, corre-
sponding to the region of highest mesh refinement. (b) Percentage plant functional type (barren
land) using conservative, consistent and monotone remapping. This field is highly discontinuous
and requires that the data be constrained to the interval [0,100] to be considered meaningful.
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