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The paper presents a description of idealized, balanced initial conditions for dry 3D
channel models with either the hydrostatic or non-hydrostatic shallow-atmosphere
equation set. Both the analytical expressions for an f - and β-plane configuration are
provided and possible variations are discussed. The initialization with an overlaid
perturbation is then used for baroclinic instability studies which can either serve as
a test case for the numerical discretization or for physical science investigations such as
the impact of the Coriolis parameter on the evolution of baroclinic waves.
Example results for two channel models are presented which are MCore and the
Weather Research and Forecasting (WRF) model. The simulations show that the
evolution of the baroclinic wave on the β-plane is more unstable than the corresponding
f -plane configuration, experiencing a faster linear growth rate of the most unstable
wave mode, a shorter most unstable wavelength, a narrower meridional width, and an
earlier breaking of the baroclinic wave. A theoretical analysis based on linearized quasi-
geostrophic (QG) theory sheds light on these findings. It is shown that the simulated
baroclinic instability waves on both the f - and β-plane closely match the predicted
wavelength, shape and linear growth rate obtained from the QG theory which validates
the model results.

Key Words: Baroclinic instability; dynamical core; test case; non-hydrostatic channel models; f - and β-plane; Coriolis
parameter; linear quasi-geostrophic theory

Received . . .

1. Introduction

Baroclinic waves are of fundamental importance in the Earth’s
atmosphere. They represent the synoptic-scale patterns of high
and low pressure systems in the midlatitudes, and are the main
exchange mechanism for energy and momentum between the
tropical and polar regions. Baroclinic waves and baroclinic
instabilty have therefore been of interest to the modeling
community for decades, as e.g. documented by Schär and Wernli
(1993) and previous authors listed therein. In particular, idealized
simulations of different baroclinic wave life cycles, such as the
cyclonic versus anticyclonic life cycle with the very different
behavior of the upper-air trough, have helped shed light on
their dependence on the initial background conditions. Such life
cycle aspects have, for example, been discussed by Simmons and
Hoskins (1978) and Thorncroft et al. (1993) who used global
spectral transform models in spherical geometry.

Besides global models, 3D channel models with either the f - or
β-plane approximation of the Coriolis parameter are also popular
tools to investigate the fundamental behavior of baroclinically
unstable flows. Channel models are often less expensive to run

from a computational viewpoint, and provide good representation
of the midlatitudinal flow which is mostly governed by synoptic-
scale sequences of high and low pressure systems. These are
often closely approximated by quasi-geostropic theory. Therefore,
a wide variety of equation sets have been used for channel
models, ranging from the semi-geostrophic equations, primitive
equations to the non-hydrostatic Euler equations with the
shallow-atmosphere approximation. An issue, that arises for all
these equation sets, is the choice of the initial conditions for
baroclinic wave experiments. A typical initial state consists of
a hydrostatically and geostrophically balanced atmosphere in
thermal wind balance that is overlaid with a perturbation. This
perturbation acts as a trigger for the evolution of the baroclinic
wave.

Defining such a balanced initial base state is not necessarily
straightforward since it needs to be a steady-state solution to
the equation set. In addition, it needs to provide certain physical
characteristics such as static stability and a zonal jet with strong
vertical wind shear which makes the atmosphere baroclinically
unstable. Furthermore, the initial state should be easy to generate,
easy to modify and should allow exact reproducibility by other
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modelers. These criteria are at the very core of this paper. They
provide motivation for the definition of balanced initial conditions
for hydrostatic and non-hydrostatic channel models, that are built
upon analytical expressions. These can be evaluated on any
model grid and are versatile since they e.g. provide a switch
between the f - and β-plane configurations for channel models.
The initial conditions presented in this paper can also be easily
modified if other physical characteristics are desired, such as a
meridional (barotropic) shear of the background zonal wind or
the inclusion of moisture. This is important since the evolution of
baroclinic instability waves depends on the background conditions
as mentioned above, and a technique for the generation of flexible
initial states opens up wide application areas.

Unfortunately, almost none of the initial states used in the
published literature for baroclinic wave studies fulfill these
criteria. A notable exception is the in-depth description of
the balanced f -plane background state by Wang and Polvani
(2011) that nevertheless still relies on numerical integrations
and an iterative procedure for the overlaid perturbation. More
recently, Terpstra and Spengler (2015) proposed a methodology
that removes the need for iteration but still relies on numerical
integration for constructing the basic state. The by-far dominant
technique for channel models uses an f−plane configuration and
prescribes a zonally-invariant, constant, small potential vorticity
(PV) value in the troposphere (like 0.4 PV units (PVU)) and
a large PV value (like 4 PVU) in the stratosphere. In addition,
a dividing line, such as a hyperbolic tangent profile in the
meridional direction, is defined between the two regimes, before
the 2D PV distribution is numerically inverted via an iterative
technique and chosen boundary conditions. However, the resulting
initial data set is typically not fully balanced. Therefore, it is
further smoothed in an iterative fashion. This technique is for
example outlined in Zhang (2004), Plougonven and Snyder (2007)
or Waite and Snyder (2009), and was inspired by the method
in Rotunno (1994). Davis (2010) extended this PV inversion
technique to allow for β-plane variations of the initial data set in a
moist environment. However, none of the groups disclosed the full
details of their initializations so that their experiments cannot be
easily reproduced. Furthermore, there is no agreement on the form
of the overlaid perturbation. Some groups like Plougonven and
Snyder (2007) or Waite and Snyder (2009) prefer an iteratively
computed, unbalanced normal mode perturbation of the most
unstable wave. Others like Zhang (2004) define a localized,
balanced PV perturbation before the PV inversion is initiated.

The purpose of this paper is twofold. First, we provide
a thorough description of idealized, balanced, analytical and
reproducible initial conditions for dry 3D channel models
with hydrostatic or non-hydrostatic shallow-atmosphere equation
sets. These can then be overlaid with a localized, unbalanced
perturbation of e.g. the zonal wind field to initiate the growth
of the baroclinic wave. Both an f - and β-plane configuration
are described, which are anchored in the midlatitudes and have
very similar temperature and static stability characteristics. The
specification of the initial conditions is closely related to the
initial data set derived for baroclinic wave studies with the
dynamical cores of General Circulation Models (GCMs). These
are documented in Jablonowski and Williamson (2006a,b) and
Ullrich et al. (2014).

The initial conditions can serve many purposes. They can, for
example, be used as a test case during the model development
phases, and serve as a debugging tool or for numerical
convergence studies. This was our original motivation for their
derivation when we used them briefly for the evaluation of the
new channel model MCore (Ullrich and Jablonowski 2012).
However, the initial conditions can also serve as the basis for
model intercomparisons, or investigations of the impact of the

initial state on the baroclinic wave life cycle. The latter is the
second focus area of this paper. The almost identical f - and
β-plane configurations provide an opportunity to compare the
different growth rates and most unstable wavelengths of the
growing baroclinic waves. We provide example simulations with
the models MCore and the Weather and Research Forecasting
(WRF) model (Skamarock et al. 2008) and explain the simulation
differences via linearized quasi-geostrophic (QG) theory. Of
course, the underlying QG theory is well established, and
this paper does not intend to broaden the theoretical base.
Instead, we use the QG framework to validate the model
results from a theoretical viewpoint, and demonstrate the close
resemblance between the theory and the linear growth phases
of the simulations. Having access to a closed-form analytical
formulation of the initial conditions eases these QG assessments
and closely connects all sections of the paper.

The paper is organized as follows. Section 2 provides an
in-depth description of the initial data set for our baroclinic
wave studies and outlines the generic “recipe” for the
initialization technique. Section 3 specifies the recommended
model configuration, briefly introduces the models MCore and
WRF, and presents some example simulations on both the f - and
β-plane. Section 4 shows how linearized QG theory can be used
to validate the simulation results. The conclusions are summarized
in section 5.

2. Initial conditions for a baroclinic wave in a channel

2.1. Steady-state initial conditions

The initial conditions for 3D baroclinic wave simulations have
been designed for dry atmospheric channel models on a Cartesian
plane. Both hydrostatic and non-hydrostatic equation sets with a
shallow-atmosphere approximation are supported. The analytical
formulation is based on a pressure-based vertical coordinate like
the pure pressure coordinate p, the pure σ = p/ps coordinate
(Phillips 1957) or the η (hybrid σ − p) coordinate (Simmons
and Burridge 1981) with p = A(η)p0 +B(η)ps (see detailed
discussion in Appendix A). The reference surface pressure needs
to be set to p0 = 1000 hPa here. If other reference surface
pressures are employed in a model, such as the sometimes used
“standard atmosphere” of 1013.25 hPa, we recommend resetting
the p0 parameter to 1000 hPa to allow for comparisons to other
published results. It is paramount that the initially constant surface
pressure ps is set to the same value ps = p0. This guarantees that
the initial η surfaces coincide with constant σ or pressure surfaces.
If other σ-systems like σ = (p− pt)/(ps − pt) are used (Kasahara
1974), the chosen pressure pt at the top model interface should be
set to zero.

In general, the choice of the vertical coordinate system is
model dependent and therefore left to the modeling group, despite
the fact that each vertical coordinate system implies different
boundary conditions in the vertical direction. In essence, the
boundary condition needs to ensure that the vertical velocity,
as expressed in the transformed vertical coordinate, is zero at
both the surface and the uppermost model interface level. In
practice, these formulation differences have been found to be
insignificant for the evolution of the baroclinic wave over short
15-20 day time periods. Typically, terrain-following σ or η

vertical coordinates are used in hydrostatic General Circulation
Models (GCMs) or hydrostatic-pressure-based (also known as
mass-based, see Laprise (1992)) in non-hydrostatic models. In
addition, non-hydrostatic models often utilize a height-based
vertical coordinate, as further detailed below and in Appendix B.

The initial state is defined by analytical expressions in
horizontally Cartesian (x, y, η) coordinates where x ∈ [0, Lx]

indicates the zonal direction, y ∈ [0, Ly] represents the meridional
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Table 1. A list of physical constants used in this document.

Constant Description Value
a Radius of the Earth 6.371229× 106 m
Ω Angular velocity of the Earth 7.292× 10−5 s−1

g Gravity 9.80616 m s−2

cp Specific heat capacity of dry air at constant pressure 1004.5 J kg−1 K−1

Rd Gas constant for dry air 287.0 J kg−1 K−1

Table 2. A list of parameters used in this document.

Constant Description Value
T0 Reference temperature 288 K
Γ Lapse rate 0.005 K m−1

b Nondimensional vertical width parameter 2

u0 Reference zonal wind speed 35 m s−1

up Magnitude of the zonal wind perturbation 1 m s−1

p0 Reference surface pressure 1000 hPa
Lx Zonal extent of the domain 40000 km
Ly Meridional extent of the domain 6000 km
Lp Width parameter for the perturbation 600 km
xc Zonal center position of the perturbation 2000 km
yc Meridional center position of the perturbation 2500 km
y0 Meridional position of reference latitude Ly/2

ϕ0 Reference latitude π/4 = 45◦ N
f0 f -plane Coriolis parameter 2Ω sinϕ0

β0 β-plane parameter 2Ω cosϕ0 a
−1

Φs Surface geopotential 0 m2 s−2

zs Surface elevation 0 m
δ Initial divergence 0 s−1

N0 Approximate Brunt-Väisälä frequency at position ϕ0 0.014 s−1

Ts Approximate vertically-averaged temperature at ϕ0 260 K
H Scale height H = RdTsg

−1

ptop Suggested maximum pressure position of the model top 20 hPa
ztop Suggested minimum height position of the model top 30 km
∆z Suggested maximum vertical grid spacing 1 km
∆x,∆y Suggested horizontal grid spacing 100 km
∆yw Meridional width parameter for the inclusion of moisture 3200 km
ηw η-based width parameter for the inclusion of moisture 0.3
q0 Maximum specific humidity amplitude 0.018 kg kg−1

direction and η = p/ps ∈ (0, 1] denotes the position in the vertical
direction which is unity at the surface and approaches zero at the
model top. The channel widths Lx = 40000 km and length Ly =

6000 km are selected in our specification which approximately
correspond to the circumference of the Earth in the longitudinal
x-direction along the equator and the meridional extent of the
Northern Hemisphere in the y-direction. All physical constants
and parameters used for the initial data are given in Tables 1 and
2. Modelers are encouraged to select the same physical constants
and parameters to foster model intercomparisons.

The background flow field is comprised of a zonal jet in
the northern midlatitudes that is in hydrostatic and geostrophic
balance, enforces the thermal wind relationship, and is a steady-
state solution to the shallow-atmosphere equation set. The
background zonal wind u, as also specified in Ullrich and
Jablonowski (2012), is defined as

u(x, y, η) = −u0 sin2
(
π y

Ly

)
ln η exp

{
−
(

ln η

b

)2}
= −u0 sin2

(
π y

Ly

)
ln η η

− ln η

b2 (1)

which forces the wind to be zero at the surface and along the north
and south y-boundary. In addition, the wind approaches zero near
the model top. The nondimensional vertical width parameter b is

set to 2 and the default value of u0 = 35 m s−1 is chosen. Note
that the parameter u0 does not indicate the maximum amplitude of
the westerly zonal wind. The maximum is lower and lies around
30 m s−1 which resembles the zonal-mean time-mean jet speed
in the midlatitudinal troposphere. The center of the zonal jet in
the vertical direction is located around η = 0.24 or p = 240 hPa
which is close to the observed position of midlatitudinal jets. As
mentioned above, the zonal wind at the surface is zero. Therefore,
the surface geopotential is constant and set to Φs = gzs = 0 m2

s−2 which prescribes a flat surface elevation of zs = 0 m. The
physical constant g = 9.80616 m s−2 denotes the gravity.

The meridional wind v is set to zero. In addition, the vertical
velocity w is set to zero for non-hydrostatic setups. This flow
field is nondivergent (δ = 0 s−1) and even allows the derivation of
the analytical initial conditions for models in vorticity-divergence
(ζ,δ) form. The background relative vorticity field is given by

ζ(x, y, η) =
2π u0

Ly
sin
(
π y

Ly

)
cos
(
π y

Ly

)
(2)

× ln η exp
{
−
(

ln η

b

)2}
. (3)

This leads to the expression for the absolute vorticity

Ωa(x, y, η) = f + ζ(x, y, η) (4)

c© 2015 Royal Meteorological Society Prepared using qjrms4.cls



4 P. A. Ullrich et al.

where the Coriolis parameter f can be chosen to either represent
a constant f -plane or β-plane. The two formulations are

f = f0 (5)

f = f0 + β0 (y − y0) (6)

with the constant Coriolis parameter f0 = 2Ω sinϕ0 and
the meridional variation of the Coriolis parameter β0 =

2Ω cosϕ0 a
−1 at the constant latitude ϕ0 = 45◦ N. The radius of

the Earth is symbolized by a = 6371.229× 103 m, Ω = 7.292×
10−5 s−1 denotes the Earth’s angular velocity and y0 = Ly/2 is
the center point of the domain in the y-direction. The steady-state
zonal wind and relative vorticity field with respect to the vertical
η coordinate are depicted in Fig. 1. They are identical for both the
f - and β-plane formulation of the initial data set.

As the last step, we need expressions for the balanced
geopotential and temperature fields. The geopotential is given by

Φ(x, y, η) = 〈Φ(η)〉+ Φ′(x, y) ln η exp
{
−
(

ln η

b

)2}
(7)

with the horizontal-mean geopotential

〈Φ(η)〉 =
T0 g

Γ

(
1 − η

Rd Γ

g

)
(8)

and the horizontal variation

Φ′(x, y) =
u0

2

{(
f0 − β0y0

) [
y − Ly

2
− Ly

2π
sin
(

2πy

Ly

)]

+
β0

2

[
y2 − Lyy

π
sin
(

2πy

Ly

)
−

L2
y

2π2
cos
(

2πy

Ly

)
−
L2
y

3
−

L2
y

2π2

]}
. (9)

The reference temperature T0 is set to 288 K, the lapse rate is
chosen as Γ = 0.005 K m−1 and Rd = 287 J kg−1 K−1 is the gas
constant for dry air. The corresponding temperature distribution
comprises the level-dependent horizontal-mean temperature
〈T (η)〉 and a horizontal temperature perturbation T ′. They are
given by

T (x, y, η) = 〈T (η)〉

+
Φ′(x, y)

Rd

(
2

b2
(ln η)2 − 1

)
exp

{
−
(

ln η

b

)2}
(10)

with the horizontal-mean temperature

〈T (η)〉 = T0 η
RdΓ

g . (11)

This horizontal-mean temperature profile describes a linear
temperature decrease with height, using a lapse rate of Γ. As
mentioned above, the initial data enforce hydrostatic, geostrophic
and thermal wind balance analytically. If a constant f -plane
is desired the parameter β0 can simply be set to zero which
simplifies the initial conditions.

The initial temperature, geopotential height, potential tempera-
ture, absolute vorticity, Brunt-Väisälä frequencyN and Ertel’s PV
on the constant f -plane are shown in Fig. 2. The corresponding
initial data on the β-plane are presented in Fig. 3. Both plots
depict the initial state with respect to the vertical η coordinate.
The potential temperature patterns and N indicate that the initial
data are statically stable. In addition, the absolute vorticity and PV
distributions (positive on this northern hemispheric plane) fulfill

the conditions for inertial and symmetric stability. However, the
profiles are unstable with respect to barotropic and baroclinic
instability mechanisms. Figure 3 demonstrates that the addition
of the β-plane only leads to minor changes of the initial temper-
ature and geopotential fields, and has very similar static stability
characteristics.

The geopotential equation (7) is needed for 3D channel models
with height-based vertical coordinates. Then an accurate root-
finding algorithm is recommended to determine the corresponding
η-level for any desired height position z. This iterative method,
which is also applicable to isentropic vertical coordinates
(Jablonowski and Williamson 2006a), is outlined in Appendix B.
The manuscript supplement also shows the corresponding initial
data with respect to the z coordinate. The latter two figures depict
the meridional-vertical cross section of the pressure field instead
of the geopotential height. Furthermore, this appendix lists the
pressure, density and potential temperature equations that are
typically needed for non-hydrostatic models.

In general, the complexity of the initial conditions can easily
be extended to allow for a wide range of application areas.
For example, the background zonal wind profile used here
could be overlaid with a meridional zonal wind gradient to
introduce either cyclonic or anticyclonic barotropic wind shear.
Such modifications will impact the baroclinic wave life cycles as
e.g. discussed by Davies et al. (1991), Thorncroft et al. (1993)
or Davis (2010). Therefore, the description of the analytical
initial state presented here can also be viewed as a generic
recipe. This recipe closely follows the technique that was outlined
for spherical geometry in the appendix of Jablonowski and
Williamson (2006b). Once a zonally-symmetric background zonal
wind field is analytically specified, and v = w = 0 m s−1 and
ps = p0 are selected, the steady-state meridional momentum
equation (written for a vertical pressure coordinate) can be
integrated to yield the horizontal geopotential perturbation Φ′. The
integration constant follows from the condition that the horizontal
mean of Φ′ must vanish. Utilizing the hydrostatic balance then
gives the horizontal temperature pertubation T ′. All that is left
is the selection of the horizontal-mean background stratification
〈T (η)〉, which then yields the balanced mean geopotential 〈Φ(η)〉
via the integration of the hydrostatic equation. The corresponding
integration constant must ensure that the horizontal-mean 〈Φs(η)〉
at the surface is zero. As a last step, the static stability of the
new initial data needs to be assessed to guarantee that the chosen
design and parameters lead to a statically stable configuration. If
necessary, parameters like u0 might need to be adjusted to yield
N2 > 0 s−2. Note that a nonzero zonal wind at the surface will
lead to a nonzero surface geopotential Φs and thereby a meridional
variation of the surface elevation zs.

These initial conditions are perfectly balanced in a continuous
sense, and very well balanced balanced in the discrete system. If
an even better discrete balance is desired, e.g. volume-mean values
for finite-volume models, then Gaussian quadrature can be used to
subsample the initial fields at the Gaussian quadrature points.

The initial conditions can also be easily extended to
allow for simulations of idealized moist baroclinic waves as
e.g. investigated by Tan et al. (2004), Waite and Snyder (2013)
or Mirzaei et al. (2014). As before, none of these authors specify
analytical conditions for their initial moisture fields. In addition,
their prescribed initial relative humidity fields differ, and the
balancing algorithms for the moist conditions are not thoroughly
described. Appendix C provides the details of an analytical
technique that adds specific humidity to the balanced initial fields.

2.2. Baroclinic wave triggering mechanism

A baroclinic wave can be triggered if the balanced zonal wind
is overlaid with a localized perturbation. Here a zonal wind
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Figure 1. Meridional-vertical cross sections of the initial steady-state (a) zonal wind and (b) relative vorticity with respect to the η vertical coordinate. Negative contours
are dashed.

perturbation u′ with a Gaussian profile is centered at (xc, yc) =

(2000 km, 2500 km) and given by

u′(x, y, η) = up exp

{
−

(
(x− xc)2 + (y − yc)2

L2
p

)}
(12)

with the width parameter Lp = 600 km and maximum amplitude
up = 1 m s−1. This perturbation is not balanced by the mean state
and gets superimposed on the zonal wind field (1) by adding u′ to
u at each grid point at all model levels

uwave(x, y, η) = u(x, y, η) + u′(x, y, η). (13)

The zonal wind perturbation is depicted in Fig. 4. It covers
a domain with a diameter of about 2500 km. As an aside,
the unbalanced perturbation initially triggers high-speed gravity
waves. They are apparent during the early stages and damped
by diffusion over time before the growth of the baroclinic wave
dominates the fluid flow.

If models employ the relative vorticity and divergence as
prognostic variables, the corresponding perturbations are given by

ζ′(x, y, η) =
2 (y − yc) u′

L2
p

(14)

δ′(x, y, η) =
−2 (x− xc) u′

L2
p

. (15)

These then need to be added to the background ζ and δ fields.

2.3. Boundary conditions for channel models

Periodic boundary conditions are suggested for the x-direction. If
such periodic conditions are not possible due to the model design
the analytical initial state can be prescribed along the x-boundaries
as long as the developing baroclinic wave does not approach the
easternmost edge of the domain. This is not the case for short
15-day simulations when using the suggested parameter set with
u0 = 35 m s−1. In case boundary issues arise the use of a zonal
damping layer could be considered. Note that the channel width
Lx can also be varied, even decreased, as long as the wave does
not approach the x-edge. This does not change the character of the
solution.

At the southern boundary y = 0 and northern boundary y = Ly
additional boundary conditions must be specified. Either no-flux
or prescribed Dirichlet boundary conditions can be used, and
either choice produces indistinguishable results. The following

time-invariant Dirichlet boundary conditions in the y-direction
have been used here:

ps(x, y = 0, t) = ps(x, y = Ly, t) = p0 (16)

u(x, y = 0, η, t) = u(x, y = Ly, η, t) = 0 (17)

v(x, y = 0, η, t) = v(x, y = Ly, η, t) = 0 (18)

w(x, y = 0, η, t) = w(x, y = Ly, η, t) = 0 (19)

T (x, y = 0, η, t) = T (x, y = 0, η, t = 0) (20)

T (x, y = Ly, η, t) = T (x, y = Ly, η, t = 0). (21)

This formulation effectively prescribes the initial state along
the y-boundaries. If the potential temperature Θ is used as
the prognostic variable the temperature boundary condition can
simply be converted to Θ. If boundary conditions are needed
for the pressure p or density ρ, they are expressed in the same
way as the boundary conditions for T . In our experiments we
have not observed any negative boundary effects at the y = 0 or
y = Ly edges of the domain over the 15-day simulation period
and recommend not using any sponge zones near the y-edges.

3. Selected configurations and numerical results

3.1. Flow and model configurations

The initial data can be used for numerical or physical science
questions, both on a constant f - and β-plane. If the initial data
are used as a test case to e.g. support the intercomparison of
numerical schemes or to serve as a debugging tool during the
model development phases, we recommend using the steady-
state initial conditions without the zonal wind perturbation as
the first step. This assesses how well and long the numerical
discretization can maintain the initial steady-state which is the
analytical solution. If possible the model should be run without
explicit diffusion to minimize the degradation of the steady-state.
The second more advanced configuration evaluates the evolution
of a baroclinic wave in the Northern Hemisphere. It is triggered
when using the steady-state initial conditions with the overlaid
zonal wind perturbation. If applicable and needed, the model- and
resolution-dependent subgrid-scale diffusion mechanisms with
standard parameters should be used. All simulations should cover
at least a 15-day time period.

If numerical convergence-with-resolution studies are desired
we recommend using the horizontal grid spacings ∆x = ∆y =

200 km, 100 km, 50 km and 25 km. If physical science questions
are addressed, such as the impact of the varying Coriolis force on
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6 P. A. Ullrich et al.

Figure 2. Meridional-vertical (η) cross sections of the steady-state initial conditions on a constant f -plane: (a) temperature, (b) geopotential height, (c) potential
temperature, (d) absolute vorticity, (e) Brunt-Väisälä frequency N and (f) Ertel’s PV with units PVU = 10−6 K m2 kg−1 s−1.

the evolution of a baroclinic wave as it is the focus in this paper,
the horizontal grid spacing should be at least 100 km or finer. At
this grid spacing solutions start to converge.

In the vertical direction, at least 30 levels with a suggested
maximum grid spacing ∆z = 1 km should be used. The model
top should lie at or above the ptop = 20 hPa or ztop = 30

km position to capture the majority of the zonal jet structure
in the upper atmosphere. A higher-altitude model top is even
preferred, but adds extra computational cost. The type of
vertical coordinate and the placement of the vertical levels
should be documented. In addition, we recommend listing the
time steps, dissipation mechanisms and their coefficients for all
simulations to allow for straightforward comparisons with other
published results. The baroclinic instability wave does not have
an analytical solution. Therefore, high resolution (∆x = ∆y ≤ 25

km) reference solutions and their uncertainties need to be assessed
for convergence studies. These suggestions closely follow the

recommendations for the baroclinic wave test case in spherical
geometry that is documented in Jablonowski and Williamson
(2006a).

3.2. Example models

We pick two non-hydrostatic models to demonstrate the
characteristics of the baroclinic wave. Both models produce
comparable evolutions of the baroclinic instability, and therefore
give confidence that our solutions are credible. In addition, this
provides two points of comparison for other modelers. We do
not conduct a thorough model intercomparison which is not the
focus of this paper. Instead, we use these example results to
draw attention to the interesting evolution paths of the baroclinic
instability depending on the f - and β-plane approximations. This
further motivates our theoretical investigations in section 4.

The two example models are the channel configuration of
MCore (Ullrich and Jablonowski 2012) and WRF, version 3,
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Figure 3. Meridional-vertical (η) cross sections of the steady-state initial conditions on the β-plane: (a) temperature, (b) geopotential height, (c) potential temperature,
(d) absolute vorticity, (e) Brunt-Väisälä frequency N and (f) Ertel’s PV with units PVU = 10−6 K m2 kg−1 s−1.

described in Skamarock et al. (2008). The latter has been
developed at the National Center for Atmospheric Research
(NCAR). In brief, both models use a finite-volume discretization
and either a vertically-implicit (MCore) or split-explicit (WRF)
time-split approach for handling the high-speed waves in
the vertical direction. MCore utilizes a fourth-order spatial
discretization on an unstaggered A-grid, whereas WRF’s
numerical scheme is second-order accurate and built upon
a staggered C-grid. MCore employs a height-based vertical
coordinate, whereas WRF is designed with the hydrostatic-
pressure (mass-based) vertical coordinate. All experiments use
identical horizontal grid spacings of ∆x = ∆y = 100 km. MCore
is configured with 30 vertical levels that utilize an equidistant
vertical grid spacing of ∆z = 1 km (with the lowermost full model
level position at z = 500 m) and a model top at ztop = 30 km.
WRF is configured with 64 vertical levels with non-equidistant
vertical grid spacings that are ∆z ≈ 300 m close to the ground

(with the lowermost full model level position at z ≈ 150 m).
The spacing is stretched in the vertical direction, with the same
model top at 30 km. The MCore time step is ∆t = 240 s, WRF
uses a time step of 600 s. MCore’s diffusion mechanism is a
flow-dependent implicit numerical diffusion which is part of its
Riemann solver as explained in Ullrich and Jablonowski (2012).
WRF’s diffusion mechanisms are 3D divergence damping, an
external mode filter and a time-offcentering technique for sound
waves, which all use the standard coefficients documented in
Skamarock et al. (2008). No Laplacian-type explicit diffusion or
hyper-diffusion mechanisms are applied.

3.3. Snapshots of the baroclinic wave on the f - and β-plane

This section focuses on selected snapshots of the baroclinic
wave on the f - and β-plane. Example results for the steady-
state configuration and how it can be used for the assessment
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8 P. A. Ullrich et al.

Figure 4. The vertically uniform zonal wind perturbation.

of the order of accuracy of a numerical scheme are shown in
Ullrich and Jablonowski (2012) which numerically confirmed the
theoretical fourth-order accuracy of the model MCore. We run the
baroclinic wave simulations for 15 days to capture the initial and
rapid development stages of the baroclinic disturbance. In general,
the baroclinic wave starts growing noticeably after ≈ 6 days and
evolves rapidly afterwards. Once the wave breaks, the flow enters
a turbulent mixing stage.

Figures 5 and 6 display snapshots of the baroclinic waves that
have been simulated on the f - and β-plane, respectively, with
u0 = 35 m s−1. The β-plane formulation adds extra complexity
to the simulation and gives insight into the effects of a varying
Coriolis force. In particular, Fig. 5 shows the WRF (left) and
MCore (right) f -plane 500 m pressure, temperature and relative
vorticity at day 12. This vertical position is identical to the
lowest model level in MCore, and requires vertical interpolations
of the WRF data. The 500 m low-lying position is chosen
since the baroclinic wave develops its strongest gradients close
to the ground. Figure 6 shows the identical 500 m fields at
day 10 as simulated with the β-plane variant of the initial
conditions in WRF (left) and MCore (right). The baroclinic
waves, although idealized, represent very realistic flow features in
both Coriolis-term configurations and models. Strong temperature
fronts develop that are associated with the evolving sequence of
low and high pressure systems. The latter are also mirrored in
the relative vorticity patterns with strong positive relative vorticity
near the low pressure centers. The WRF and MCore results closely
resemble each other which suggests that the flow patterns are
trustworthy.

The growth rate of the wave strongly depends on the choice
of the f - or β-plane approximation and the u0 parameter. In
our experiments, the 500 m temperature wave breaks around day
13.5 on the f -plane. In contrast, the 500 m temperature wave
evolves more rapidly on the β-plane and breaks around day 11. In
addition, the β-plane solution is confined to a narrower meridional
width and exhibits a shorter wavelength of about 3300 km. The
estimated wavelength of the f−plane simulation is about 4000
km. As an aside, if an alternative parameter u0 = 45 m s−1

is utilized the atmosphere becomes even more baroclinic with
increased vertical wind shear, and the evolution of the wave speeds
up by about two days in both cases. We note that the MCore
relative vorticity plots in Figs. 5(f) and 6(f) correct the relative
vorticity plots shown in Ullrich and Jablonowski (2012) (their
Figs. 12(c) and 13(c)) whose relative vorticity magnitudes were
a factor of two too large.

Zonal-vertical cross sections of the flow from the MCore
channel model at the location y = Ly/2 are shown in Fig. 7 for
the f -plane at day 12 and in Fig. 8 for the β-plane at day 10.
The figures depict the deviations of the geopotential, temperature,

zonal velocity and meridional velocity from the balanced initial
state which we define as “perturbations”. Both the f - and β-
plane geopotential perturbation and meridional wind show strong
westward tilts with height. The temperature perturbations tilt
eastward with height, especially in the lower atmosphere.

Note that the Froude numbers Frh = U(LN)−1 ≈ 2× 10−4

in the horizontal and Frz = U(HdN)−1 ≈ 0.071 in the vertical,
as well as the Rossby number Ro = U(Lf0)−1 = 0.025, of the
flow are small (� 1) and thereby lie in the asymptotic regime
of the QG theory. These assessments utilize the characteristic
horizontal velocity scale of U = 10 m s−1, the horizontal length
scale of L = 4000 km of the baroclinic waves, the vertical depth
scale of Hd = 10 km, the Brunt-Väisälä frequency N = 0.014

s−1, and the Coriolis parameter f0 ≈ 10−4 s−1 at 45◦ N. It
means that the atmosphere is highly stratified and dominated by
rotational effects which essentially confines the fluid to horizontal
motions (Waite and Bartello 2006). This provides motivation
to use theoretical concepts, like the linearized quasi-geostrophic
(QG) theory, for further analysis and validation of the results in
the next section. The remainder of the paper utilizes QG theory
and the model MCore to analyze the differences between the f -
and β-plane simulations.

4. Analysis

The dynamical behavior of the baroclinic instability is well
understood in the context of linearized QG theory. The linear
theory is valid only until the wave breaks, when non-linearities
in the flow lead to mixing between wave modes. In this section we
apply the known theory for the baroclinic instability to the flow
configurations proposed in sections 2 and 3.1.

4.1. The baroclinic instability in a continuously stratified
atmosphere

In order to analyze the evolution of the baroclinic instability we
apply QG theory as e.g. detailed in Holton (2004). Here, we briefly
summarize the most important QG aspects as they apply to our
analyses of the f -plane and β-plane solutions. The linear QG
theory typically utilizes log-pressure height coordinates, which
are defined as

z∗ = −H ln

(
p

p0

)
, (22)

where p0 = 1000 hPa is the reference surface pressure, H =

RdTsg
−1 is a standard scale height and Ts is an approximate

vertically-averaged temperature at position y0 = 0.5Ly , chosen
to be 260 K. The log-pressure height is roughly equivalent to a
geometric height in the troposphere, although these profiles can
diverge significantly in regions where the temperature does not
match Ts. To analyze the stability of the baroclinic instability we
define a geostrophic streamfunction

ψ ≡ Φ/f0, (23)

so that the geostrophic wind can be expressed as vψ = k×∇ψ.
We further utilize the quasi-geostrophic potential vorticity q,
defined in log-pressure coordinates as

q ≡ ∇2ψ + f +
1

ρ0

∂

∂z∗

(
f2
0 ρ0

N2

∂ψ

∂z∗

)
. (24)

Here, ρ0(z∗) is an approximate background density profile which
is obtained analytically at the meridional center y0 of the domain,

ρ0(z∗) =
p(z∗)

RdT
(

0,
Ly
2 , η(z∗)

) , (25)
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Figure 5. Horizontal x− y cross sections of the baroclinic wave at day 12 on the f -plane as simulated by the (left, a-c) WRF and (right, d-f) MCore channel model. The
plots show the (a,d) 500 m pressure field with enhanced 942 hPa contour line, (b,e) 500 m temperature with the coldest temperatures near y = 0 km and enhanced 290 K
contour, (c,f) 500 m relative vorticity with enhanced zero contour.

Figure 6. Horizontal x− y cross sections of the baroclinic wave at day 10 on the β-plane as simulated by the (left, a-c) WRF and (right, d-f) MCore channel model. The
plots show the (a,d) 500 m pressure field with enhanced 943 hPa contour line, (b,e) 500 m temperature with the coldest temperatures near y = 0 km and enhanced 290 K
contour, (c,f) 500 m relative vorticity with enhanced zero contour.

using the temperature profile (10). The quasi-geostrophic potential
vorticity equation and thermodynamic equation (for an adiabatic
flow) can then be expressed in log-pressure coordinates as(

∂

∂t
+ vψ · ∇

)
q = 0, (26)

and (
∂

∂t
+ vψ · ∇

)
∂Φ

∂z∗
+ w∗N2 = 0, (27)

respectively. Here w∗ = Dz∗/Dt is the vertical velocity in log-
pressure coordinates and t is time.
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10 P. A. Ullrich et al.

Figure 7. Zonal-vertical cross sections through y = Ly/2 of the baroclinic wave at day 12 on the f -plane as simulated by the MCore channel model. The plots show (a)
geopotential (Φ) perturbation, (b) temperature perturbation, (c) zonal velocity perturbation and (d) meridional velocity. The contour spacing is (a) 200 m2 s−2, (b) 2 K,
(c) 2 m s−1 and (d) 2 m s−1. Dashed lines denote negative contours, the zero contour is enhanced.

The governing equations (26) and (27) are linearized using

q(x, y, z∗, t) = q(y, z∗) + q′(x, y, z∗, t), (28)

ψ(x, y, z∗, t) = ψ(y, z∗) + ψ′(x, y, z∗, t), (29)

where the overline denotes a zonally- and time-averaged mean
state, and the prime symbolizes the deviations from the mean basic
state. This leads to the linearized potential vorticity equation(

∂

∂t
+ u

∂

∂x

)
q′ +

∂q

∂y

∂ψ′

∂x
= 0, (30)

with

q′ = ∇2ψ′ +
1

ρ0

∂

∂z∗

(
f2
0 ρ0

N2
0

∂ψ′

∂z∗

)
(31)

and
∂q

∂y
= β − ∂2u

∂y2
− 1

ρ0

∂

∂z∗

(
f2
0 ρ0

N2
0

∂u

∂z∗

)
. (32)

The constant Brunt-Väisälä frequency N0 = 0.014 s−1 represents
an average near the meridional center y0 in the region of greatest
instability which lies between the surface and η ≈ 0.25 (see also
Figs. 2(e) and 3(e)). The balanced initial condition for u (Eq. (1))
serves as the mean background wind u(y, z∗).

The linearized thermodynamic equation (27) is applied at the
top and bottom boundaries of the domain (the top boundary is
assumed to be a rigid lid) where w∗ = 0, so that it takes the form(

∂

∂t
+ u

∂

∂x

)
∂ψ′

∂z∗
− ∂ψ′

∂x

∂u

∂z∗
= 0. (33)

No-flux boundary conditions are applied at the meridional edges
of the domain, which leads to the additional condition

∂ψ′

∂x
= 0 =⇒ ψ′ = 0, at y = 0 and y = Ly . (34)

The perturbation streamfunction is assumed to consist of a
single zonal Fourier component propagating zonally

ψ′(x, y, z∗, t) = Re
{

Ψ(y, z∗) exp [ik(x− ct)]
}
, (35)

where Re denotes the real part of the equation, Ψ = Ψr + iΨi
is the complex amplitude function, c = cr + ici is the complex
phase speed, i symbolizes the imaginary unit, and k is the zonal
wave number

k =
2πk̃

Lx
, (36)

with the non-negative integer k̃ ∈ {0, 1, 2, . . .}. It denotes the
number of cycles of the Fourier mode over the zonal domain. It
then follows from (30) and (35) that

(u− c)
[
∂2Ψ

∂y2
− k2Ψ +

1

ρ0

∂

∂z∗

(
f2
0 ρ0

N2

∂Ψ

∂z∗

)]
+
∂q

∂y
Ψ = 0,

(37)
which is an elliptic partial differential equation for Ψ in
(y, z) ∈ [0, Ly]× [0, z∗top]. Boundary conditions in the meridional
direction are given by (34), and at z = 0, z∗top by (33) and (35),

(u− c) ∂Ψ

∂z∗
− ∂u

∂z∗
Ψ = 0. (38)
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Figure 8. Zonal-vertical cross sections through y = Ly/2 of the baroclinic wave at day 10 on the β-plane as simulated by the MCore channel model. The plots show (a)
geopotential (Φ) perturbation, (b) temperature perturbation, (c) zonal velocity perturbation and (d) meridional velocity. The contour spacing is (a) 200 m2 s−2, (b) 2 K,
(c) 2 m s−1 and (d) 2 m s−1. Dashed denote negative contours, the zero contour is enhanced.

Figure 9. (a) Real phase speed and (b) growth rates of the streamfunction wave from QG theory for the discrete wave number range k̃ between 0− 20.

Since the phase speed c is unknown, we must solve a Sturm-
Liouville (or boundary value) problem to find non-trivial solutions
of (37)-(38) for eigenvalue / eigenfunction pairs (c,Ψ(y, z∗)).

Analytical solutions of the boundary value problem are difficult
or impossible to obtain in general, and consequently we rely on a
numerical solution. Our numerical approach is described in detail
in Appendix D. To quickly summarize, we discretize (37)-(38)
using standard second-order finite-difference operators, so that
the Sturm-Liouville problem can be rewritten as an eigenvalue
problem of the form

F(k)Ψd = cΨd, (39)

where Ψd is a vectorized approximation to Ψ at each of the mesh
nodes and F(k) is a discrete matrix operator which is dependent
on the horizontal wave number. The resulting eigenvalue problem

is then solved using the eig command in Matlab, which yields all
discrete pairs (c,Ψd) that satisfy (39).

4.2. Most unstable modes

The non-trivial wave solutions (35) of the boundary value problem
can also be expressed in the form

ψ′(x, y, z∗, t) = exp(kcit) Re
{

Ψ(y, z∗) exp [ik(x− crt)]
}

(40)

= exp(kcit) Ψr cos [k(x− crt)]−
exp(kcit) Ψi sin [k(x− crt)] (41)

Consequently, solutions with positive imaginary component ci >
0 will cause the baroclinic instability to intensify over time.

The streamfunction wave mode with maximum growth rate
α = kci will become dominant as t→∞, and so is referred to
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as the most unstable wave mode. In Fig. 9 we plot the zonal
phase speed cr and growth rate kci for the discrete wave number
range k̃ between 0− 20. Figure 9(b) shows that the most unstable
modes (the maxima) as derived via QG theory occur at the discrete
wave number k̃ = 10 on the f -plane, with kci ≈ 6.59× 10−6 s−1,
and at k̃ = 12 on the β-plane, with kci ≈ 7.21× 10−6 s−1. This
corresponds to a wavelength of roughly 4000 km on the f -plane
and 3333 km on the β-plane. As displayed in Fig. 9(a) the zonal
phase speed of this mode is 11.43 m s−1 on the f -plane and
8.38 m s−1 on the β-plane, which is significantly slower than the
maximum zonal background flow u with ≈ 30 m s−1 in the upper
atmosphere.

Besides the most unstable wave modes k̃ = 10 (f−plane) and
k̃ = 12 (β−plane) displayed in Fig. 9b there are also neighboring
wave numbers that grow at comparable rates. On the f−plane
these range from wave numbers 8–12, on the β−plane these range
from wave numbers 10–14. This aspect can lead to sensitivities
in numerical solutions when asymmetric meshes are used, such
as triangular or hexagonal grids. For example, the barotropic
instability wave test case by Galewsky et al. (2004) exposes such
sensitivities in the 2D shallow-water framework. Wave modes
with similar growth rates were found to be impacted by grid
inhomogeneities, especially at low resolutions with grid spacings
> 120 km, which can lead to rather different evolutions of the
growing instability wave. Examples are e.g. displayed in St-
Cyr et al. (2008) and Weller et al. (2012) who showed that
the growth of the Galewsky et al. (2004) barotropic instability
wave on the sphere can be overshadowed by the growth of
numerical discretization errors that originate from non-Cartesian
grids. Evaluating such potential grid imprinting signatures in 3D
channel models is therefore another application area of the initial
conditions presented here.

We highlight that the QG growth rate of the most unstable
mode on the β-plane is significantly larger than the growth rate
on the f -plane. The higher growth rate and the shorter wavelength
on the β-plane confirm our numerical findings from section 3.3.
Interestingly, this QG result derived via the continuous equations
seem to be partly contrary to results from the two-layer QG
baroclinic wave theory (see, for example, Holton (2004) Section
8.2), which hold that the addition of a β term introduces a
stabilizing effect to a baroclinic instability. However, we do note
that the theoretical growth rate from the β-plane is smaller for
longer waves (k̃ < 10) in agreement with the two-layer theory.

In Fig. 10 we plot the meridional-vertical cross sections of
the real and imaginary components of the amplitude function
Ψ for the most unstable wave modes on the f - and β-plane.
Equation (41) explains how the real Ψr and imaginary Ψi
components impact the pattern of the baroclinic wave. Their
relative magnitudes determine the phase of the wave for any
position (y, z∗).

Some example wave perturbations are shown in Figs. 11 and
12. The figures depict the zonal-vertical cross sections of the
geopotential perturbation Φ′ = ψ′f0, the temperature perturbation
and the vertical pressure velocity ω = −w∗pH−1 along the
center position y0 on the f - and β-plane for their most unstable
wave modes k̃ = 10 and k̃ = 12, respectively. Here, we are only
interested in the general patterns of the QG wave perturbations
in the (x, z∗) domain and leave out the secondary information
about the actual amplitudes. The QG figures 11 and 12 confirm
the WRF and MCore simulation results from section 3.3 (Figs. 7
and 8). Both the f - and β-plane perturbations of the QG
geopotential and temperature fields agree well with the patterns
of strongest development obtained from the simulations. In our
QG analysis (Figs. 11 and 12) the geopotential perturbations are
inclined westwards with altitude, whereas the temperature shows
a dominant eastward tilt with height, especially in the lower

atmosphere. These patterns are also present in WRF and MCore.
In addition, we observe in the QG results that the updraft regions
(ω < 0 Pa s−1) are co-located with warm temperature anomalies,
and both the updraft and warm regions are located in-between the
low (to the west) and high (to the east) geopotential perturbations.

4.3. Power spectrum of the baroclinic instability

In order to better understand how well the linear QG theory
represents the flow field, we now evaluate the wave-like nature
of the baroclinic instability. In Fig. 13 the zonal power spectrum
of the MCore meridional velocity field is plotted at the center
position y0 at the lowest model level (500 m) on both the
f - and β-plane. A 15-day simulation time period is depicted
that displays the log10 power amplitudes for the discrete wave
numbers k̃. The meridional velocity is directly connected to the
geopotential perturbations via the geostrophic wind relationship.
Since v is zero in the background the meridional velocity only
picks out the power of the growing disturbance, and is therefore
an ideal candidate for the analysis. Figure 13 shows that the
discrete wave number k̃ = 10 on the f -plane and k̃ = 12 on the β-
plane experience the biggest power amplitudes and therefore the
most rapid growth in MCore. This growth process is dominated
by linear interactions until wave breaking occurs. Once wave
breaking sets in, deposition occurs into smaller scales, as observed
around day 13.5 on the f -plane and around day 11 on the β-
plane. Due to the nature of the non-linear interaction between
wave modes, the system then sets up a series of resonances which
inhibits the growth of certain discrete wave modes. This result is
apparent in the Fourier spectra in Fig. 13, especially on the β-
plane, where gaps are clearly present in the power spectrum after
day 9.

To assess whether the linear QG theory validates the growth rate
of the most unstable mode in MCore, Fig. 14 plots the amplitude
versus time of the zonal Fourier power spectrum of the MCore
meridional velocity at k̃ = 10 (f -plane, left) and k̃ = 12 (β-plane,
right). The overlaid theoretical growth rate in Fig. 14 is assessed
using kci from Fig. 9b. As shown in Eq. (41) the growth of the
unstable wave is proportional to the exponential form exp(kcit).
Note that Fig. 14 selects an arbitrary starting position (at t = 0

s) for the theoretical growth rate which lies in close proximity to
the MCore growth curve. This draws attention to the steepness
of the two slopes which is the important piece of information
here. Since the vertical axis is logarithmic, an exponential growth
appears as a straight line. Figure 14 highlights the impressive
agreement between the predicted growth rate from the linear QG
theory and the growth rate obtained from the MCore simulation
in the “linear regime” prior to wave breaking. The reason for the
different modeled and theoretical slopes during the early phases
is that a variety of growing wave modes with similar power are
present in MCore before the most unstable wave mode dominates.
After the wave has broken there is a clear loss of power associated
with a transfer to finer scales, and consequently a deviation from
the theoretically predicted growth rate. This also marks the time
that is associated with enhanced gravity wave activity due to the
nonlinear breaking of the baroclinic wave.

4.4. Theoretical considerations

In this section, we discuss the connection of our analysis to the
theory of baroclinic instability. Notably, it is interesting that the
most unstable wave modes for f - and β-plane configurations
(Figures 11,12) are in rough qualitative agreement with the most
unstable mode of the Eady model (Eady 1949), which is even
more idealized than our QG analysis (see also textbooks like
Holton (2004) or Vallis (2006)). The maximum vertical velocity
occurs at roughly η = 0.4 (z∗ = 7 km) in both cases, below the
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Figure 10. Meridional-vertical cross sections of the (a,c) real and (b,d) imaginary components of the streamfunction amplitude function Ψ(y, z∗) for the most unstable
wave mode (a,b) k̃ = 10 on the f -plane and (c,d) k̃ = 12 on the β-plane. Negative contours are dashed. The units are m2 s−1.

Figure 11. Zonal-vertical cross sections at the center position y0 of the (a) geopotential, (b) temperature and (c) vertical pressure velocity perturbations for the most
unstable mode k̃ = 10 on the f -plane. Negative contours are dashed and the zero line is enhanced.

Figure 12. Zonal-vertical cross sections at the center position y0 of the (a) geopotential, (b) temperature and (c) vertical pressure velocity perturbations for the most
unstable mode k̃ = 12 on the β-plane. Negative contours are dashed and the zero line is enhanced.
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14 P. A. Ullrich et al.

Figure 13. Dependence of the zonal Fourier power spectrum of the MCore meridional velocity at the center position y0 and lowest model level (500 m) on the discrete
wave numbers k̃. The contours show the log10 of the power spectra on the (a) f -plane and (b) β-plane over the 15-day simulation period.

Figure 14. Power amplitude of the most unstable wave modes (a) k̃ = 10 on the f -plane and (b) k̃ = 12 on the β-plane over a 15-day simulation. The solid line shows the
log10 of the zonal Fourier power spectrum of the MCore meridional velocity from Fig. 13. The theoretically predicted maximum growth rate, as derived from the linear
QG theory, is shown by the dashed line.

upper atmospheric center position of the zonal jet (see Figures
7 and 8). The Eady model makes use of a rigid lid that assists
the generation of the instability via so-called edge waves that
propagate along the surface and rigid lid. However, the instability
generated in our case is not sensitive to the altitude of the model
top (above at least 20 km), and it is apparent that the unstable
modes do not exhibit the vertical symmetry present in the Eady
model. Further, the Eady model is known for a short wave cut-
off which suppresses instability at the highest wavenumbers,
whereas these simulations appear to exhibit no such cut-off (see
Figure 9). This may suggest that the test case in this paper is
more closely connected with the Charney model (Charney 1947)
(which has no cut-off), and inspection of Figure 2 reveals that our
initial conditions exhibit an internal PV gradient – whose strength
varies between the f and β cases – which is absent in the Eady
formulation.

In fact, the most rigorous theory describing the behavior of
baroclinic instability is derived by Heifetz et al. (2004a), using
counter-propagating Rossby-waves (CRWs) – that is, upper and
lower wave modes whose counter-propagation relative to the
mean flow leads to resonant growth. The theory builds on earlier
work by Bretherton (1966), who extended Eady’s 2-layer model
to include a QG PV gradient and showed this framework could
be used to capture the basic nature of the instability. Note that
the QG theory itself does not apply directly to our initialization,
since the stability parameter σ that appears in QG theory has
significant variation in the y direction when computed from (1)-
(11). Nonetheless, over short time scales, when the horizontal

gradient of σ is perpendicular to the geostrophic wind, the
QG theory will hold approximately. Using a spatially variable
σ parameter, the meridional gradient of QG PV changes sign
from negative in the lower model levels to positive in the upper
model levels (not shown). The CRW theory notes that unstable
baroclinic modes in the Eady model are only supported due to
the boundaries, whereas in the Charney model these modes can
exist due to the presence of an interior PV gradient (Heifetz et al.
2004b). The applicability of the CRW theory to our results is
apparent when comparing (our) Figure 10 with Methven et al.
(2005) Figure 3 and (our) Figures 7d, 8d with Methven et al.
(2005) Figure 4e. Namely, it is apparent that Figure 10 actually
shows the structure of the lower and upper CRWs associated
with the prescribed background state, and exhibits westward-tilted
behavior consistent with the CRW theory.

5. Conclusions

In this paper we have introduced idealized initial conditions for
the simulation of baroclinic instability waves in 3D atmospheric
channel models. The unique aspect of the initial conditions is
that they are analytical for both an f - and β-plane configuration
with only very minor differences in the initial states. The initial
conditions and the evolving baroclinic waves are qualitatively very
similar to those of a real atmosphere, which makes the initial state
appealing for both numerical and physical science investigations.

First, the initial conditions can be considered a “baroclinic wave
test case” to assess the numerical characteristics of 3D Cartesian
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channel models. In particular, a steady-state configuration can
be used as a first step for numerical convergence studies, before
selecting the baroclinic wave configuration as a debugging or
model intercomparison tool. Channel models are typically part
of the model development hierarchy that consists of 2D (x−
y) shallow water, 2D (x− z) Cartesian channel, 3D Cartesian
channel and 3D dynamical cores on the sphere. A variety
of nontrivial (non-isothermal, non-state-at-rest) test cases with
analytical initial conditions exist in the literature for all model
categories except for 3D Cartesian channel models. The only
exception is the work by Staniforth (2012) who proposed exact
stationary solutions of the Euler equations on β − γ planes.
In addition, Wang and Polvani (2011) provided a complete
description of their balanced initial data sets on the f -plane which
only require very basic numerical integrations, but more complex
iterations to obtain the normal-mode perturbation. The typical
assessments of baroclinic instability flows in 3D channels are
based on initial data that heavily rely on numerical techniques
for the PV inversion. Since these techniques are generally not
fully documented, the results cannot be reproduced by others.
Our approach guarantees reproducibility and helps fill this crucial
gap. In addition, we provide a “recipe” on how to generate other
analytical initial conditions, with e.g. additional meridional zonal
wind shear or moisture (see Appendix C), to broaden the range
of science questions. In order to provide examples of the flow
field, we compared the evolution of the baroclinic wave in the two
non-hydrostatic channel models MCore (Ullrich and Jablonowski
2012) and WRF (Skamarock et al. 2008). The baroclinic waves
closely resembled each other, which suggests that the numerical
solutions are trustworthy and provide a point of comparison for
other modelers.

Second, the initial conditions also lay the groundwork for
interesting physical science questions, such as the impact of the
varying f - and β-plane Coriolis parameter on the flow field, which
is a central point of this paper. Our f - and β-plane simulations
use very similar initial data fields with identical vertical wind
shear and almost identical static stability. These are factors that
are known for their impact on the growth of unstable baroclinic
waves. The numerical experiments showed that the evolution of
the baroclinic wave on the β-plane is more unstable than the
corresponding f -plane configuration, experiencing a faster linear
growth rate of the most unstable wave mode, a shorter most
unstable wavelength, a narrower meridional width, and an earlier
breaking of the baroclinic wave. A theoretical analysis based
on quasi-geostrophic theory sheds light on these findings and
furthermore validates the numerical simulations. The simulated
baroclinic instability waves on both the f - and β-plane matched
the predicted wavelength, shape and linear growth rate obtained
from the QG theory very well. Our results also suggest that the
dynamics within a continuously stratified baroclinic instability
differ from the results of a two-layer model of baroclinic
instability. In the two-layer theory the addition of β tends to
stabilize the flow, especially the very long waves, and reduces
the corresponding instability. Our results with the most unstable
wave modes between k̃ = 10− 12 show that the β-plane is more
unstable. However, our results also show that the growth rates of
longer waves with k̃ < 10 are smaller in the β-plane simulation
which is in general agreement with the two-layer QG theory.
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A. Vertical η coordinate

The hybrid terrain-following η-coordinate (Simmons and Bur-
ridge 1981) comprises a pure pressure coordinate and a σ-
component with σ = p/ps. The pressure p at a vertical model level
η is given by

p(x, y, η, t) = a(η) p0 + b(η) ps(x, y, t) (42)

where the hybrid coefficients a(η) and b(η) are height-dependent
and most often provided in tabular form (see for example
Reed and Jablonowski (2012) for the 30-level configuration of
NCAR’s Community Atmosphere Model (CAM) version 5). We
recommend choosing a setup with p0 = 105 Pa and constant initial
surface pressure ps = p0. This leads to the simplified expression

p(x, y, η, t = 0) = (a(η) + b(η)) p0 = η p0 . (43)

In the discrete representation, the vertical direction is
subdivided intoNlev model levels which are bounded byNlev + 1

interface levels (denoted by the half indices k + 1
2 ). The pressure

at the interfaces is then given by

pk+ 1
2

= ak+ 1
2
p0 + bk+ 1

2
ps = ηk+ 1

2
p0 (44)

with ηk+ 1
2

= ak+ 1
2

+ bk+ 1
2

and k = 0, 1, 2, · · ·Nlev . The corre-
sponding ηk values at the level centers (the full model levels)
are determined via the average ηk = 1

2 (ηk+ 1
2

+ ηk− 1
2
). It follows

pk = ηk p0.
Note that some GCMs (for example documented in Majewski

et al. (2002) or Untch and Hortal (2004)) employ the alternative
notation pk+ 1

2
= ak+ 1

2
+ bk+ 1

2
ps where the coefficients ak+ 1

2

are already multiplied with the reference surface pressure p0 and
given in Pa. If such coefficients are provided special care needs
to be taken to recover the η positions. First, the model-specific
value of p0 needs to be determined as some models utilize the
“standard atmosphere” value of 1.01325× 105 Pa like Untch and
Hortal (2004). Second, the pressure-based ak+ 1

2
coefficients need

to be divided by p0 to yield the η coefficients at layer interfaces

ηk+ 1
2

=
ak+ 1

2

p0
+ bk+ 1

2
. (45)

The latter can be linearly averaged as shown earlier to give the
corresponding η value at a full model level.

B. Iterative Method for Channel Models with z-based
Vertical Coordinates

The initial conditions for the baroclinc wave in the 3D
Cartesian channel have been designed for pressure-based vertical
coordinates with initially η = σ = p/ps. For models with height-
based vertical coordinates we suggest using Newton’s method
which is a root-finding technique. It yields the corresponding η-
level for any desired z position to machine precision. Newton’s
method therefore avoids vertical interpolations of the initial data
set and furthermore is easy to implement. The algorithm has
already been described for e.g. baroclinic wave initial conditions
on the sphere by Jablonowski and Williamson (2006a) (see their
Appendix) and is briefly summarized here for completeness. In
particular, the iterative method is given by

ηn+1 = ηn − F (x, y, ηn)
∂F
∂η (x, y, ηn)

(46)

where the superscript n = 0, 1, 2, 3, . . . denotes the iteration count.
For a selected z-level of the height-based vertical coordinate the

functions F and ∂F/∂η are determined by

F (x, y, ηn) = −g z + Φ(x, y, ηn) (47)
∂F

∂η
(x, y, ηn) = −Rd

ηn
T (x, y, ηn) (48)

where Φ and T are provided by Eqs. (7) and (10), respectively.
The starting value η0 = 10−7 is recommended for all Newton

iterations following Eq. (46) which corresponds to a model top
of about 100 km. The convergence is achieved if η0 is greater
than zero and physically lies above the uppermost model level.
Typically, Newton’s method converges within a maximum of 25
iterations, and most often the convergence is already achieved in
under ten iterations. Then the absolute error |η − ηn| is decreased
to machine precision. The resulting η-level for the location
(x, y, z) can then be used for the computation of the analytical
initial conditions at the location (x, y, η).

If the model requires the initialization of the pressure p, density
ρ or potential temperature Θ they can be computed as follows.
First, determine η(x, y, z) via the iterative technique. Second,
determine p, ρ and Θ via

p(x, y, η) = η(x, y, z) p0 (49)

ρ(x, y, η) =
p(x, y, η)

Rd T (x, y, η)
(50)

Θ(x, y, η) = T (x, y, η)
(

p0

p(x, y, η)

)Rd
cp (51)

with the specific heat at constant pressure cp = 1004.5 J kg−1

K−1.
Figure Suppl. 1 depicts the initial zonal wind and relative

vorticity with respect to the height coordinate. In addition, Figs.
Suppl. 2 and Suppl. 3 show the corresponding initial temperature,
pressure, potential temperature, absolute vorticity, Brunt-Väisälä
frequency and Ertel’s potential vorticity for both the f - and β-
plane. We provide these figures to accommodate non-hydrostatic
models with z coordinates and allow a straightforward comparison
of the initial data set.

C. Inclusion of moisture

The analytical initial conditions for a moist variant of the
baroclinic wave are almost identical to the dry configuration.
The differences are that the original T equation (10) is now
the definition of the virtual temperature Tv , the originally dry
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surface pressure ps = p0 and geopotential are interpreted as the
surface pressure and geopotential of the moist air, the definition
of the density needs to utilize the virtual temperature, and an
analytical expression for the specific humidity q is added. The
wind initialization of the moist baroclinic wave is identical to the
dry case.

A suggested zonally-symmetric specific humidity field is

〈q(η)〉 =
q0
2

{
1 + cos

[
π(1−η)
1−ηw

]
if η ≥ ηw,

0 otherwise,
(52)

q(x, y, η) = 〈q(η)〉 × exp

[
−
(

y

∆yw

)4
]

(53)

with the meridional width parameter ∆yw = 3200 km, the η-
based width parameter ηw = 0.3 and the maximum specific
humidity amplitude q0 = 0.018 kg kg−1.

The density of the moist air is defined by the ideal gas law

ρ(x, y, η) =
p(x, y, η)

Rd Tv(x, y, η)
(54)

and utilizes the pressure p of the moist air. The formulation of the
virtual temperature and specific humidity leads to the analytically
balanced representation of the temperature

T (x, y, η) =
Tv(x, y, η)

1 + 0.608 q(x, y, η)
(55)

This temperature is colder than the original dry temperature (10).
However, note that in the moist case the virtual temperature and
moist pressure determine the strength of the pressure gradient
term in the momentum equations. Since these are identical to
the temperature and pressure in the dry case, the forcing by the
pressure gradient term is the same in both the dry and moist variant
of the baroclinic wave. Once moisture is specified the model
simulation can be run with a simple large-scale condensation
parameterization as in Reed and Jablonowski (2012), or more
complex physical parameterizations, to provide the precipitation
and latent heating feedbacks.

D. Numerical discretization of Sturm-Liouville problem

We define a discrete mesh over the domain [0, Ly]× [0, z∗top] via

yj =
(
j − 1

2

)
∆y, and z∗k =

(
k +

1

2

)
∆z∗, (56)

where j ∈ {1, . . . , Ny} and k ∈ {1, . . . , Nz} are y and z∗ indices
within the mesh, ∆y = Ly/Ny and ∆z∗ = z∗top/Nz , and Ny and
Nz denote the number of elements in each coordinate direction
(chosen to be 60 and 30 in practice). Consequently, we define Ψ at
(y, z) = (yj , zk) as Ψj,k. Within the interior of the domain, (37)
is discretized using central derivatives,(

∂2Ψ

∂y2

)
j,k

≈
Ψj+1,k − 2Ψj,k + Ψj−1,k

∆y
. (57)

The vertical derivative term is expanded as

1

ρ0

∂

∂z∗

(
f2
0 ρ0

N2

∂Ψ

∂z∗

)
=

f2
0

N2ρ0

∂ρ0

∂z∗
∂Ψ

∂z∗
+
f2
0

N2

∂2Ψ

∂(z∗)2
, (58)

and each derivative term discretized as(
∂2Ψ

∂(z∗)2

)
j,k

≈
Ψj,k+1 − 2Ψj,k + Ψj,k−1

(∆z∗)2
, (59)(

∂Ψ

∂z∗

)
j,k

≈
Ψj,k+1 −Ψj,k−1

2∆z∗
. (60)

At lateral boundaries we enforce the no-flux condition Ψ = 0, and
so the second derivative in y becomes(

∂2Ψ

∂y2

)
1,k

≈
−12Ψ1,k + 4Ψ2,k

3∆y2
, (61)(

∂2Ψ

∂y2

)
Ny,k

≈
−12ΨNy,k + 4ΨNy−1,k

3∆y2
. (62)

At vertical boundaries we must enforce (38). By writing the
vertical derivative terms at the lower boundary as(

∂Ψ

∂z∗

)
j,1

≈ 1

2

(
∂Ψ

∂z∗

)
j,1/2

+
1

2

(
∂Ψ

∂z∗

)
j,3/2

, (63)

(
∂2Ψ

∂(z∗)2

)
j,1

≈ 1

∆z∗

[(
∂Ψ

∂z∗

)
j,3/2

−
(
∂Ψ

∂z∗

)
j,1/2

]
,(64)

where half-indices denote element edges, we note that we can
express the cell-centered vertical derivative in terms of a derivative
across the upper edge and one at the boundary. Again using a
centered approximation,(

∂Ψ

∂z∗

)
j,3/2

≈
Ψj,2 −Ψj,1

∆z∗
, (65)

and at the lower boundary(
∂Ψ

∂z∗

)
j,1/2

≈ 1

(u− c)

(
∂u

∂z∗

)
j,1

Ψj,1. (66)

A similar approximation is applied at the upper boundary. After
applying all approximations, we rearrange (37) to obtain a matrix
system of the form

AΨd = cBΨd, (67)

where Ψd is the vectorized form of Ψj,k. Since B is invertible,
this system can be written as an eigenvalue problem of the form

FΨd = cΨd, (68)

where F = B−1A. This system can then be solved using standard
numerical linear algebra techniques as e.g. provided in Matlab.
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