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The spectral element dynamical core has been demonstrated to be an accurate
and scalable approach for solving the equations of motion in the atmosphere.
However, it is also known that use of the spectral element method for tracer
transport is costly and requires substantial parallel communication over a
single time step. Consequently, recent efforts have turned to finding alternative
transport schemes which maintain the scalability of the spectral element method
without its significant cost. This paper proposes a conservative semi-Lagrangian
approach for tracer transport which uses upstream trajectories to solve the
transport equation on the native spectral element grid. This formulation,
entitled the Flux-Form Semi-Lagrangian Spectral Element (FF-SLSE) method,
is highly accurate compared to many competing schemes, allows for large time
steps and requires fewer parallel communications over the same time interval
than the spectral element method. In addition, the approach guarantees local
conservation and is easily paired with a filter which can be used to ensure
positivity. This paper presents the dispersion relation for the 1D FF-SLSE
approach and demonstrates stability up to a Courant number of 2.44 with
cubic basis. Several standard numerical tests are presented for the method in
2D to verify correctness, accuracy and robustness of the method, including a
new test of a divergent flow in Carteisan geometry. Copyright c© 2012 Royal
Meteorological Society
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1. Introduction

Tracer transport is one of the most important components of
any atmospheric model. Atmospheric chemistry, radiative
transfer and cloud physics all rely heavily on accurate
transport of tracer species by the dynamical core. Although
tracer transport is easy to formulate mathematically, a
physical treatment of tracer variables imposes additional
constraints such as conservation and positivity. Further, an
accurate treatment of the transport equation is often difficult
to achieve without a corresponding loss in efficiency.
Overall, the challenges with a correct treatment of the

transport equation can be quite imposing (Lauritzen et al.
2011b).

Semi-Lagrangian methods cover a wide class of
methods which aim to translate many advantages of
fully Lagrangian schemes into an Eulerian context. Since
tracer concentrations are constant along characteristics, the
Lagrangian treatment is perhaps the most natural for tracer
advection. Semi-Lagrangian methods can be thought of as
Lagrangian schemes which, at the end of each discrete
time step, are remapped to a static reference grid. For
semi-Lagrangian methods the tracking of individual fluid
parcels over many time steps, as required in the Lagrangian

Copyright c© 2012 Royal Meteorological Society
Prepared using qjrms4.cls [Version: 2011/05/18 v1.02]



2 P. A. Ullrich and M. R. Norman

approach, is unnecessary. Further, for a sufficiently small
time step, semi-Lagrangian approaches maintain locality
over the duration of one time step, and so have the
potential to scale well on large-scale parallel computer
systems. Outside of the meteorological literature, semi-
Lagrangian methods are known as Arbitrary Lagrangian-
Eulerian methods (Hirt et al. 1974).

Within the regime of geophysical flows, semi-Lagrangian
methods have been favored for over two decades (Stani-
forth and Côté 1991). Although classical non-conservative
semi-Lagrangian formulations are well-known, more recent
conservative semi-Lagrangian schemes have been featured
heavily in the literature. Among conservative schemes,
remap-based semi-Lagrangian schemes have been demon-
strated to be a powerful tool for modeling tracer
transport. These methods appear as either upstream or
downstream semi-Lagrangian methods: Upstream semi-
Lagrangian methods track control volumes upstream over
one time step and conservatively remap element averages
from the reference grid onto the deformed mesh, whereas
downstream semi-Lagrangian methods track control vol-
umes downstream and remap from the deformed mesh to the
reference grid. The stability of these formulations depend
largely on the flow field and the corresponding trajectory
tracking algorithm, and the time step must typically be
chosen small enough to avoid crossed trajectories. These
schemes also tend to be difficult to extend beyond 2D
due to the increased complexity of the deformed mesh
in higher dimensions. One of the earliest remap-based
approaches is the scheme of Rančic (1992) (hereafter R92),
which employs a bi-parabolic extension of the piecewise
parabolic method (PPM) of Colella and Woodward (1984)
and approximates upstream control volumes as deformed
quadrilaterals. The relative mathematical complexity of this
approach (and the difficulty of extending this approach to
3D) led to the development of simplified approaches, such
as the scheme of Laprise and Plante (1995) which instead
tracks back the centerpoints of Eulerian element edges
to obtain simplified upstream quadrilaterals. To simplify
remapping in 2D and beyond, the cascade remapping pro-
cedure of Purser and Leslie (1991) approximates upstream
control volumes by using grid-aligned slices in each of the
“cascade directions.” This procedure has been applied in the
formulation of Leslie and Purser (1995), and extended by
Zerroukat et al. (2002) as part of the SLICE scheme (and
on the latitude-longitude grid by Zerroukat et al. (2004)).
Cascade remapping is also covered in the work of Nair
et al. (2002) and Norman and Nair (2008). Recent work by
Lauritzen et al. (2010) has introduced the CSLAM scheme,
which extends the R92 approach to the cubed-sphere grid
with a truncated sub-grid-scale reconstruction. For each
of these methods, the use of straight lines to approximate
upstream control volumes limits the formal accuracy of
these methods to second-order, although a modification by
Ullrich et al. (2012) has been introduced to extend CSLAM
to third-order. Shape-preservation in remapping schemes is
easily obtained by using a slope limiter procedure, such as
the one by Barth and Jespersen (1989).

Although remap-based methods have been very success-
ful in modeling tracer transport, the conservative remapping
procedure is often both complicated and costly. Conse-
quently, flux-form semi-Lagrangian (FF-SL) methods were
developed which implicitly guarantee conservation regard-
less of the choice of flux. One of the earliest FF-SL
approaches has been proposed by Leonard et al. (1996),

which describes a novel dimension-splitting technique for
combining 1D semi-Lagrangian operators to build con-
servative 2D and 3D transport schemes, although the
dimension-splitting technique formally limits the accuracy
of the method to second-order. Further, the lack of true
multi-dimensionality adversely affects the accuracy of this
method for large values of the Courant number. A similar
approach has been proposed by Lin and Rood (1996), which
essentially applies 1D PPM in each of the coordinate direc-
tions. This formulation features improved accuracy com-
pared with the piecewise linear reconstructions, especially
for flows which are aligned with the grid, and although the
formal accuracy is still limited to second-order this method
has been an important driver of the use of FF-SL methods
in the atmospheric sciences. By using dimension-splitting
these methods can easily achieve unconditional stability,
which is considerably more difficult for multi-dimensional
schemes. For instance, FF-SL methods have been extended
onto unstructured grids by Frolkovič (2002), although the
multidimensional application of these flux-based methods
also led to a loss of unconditional stability and restricted
the Courant number to ν ≤ 1. The CSLAM scheme has
been presented in flux-form by Harris et al. (2011) using
the full intersection search algorithm, and consequently the
results were identical to the original CSLAM formulation.
A relaxed formulation is described in Lauritzen et al.
(2011a), which simplifies the flux calculation by only using
the sub-grid-scale reconstruction in elements that bounded
each flux-edge. However, simplification of the flux calcu-
lation also leads to a stability constraint of approximately
ν ≤ 1. Shape-preservation in flux-form semi-Lagrangian
schemes is typically attained via flux-corrected transport
(FCT) (Zalesak 1979).

Recent efforts dedicated to the development of next-
generation atmospheric dynamical cores have focused on
finite-element methods for achieving parallel scalability on
supercomputers with hundreds of thousands of processor
cores. The spectral element method (SEM) (Patera 1984;
Maday and Patera 1989) has several important properties
that make it a desirable choice for atmospheric dynamics
including conservation of mass and energy, flexibility and
accuracy. This approach was first adopted in the ocean
modeling community by Ma (1993) and later for shallow
water simulations on the sphere by Taylor et al. (1997).
More recently, the spectral element method has been
implemented as an atmospheric dynamical core (Fournier
et al. 2004; Taylor and Fournier 2010) and is now included
as part of the Community Atmosphere Model (CAM)
as the default dynamical core (Dennis et al. 2012). A
regional modeling environment using both the spectral
element and discontinuous Galerkin method has also
been developed (Giraldo and Rosmond 2004; Giraldo and
Restelli 2008). Within CAM, SEM is currently used for both
the thermodynamical component of the atmospheric model
(which handles pressure, velocity and temperature) and the
advective component (for all other tracer species). However,
this scheme has known shortfalls for tracer advection,
including a fairly strict CFL condition which limits the
maximum time step and a requirement for several parallel
communications within every time step. Consequently new
algorithms for tracer transport within the spectral element
dynamical core are desired.

A variety of semi-Lagrangian methods have been
developed for the general class of finite-element and multi-
moment methods. One of the earliest known methods
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is the remapping scheme of Prather (1986) (hereafter
P86), which preserves second moments of the tracer
distribution within each element (quadratic polynomials)
while maintaining unconditional stability. This scheme
assumes no deformation of the fluid parcel over the duration
of the time step, which tends to be the dominant form
of error of this scheme. This method can also be applied
in a direction-split context, and tends to perform better
than analogous dimension-split finite-volume schemes.
Increased interest in finite-element methods later followed
from the work of Cockburn and Shu (1989). A nodal semi-
Lagrangian spectral element method for tracer transport was
introduced by Giraldo (1998) (hereafter F98), and although
this method was unconditionally stable and allowed for
arbitrary order-of-accuracy, the use of the advective form
of the transport equation did not lead to strict tracer mass
conservation. This work was later extended to the spherical
shallow-water equations by Giraldo et al. (2003) and the
Navier-Stokes equations by Xiu and Karniadakis (2001).

Recent work by Restelli et al. (2006) (hereafter
RBS06) has introduced a semi-Lagrangian discontinuous
Galerkin method analogous to the multi-dimensional
approach of P86 which is valid for unstructured grids
and arbitrary order-of-accuracy. Further, RBS06 presents
a mechanism for enforcing shape-preservation within the
formulation via FCT. RBS06 relates most closely to the
efforts in this paper, although they make a number of
assumptions in their derivation which are not imposed
herein, including incompressibility of the velocity field
(∇ · u = 0), constancy of the flow field over the duration of
one time step and orthogonality of test functions (leading
to a diagonal mass matrix). Further, RBS06 limits their
stability analysis to methods of second-order accuracy and
only provides results for schemes up to third-order.

The space of semi-Lagrangian finite-element methods
remains to be fully explored, and so the goal of this paper is
to build on the earlier work by F98 and RBS06 to construct a
transport scheme which is compatible with the fourth-order
nodal spectral element method of Fournier et al. (2004),
and hence is appropriate for incorporation in CAM. In
particular, to be useful operationally, such a scheme should
possess the following properties:

1. Uses the native spectral element nodal grid,
2. Conserves mass without a posteriori mass fixers,
3. Allows for at least third-order accuracy,
4. Maintains stability up to a Courant number of 1,
5. Maintains strict positivity of the tracer field.

The Flux-Form Semi-Lagrangian Spectral Element (FF-
SLSE) method described in this paper also has several
desirable properties. Since this scheme is formulated in
flux-form, local and global conservation of tracer mass
is immediately guaranteed. Similar to SEM, FF-SLSE
also admits both a variational formulation and finite-
difference formulation. This paper further demonstrates
that positivity can be maintained using a modified FCT
method analogous to the approach of RBS06. The
FF-SLSE method also becomes more cost effective per
tracer as the number of tracers increases, since the
trajectory tracking algorithm only needs to be performed
once for each time step. This advantage is especially
beneficial going forward, since version 5 of CAM now
runs with roughly 30 tracers in operational mode, up
to 106 with the full chemistry suite. As formulated,

FF-SLSE is unstable with cubic basis functions (fourth-
order accuracy), but can be stabilized with a selectively
chosen ∇4 hyperdiffusion operator, which ensures third-
order accuracy and is stable up to a 1D Courant number
of 2.44. This CFL condition leads to a scheme which
requires significantly fewer parallel communications per
unit time than SEM. Unlike many other semi-Lagrangian
schemes, it is worthwhile to emphasize that unconditional
stability is not guaranteed under FF-SLSE, which may
make the scheme unattractive, especially when coupled
with a scheme for the thermodynamic variables that allows
for large time steps. However, to achieve massive parallel
scalability with a CFL-limited numerical approach (such as
the default for the CAM-SE dynamical core) one typically
requires communication locality (Dennis et al. 2012), and
so computational considerations effectively limit the value
of the Courant number to not be “too large” to require extra
communication.

The outline of this paper is as follows. Section 2 outlines
the FF-SLSE method, including the description of the
hyperdiffusion operator and the positivity filter. An analysis
of the dispersive properties of the fourth-order method in
1D is performed in section 3. A suite of 2D numerical tests
are then performed in section 4 to verify the theoretical
properties of the method. Finally, conclusions and future
work are presented in section 5.

2. The Flux-Form Semi-Lagrangian Spectral-Element
(FF-SLSE) method

2.1. Spectral elements and Gauss-Lobatto-Legendre
characteristic functions

The 1D Gauss-Lobatto-Legendre (GLL) characteristic
functions are based on the nodal Gauss-Lobatto grid.
Consider a 1D reference element on the closed interval
[−1, 1]. For a given polynomial degree np ≥ 1, the nodal
Gauss-Lobatto points include both endpoints x̃1 = −1 and
x̃np+1 = 1 and np − 1 interior nodes, defined by the roots
of P ′np−1(x̃), where Pn is a Legendre polynomial. This
choice leads to an implied quadrature rule over [−1, 1] with
corresponding nodal weights

wi =
2

np(np − 1)[Pnp−1(x̃i)]2
. (1)

The ith GLL characteristic function on this grid is defined
as the lowest order polynomial which is 1 at x̃i and 0
at all x̃j with j 6= i. This paper is primarily interested in
methods which use third degree (cubic) polynomials within
each spectral element, consistent with the typical order of
the CAM-SE dynamical core. A depiction of this reference
element and its corresponding characteristic functions
is given in Figure 1. When using quadrilateral (2D)
and hexahedral (3D) spectral elements, the characteristic
functions in 1D can be easily extended to higher dimensions
via a tensor product. In the global domain, which consists of
an appropriate tiling of spectral elements, nodal points are
labelled using vector notation xj where the index j spans
all nodes.

The spectral element method, and consequently the
FF-SLSE method, further enforce continuity at element
boundaries. The characteristic functions which are non-
zero at element boundaries are mirrored in immediate
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neighbors to give an overlapping set of basis functions. This
requirement also implies that any degrees of freedom at
element boundaries are shared between spectral elements.
Hence, each element contains one fewer degree of freedom
than its number of basis functions (3 degrees of freedom
per spectral element for cubic basis functions). The basis
function φj(x) is then defined as the characteristic function
(or mirrored characteristic function) that is 1 at xj and 0 at
all other nodes.

2.2. Variational formulation of the spectral element
method

For simplicity, the spatial domain D is assumed to be
periodic in all coordinate directions. The conservative form
of the advection equation is written as

∂ψ

∂t
+∇ · F(ψ;u) = 0, (2)

where ψ = ρq = ψ(x, t) is a tracer density variable
composed of the density ρ and tracer concentration q, u =
u(x, t) is a specified velocity field and F(ψ;u) = ψu. The
tracer density ψ is approximated using a basis function
expansion,

ψ(x, t) =
∑
j

ψj(t)φj(x), (3)

where the sum is taken over the full set of basis
functions and ψj(t) = ψ(xj , t). The differential equation is
multiplied by φi(x) and integrated over D, which leads to

N∑
j=1

dψj

dt

∫
D
φi(x)φj(x)dV = −

∫
D
φi(x)∇ · F(ψ;u)dV,

(4)
where the boundary integral term is dropped due to
periodicity of D and dV is the volume element associated
with D. Under the Galerkin formulation, this equation must
be satisfied for all basis functions φi. Integration by parts is
now applied to obtain the weak form,

N∑
j=1

dψj

dt

∫
D
φi(x)φj(x)dV =

∫
D
F(ψ;u) · ∇φi(x)dV.

(5)
In matrix form, this system of equations can be written as

M
dψ

dt
= G, (6)

whereψ = ψ(t) = [ψj(t)]
N
j=1 is the vector of nodal values,

M is the symmetric mass matrix with components

(M)ij =

∫
D
φi(x)φj(x)dV, (7)

and G is the vector of integrated fluxes,

Gi =

∫
D
F(ψ;u) · ∇φi(x)dV. (8)

If the integrals in (7) are evaluated exactly, the global
system of equations (6) must be inverted at each time step.
However, in this paper all integrals are instead evaluated
using the Gauss-Lobatto integration rule induced by the

underlying grid. Using this approach the mass matrix will
be diagonal and the inversion will no longer require a global
matrix-vector solve. This technique is also known as mass-
lumping, since it is identical to replacing M with a diagonal
matrix composed of the row sums of M. Another advantage
of this technique is that fluxes must only be computed at
GLL points, since each component of the flux vector (8)
will reduce to a weighted sum of pointwise fluxes.

It should be emphasized that the discretization (6)-(8) is
inherently conservative for any choice of flux function F.
This property makes it possible to guarantee global mass
conservation without the need for a posteriori mass fixers.

2.3. Semi-Lagrangian time integration

Equation (6) represents a semi-discrete system of equations.
In order to fully discretize these equations it remains to
specify a discretization of the temporal term, which is
typically achieved via some appropriately chosen Runge-
Kutta method. This work instead uses a semi-Lagrangian
discretization, which requires coupling of the spatial and
temporal modes. By integrating (6) in time over the interval
T n = [tn, tn+1], one obtains the linear system[

M(ψ̃
n+1 −ψn)

]
i

=

∫
D
F

n
(x) · ∇φi(x)dV, (9)

with unknown advected tracer density ψ̃
n+1

= ψ̃(tn+1)
and time-integrated pointwise flux

F
n
(x) =

∫
T n

F(ψ;u)dt. (10)

The key to the semi-Lagrangian formulation is in specifying
the time-integrated flux (10) using known information. For
consistency with the induced quadrature rule on the spatial
grid, Gauss-Lobatto quadrature is used to approximate
the integral (10), although any other appropriately chosen
quadrature rule can also be used. Under this approach,
F

n
(x) takes the form

F
n
(x) =

∆t

2

Mq∑
m=1

wmF [ψ(x, tn,m);u(x, tn,m)] (11)

where ∆t = tn+1 − tn,Mq denotes the number of points in
the corresponding quadrature rule and

tn,m = tn +
∆t

2
(1 + x̃m). (12)

An analogous formula to (11) is derived in RBS06 eq. (13)
for a modal basis. However, FF-SLSE differs from RBS06
in using a consistent high-order quadrature rule for all nodal
points which is not influenced by the computed trajectories.
This paper proposes the use of the fourth-order accurate
Simpson’s rule for integration in time, which consists of
nodal points and weights

x̃1 = −1, x̃2 = 0, x̃3 = 1, (13)

w1 = 1
6 , w2 = 2

3 , w3 = 1
6 . (14)

All that now remains is to determine the pointwise fluxes
as a function of the known state vector ψn. Using the fact
that tracer concentrations are transported with the flow, for
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Figure 1. A depiction of the four GLL basis functions associated with the reference element [−1, 1]. The vertical dotted lines indicate the roots of the
Legendre polynomial P3.

a given xi and tn+1 there exists some point x∗i so that

q(xi, t
n+1) = q(x∗i , t

n). (15)

The points xi and x∗i lay along the same fluid parcel
trajectory, which is determined by the differential equation

dx

dt
= u(x, t), (16)

for a sufficiently smooth velocity field u(x, t). This
equation is then solved subject to the condition x(tn+1) =
xi. The equation (16) determines the trajectories of fluid
particles, and can be solved using any standard numerical
approach. When the velocity field is known in closed
form this equation can sometimes be integrated analytically
to obtain x∗i . If the velocity field is only known at
discrete points in time, this equation must instead be solved
numerically. One such numerical approach for solving (16)
uses a second-order two-stage Runge-Kutta scheme (Casulli
1990; Giraldo 1999; Rosatti et al. 2005) of the form

x
(1)
i = xi −

(t− tn)

2
u (xi, t) , (17)

x∗i = xi − (t− tn)u

(
x

(1)
i ,

t+ tn

2

)
. (18)

Consequently the point x∗i is an approximation to the point
at time tn, which under Lagrangian advection, would have
ended up at xi at time t. Curiously, even though x∗i is only
a second-order approximation to the exact trajectory origin,
this choice does not appear to affect the spatial convergence
rate of the underlying method. If higher accuracy and partial
sub-stepping is desired for computing trajectories, a fourth-
order Runge-Kutta scheme may be applied, analogous to the
one used by Ullrich et al. (2012),

x
(1)
i = xi −

(t− tn)

2
u (xi, t) , (19)

x
(2)
i = xi −

(t− tn)

2
u

(
x

(1)
i ,

t+ tn

2

)
, (20)

x
(3)
i = xi − (t− tn)u

(
x

(2)
i ,

t+ tn

2

)
, (21)

x∗i = 1
3 (−xi + x

(1)
i + 2x

(2)
i + x

(3)
i ) (22)

− (t− tn)

6
u
(
x

(3)
i , tn

)
.

However, for the tests considered in this paper, the use
of a higher-order trajectory computation scheme leads to
nearly identical error norms (equal up to three decimal
places). Other methods for solving (16) are also available
(Durran 1998; McGregor 1993). Although the accuracy
requirements for computing the trajectories do impose some
additional expense, the corresponding trajectories must only
be computed once per time step for all tracers. Once x∗i is
known, the pointwise flux is evaluated via

F [ψ(xi, t
n,m);u(x, tn,m)]

= F (q(x∗i , t
n)ρ(xi, t

n,m);u(x, tn,m)) (23)

= q(x∗i , t
n)ρ(xi, t

n,m)u(xi, t
n,m).

The density ρ(xi, t) is obtained from the dynamical core so
as to ensure tracer-dynamics consistency.

It is worth observing that the trajectory computation
presented above remains susceptible to crossed trajectories
when the Lipschitz condition is not satisfied (Machenhauer
et al. 2009). This condition is far less strict than the Courant
number restriction ν ≤ 1, and only becomes an issue in
regions of very strong shear and/or divergence which rarely
appears in the atmosphere. Nonetheless, to determine if
crossed trajectories lead to an instability in FF-SLSE, a
discontinuous velocity field was used to test advection of
a Gaussian bell profile in 1D. By varying the strength of
the discontinuity, it is easy to construct a situation where
the CFL condition is satisfied but the field is arbitrarily
divergent, and consequently trajectories were guaranteed
to cross. However, in this situation no evidence emerged
of instability induced by crossed trajectories. Heuristically,
this observation suggests that the use of trajectories to
compute fluxes, as opposed to being used to obtain point
values, may be more robust to crossed trajectories.

2.4. Time-integrated differential formulation of the
spectral element method

An equivalent formulation of the spectral element method
can be similarly obtained using spectral finite-differences.
If the flux F(x, t) is approximated via an expansion of basis
functions φi,

F(x, t) =
∑
i

F(ψ(xi, t);u(xi, t))φi(x), (24)
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then (2) reduces to

∂ψ

∂t
= −

∑
i

F(ψ(xi, t);u(xi, t)) · ∇φi(x). (25)

The update equation is then obtained by integrating this
expression over the time interval T n and evaluating the
expression at x = xj ,

ψ̃n+1
j = ψn

j −
∑
i

F
n
(xi) · ∇φi(xj). (26)

At element boundaries where the basis functions are not
differentiable, the derivatives ∇φi(xj) are averaged among
the one-sided derivatives on all intersecting elements.
Consequently the differential formulation update equation
(26) is identical to the variational form (9).

2.5. Stabilization and hyperdiffusion

The approach described in section 2.3 is consistent and
ensures accuracy to high-order, but exhibits instability
for certain values of the Courant number (as will be
demonstrated in section 3). This instability is removed via
application of an explicit high-order numerical diffusion
operator to filter out the unstable computational modes
analogous to the approach of Taylor and Fournier (2010).
As discussed by Pasquarelli and Quarteroni (1994), the
application of diffusion is generally necessary for spectral
approximations of advection-diffusion operators so as to
remove spurious noise associated with the high-order basis
functions. The diffusion operator is given by

Hkψ = α (∇ · ∇) · · · (∇ · ∇)︸ ︷︷ ︸
k times

ψ = α∇2kψ, (27)

where α is the coefficient of diffusion and 2k ∈ Z specifies
the order of the diffusion operator. Note that by applying
the diffusion term to the tracer density, a very weak tracer-
dynamics inconsistency is introduced; if desired, this can be
avoided by applying an analogous diffusion operator to the
density term after the thermodynamic update. The operator
is applied using a forward Euler step, which is formulated
as

ψn+1 = ψ̃
n+1

+ ∆t αHk ψ̃
n+1

, (28)

where ψ̃
n+1

is the updated tracer density following
application of advection. The high-order Laplacian Hk is
applied recursively by definingH0ψ = ψ̃

n+1
and

Hkψ = H(Hk−1ψ) = ∇ · ∇(Hk−1ψ). (29)

On applying the spectral-element discretization, as in
section 2.2, along with expansion

Hkψ(x, t) =
∑
j

(Hkψ)j(t)φj(x), (30)

it follows that (29) can be written in matrix form as

Hkψ = M−1H(Hk−1ψ), (H)ij =

∫
D
∇φi · ∇φjdV.

(31)

For example, the fourth-order diffusion operator can be
applied via the three-stage procedure

Hψ = M−1Hψ̃
n+1

, (32)
H2ψ = M−1H(Hψ), (33)

ψn+1 = ψ̃
n+1

+ ∆t αH2ψ. (34)

2.6. Positivity preservation

The high-order nature of the method insofar described
does not guarantee positivity preservation. Further, unlike
SEM, the FF-SLSE formulation does not satisfy a regularity
condition on its fluxes which would ensure the total tracer
mass within each spectral element remains positive. Hence,
enforcement of the positivity condition is performed via
a two-step process. First, FCT is applied during the flux
computation stage to ensure that the total tracer mass within
each spectral element is positive after each time step. Edge
fluxes into a spectral element Ω, with boundary ∂Ω, are
defined by observing

〈change in mass within Ω〉 =

∮
∂Ω

F · ndS. (35)

That is, only fluxes computed at points along the boundary
are responsible for changes to the total mass within each
spectral element. With this in mind, FCT can be applied to
limit pointwise fluxes at the element boundary analogous
to the approach described by RBS06. For purposes of
positivity preservation, the low-order flux required by FCT
can simply be chosen to be the zero flux. Second, to ensure
that the positivity criteria is retained within each spectral
element, the optimal mass-borrowing scheme of Guba et al.
(2013) is then applied. This scheme effectively identifies
negative valued nodes within a spectral element and fills
them using optimization within the same element.

Note that the fourth-order hyperdiffusion operator
described in section 2.5 can also generate small spurious
negative values when applied. Consequently, the hyperdif-
fusion operator is formulated in flux form by noting that
the update equation (34) arises when F(ψ;u) = Fh(ψ) =
α∇(Hψ) and (30) are substituted into (8).

Monotonicity preservation can be performed using an
analogous procedure, except using a low-order flux to drive
FCT. Strictly monotonic schemes tend to be overly diffusive
when applied to tracer transport problems, and so the focus
of this work is on methods which allow for small controlled
overshoots (namely, total variation bounded schemes). One
mechanism that seems to be very powerful for controlling
overshoots in our approach simply limits the sample points
q(x∗, t) in (23) to be bounded by all sample points within
that spectral element. However, an analysis of this approach
has not been pursued in detail.

2.7. Summary of the cubic scheme

This section provides an algorithmic outline of the FF-SLSE
method with cubic basis functions. The basic algorithm
used for advection is described as follows:

1. Backtrack trajectories from xj and tn,m to obtain
origin points x∗j via (17)-(18)
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2. Interpolate values of the tracer field via

q
(
x∗j , t

n
)

=
∑
i

qni φi
(
x∗j
)

(36)

3. Calculate time-integrated fluxes F
n
(xj) via (11) and

(23)

4. If flux-corrected transport is enabled, limit pointwise
fluxes F

n
(xj).

5. Calculate predicted pointwise updates ψ̃n+1
j via (9)

or (26)

Once the advection step is completed, hyperdiffusion is then
applied so as to ensure stability of the underlying scheme.
This process proceeds as follows:

1. Calculate the Laplacian of the field following (32).

2. Compute hyperdiffusive fluxes

F(ψ;u) = Fh(ψ) = α∇(Hψ). (37)

3. If flux-corrected transport is enabled, limit pointwise
fluxes F(xj).

4. Calculate pointwise updates ψn+1
j .

3. 1D Analysis

A 1D dispersion analysis of FF-SLSE has been performed
to determine the conditions required for stability of the
method. Consider a single wave mode in 1D of the form

ψ(x, t) = ψ0 exp(i(kx− ωt)), (38)

with wave number k and frequency ω. For simplicity,
density is assumed constant. Under the advection equation
(2) with a constant uniform velocity field u(x, t) =
u0 > 0, this wave mode will propagate with dispersion
relation ω = u0k. The discrete setting instead leads to
some approximate dispersion relationship ω = ω(k), with
ω(k) ≈ u0k. Since ω is complex-valued, the approximate
dispersion relationship is typically decomposed into two
terms: A normalized amplitude factor A(k) defined by

A(k) = exp(T · Im(ω)) (39)

and a normalized wave frequency

W (k) = T · Re(ω). (40)

Hence, after a time T has elapsed, the wave mode will have
amplitude ψ0A(k) and will have shifted its phase by a factor
W (k). If the amplitude satisfies A(k) > 1 for any value
k, this wave mode will grow in amplitude over time, and
hence lead to an unstable numerical scheme. In the discrete
domain, the dimensionless wave number k∆x is typically
adopted, which for resolvable wave modes spans the range
k∆x ∈ [0, π]. For simplicity T = 1 time unit is chosen.

As an aside, note that ∆x for nodal spectral element
methods can be defined as either the width of each spectral
element, or the average distance between nodes. The latter
definition corresponds more closely with the concept of ∆x
being some inverse of the number of degrees of freedom

present in the simulation. This paper follows the approach
of Giraldo and Restelli (2008), Dennis et al. (2012) and
others, who use the average distance between nodes. In
particular, this choice is important for our definition of the
Courant number.

For the spectral element method, the non-uniform grid
spacing leads to computational modes which are only
approximately of the form (38). Nonetheless, most modes
still exhibit wave-like character and can be analyzed in the
context of standard dispersion theory. This analysis makes
use of the dimensionless Courant number ν, defined by

ν =
u0∆t

∆x
. (41)

In this paper, the coefficient of diffusion α is chosen to take
on the value which maintains stability of the method over
the largest range of Courant numbers. For the method with
cubic basis functions, this value, obtained from a simple
grid search, turns out to be α = 3.4× 10−4∆x3.

Figure 2 shows the normalized amplitude and frequency
for all values of k∆x. Although the frequency is well
captured by the numerical method, the scheme exhibits
instability at ν = 0.3 and ν = 2.1. This instability is not
associated with inaccuracies in the trajectory calculation,
since it appears even in the 1D case when trajectories are
computed exactly. In fact, the mild instability associated
with ν = 0.3 arises due to an inconsistency in the fluxes
within a spectral element; namely, the time-averaged flux
at the element boundary derives from the sub-grid-scale
reconstruction in the neighboring spectral element, whereas
all other time-averaged fluxes derive from the active spectral
element. This inconsistency is small, but sufficient to drive
instability in a small range of wave numbers. For larger
Courant numbers (> 1.25), another inconsistency arises
from the use of a single quadrature rule in time; that is, when
computing time-averaged fluxes, the quadrature points in
time could use information on q derived from multiple
spectral elements. These instabilities are discussed in
additional detail in Appendix A. Nonetheless, the addition
of hyperdiffusion is effective at stabilizing the method,
as shown in Figure 3. Again the frequency of each wave
mode is well captured by the method, but in this case
the amplitude A(k) never enters the realm of instability.
Figure 4 depicts the maximum value of the amplification
factor over all resolved values of k∆x, and confirms that
the approach with added hyperdiffusion is stable up to ν =
2.44. Repeating this procedure for other choices of bases
leads to Table 1. These results indicate that hyperdiffusion
is only needed for basis functions of cubic order and
higher. Further, there is a rapid loss of stability as the FF-
SLSE scheme is applied to higher-order basis functions.
Consequently the FF-SLSE method may not be desirable
for schemes requiring greater than third-order accuracy.

4. Numerical results

This section provides a selection of 2D test cases to verify
stability, robustness and accuracy of the FF-SLSE method
described in this paper. Uniform transport of a sinusoid
is studied in section 4.1 to verify stability over long time
integrations. Solid body rotation tests are performed and
analyzed in section 4.2. A deformational flow problem
is presented in section 4.3 to test the method under a
more complicated velocity field. Finally, a divergent flow
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Figure 2. The cubic FF-SLSE method wave structure without added hyperdiffusion for (top) Courant number 0.3, (middle) Courant number 1.2 and
(bottom) Courant number 2.1. For each value of the Courant number, the left plot shows the normalized amplitude and the right plot shows the normalized
frequency. The grey region in the left plot depicts areas of instability. The black line in the right plot shows the frequency for the exact scheme.

Table 1. Maximum stable Courant number for various schemes.

Degree of Basis Hyperdiffusion type α Maximum Courant number
Linear (1) None - 1.00
Quadratic (2) None - 1.74
Cubic (3) None - 0
Cubic (3) ∇4 hyperdiffusion 3.4× 10−4 ∆x3 2.44
Quartic (4) ∇4 hyperdiffusion 1.1× 10−4 ∆x3 1.72
Quartic (4) ∇6 hyperdiffusion −1.3× 10−6 ∆x5 0.64
Quintic (5) ∇6 hyperdiffusion −1.4× 10−7 ∆x5 0.80

problem is presented in section 4.4 to verify correct and
consistent behavior under divergent flow conditions. For the

idealized tests presented in this paper it is assumed that the
density is constant. The 2D Courant number used in the
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Figure 3. The cubic FF-SLSE method wave structure with added hyperdiffusion (α = 0.00034∆x3) for (top) Courant number 0.3, (middle) Courant
number 1.2 and (bottom) Courant number 2.1. For each value of the Courant number, the left plot shows normalized amplitude and the right plot shows
the normalized frequency. The grey region in the left plot depicts areas of instability. The black line in the right plot shows the frequency for the exact
scheme.

simulation description is defined as

ν ≡ max
x,y∈D

|u(x, y)|∆x
∆t

. (42)

Throughout this section standard error measures are used:

L1(h) =
I [|ψ − ψT |]
I [|ψT |]

, (43)

L2(h) =

√
I [(ψ − ψT )2]

I [ψ2
T ]

, (44)

L∞(h) =
max |ψ − ψT |

max |ψT |
, (45)

where ψT is the tracer density at the initial time and I
denotes an approximation to the global integral obtained by
Gauss-Lobatto integration.

4.1. 2D uniform transport

The 2D uniform transport test is analogous to the 2D
transport test of LeVeque (1996). This test uses a flow field
of constant velocity, but transports the profile along a path
which is not aligned with the grid. The flow field is chosen
to be

u(x, y) = 1, v(x, y) = 2. (46)
A smooth initial profile

ψ(x, y) = sin(2πx) sin(2πy) (47)
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Figure 4. Maximum normalized amplification factor A(k) over all resolved wave modes k∆x ∈ [0, π] for the FF-SLSE method over cubic basis
functions with values of the Courant number ν ∈ [0, 3]. The left plot shows the basic scheme with no added hyperdiffusion and the right plots
shows the scheme with added hyperdiffusion (α = 0.00034∆x3). The dotted line indicates the maximum stable Courant number for the scheme
with hyperdiffusion, which occurs at ν = 2.44.

is used.
The test is run on a 10× 10 mesh of spectral elements

(total 30 nodes per coordinate direction) over the domain
D = [0, 1]2 with a time step of ∆t = 0.02 (Courant number
1.34) until t = 100. The global maximum and standard
error norms are plotted for the duration of this simulation in
Figure 5. The results show a monotone, linear decay in the
global maximum, suggesting that the method is stable for
the duration of this simulation. Error norms also increase
linearly with time, as is expected for this simple transport
experiment. At time t = 1 the L2 error is approximately
4.73× 10−4, which is slightly better than the results from
the third order methods of LeVeque (1996).

4.2. 2D solid body rotation

The 2D solid body rotation test mimics the test case
introduced by LeVeque (1996). The domain consists of the
unit square D = [0, 1]2. The velocity field is given by

u(x, y) = −2π
(
y − 1

2

)
, v(x, y) = 2π

(
x− 1

2

)
. (48)

Although this definition leads to a discontinuity in the
velocity field at the domain boundary, the tracer field is
chosen to avoid impinging on the boundary for the duration
of the simulation. This flow field is normalized such that
one rotation is completed over an interval of 1 time unit.

Following LeVeque (1996), the tracer field consists
of three shapes of variable smoothness to test various
properties of the transport scheme. The initial data for this
test is depicted in Figure 6. The first shape is a C1 cosine
bell centered at (xb0, y

b
0) = (0.25, 0.5) with radius rb0 = 0.2

and profile

ψb(x, y) =


1

4

(
1 + cos

(
πrb(x)

rb0

))
, rb(x) < rb0,

0 otherwise.
(49)

Here rb(x) =
√

(x− xb0)2 + (y − yb0)2 denotes the radius
from the center point of the bell. The second shape is
a C0 cone centered at (xc0, y

c
0) = (0.5, 0.25) with radius

rc0 = 0.15 and profile

ψc(x, y) =

 1− rc(x)

rc0
, if rc(x) < rc0,

0 otherwise.
(50)

Again rc(x) =
√

(x− xc0)2 + (y − yc0)2 denotes the radius
from the center point of the cone. The final shape is
a discontinuous slotted cylinder centered at (xs0, y

s
0) =

(0.5, 0.75) with radius rs0 = 0.15. The profile for the slotted
cylinder is 1 for all points within rs0 of the center point,
except for points that further satisfy

|x− xs0| < 0.025 and y < ys0 + 0.1. (51)

This test was run until t = 1 (one revolution) with
a maximum Courant number of 2.4, which implies an
approximate time step of ∆t = 0.006 on a 20× 20 mesh
and ∆t = 0.003 on a 40× 40 mesh. Further, the positivity
filter was employed to ensure no negative values emerged
during the simulation. Results are shown in Figure 7 using
a 20× 20 mesh of spectral elements (total 60 nodes per
coordinate direction) and in Figure 8 using a 40× 40 mesh
(total 120 nodes per coordinate direction). Overall there
is very good agreement with the initial profile. No visual
degradation of the cosine bell profile is observed after one
revolution. On the other hand, there is a slight reduction
in the height of the cone for both schemes, and a few
visually apparent oscillations at the edge of the slotted
cylinder. Nonetheless, on the 40× 40 mesh the slotted
cylinder is captured especially well, with very little sign
of filling within the slot. Error norms associated with
these results are given in Table 2 for all objects, as well
as isolated errors for each object. Consistent with other
Eulerian transport schemes, the discontinuous profile shows
no convergence in the L∞ norm, whereas the cone and bell
exhibit approximately first- and second-order convergence
in this norm (and better performance in L1 and L2). The
errors in the full simulation are largely overwhelmed by the
errors due to the slotted cylinder. To demonstrate that mass
is conserved throughout the simulation, we plot the mass
difference over time in Figure 9, defined by

∆Mn = Mn −M0, with Mn =

∫
D
ψn(x, y)dV,

(52)
where the integral is evaluated on the spectral element mesh.

4.3. 2D deformational flow

The 2D deformational flow test is again based on the
work of LeVeque (1996), and is useful for evaluating the
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Figure 5. (top) Global maximum for the 2D uniform transport test, as a function of the number of revolutions completed by the test. The decaying
profile suggests stability of the method. (bottom) Standard error norms for the profile over the duration of the simulation. The L1 and L2 errors are
approximately equal and so are difficult to distinguish in this plot.
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Figure 6. Initial data for the solid body rotation test, showing tracer density ψ(x, y) with 40× 40 cubic spectral elements over the domain
(x, y) ∈ [0, 1]2 (total 120 nodes per coordinate direction).

treatment of thin filaments within the advection scheme.
The 2D non-divergent velocity field is specified as

u(x, y, t) = sin2(πx) sin(2πy) cos(πt/T ), (53)
v(x, y, t) = − sin2(πy) sin(2πx) cos(πt/T ), (54)

where D = [0, 1]2 and the final time is T = 5 time units.

The initial distribution is chosen to be a C3 cosine bell,
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Figure 7. Results from the solid body rotation test after one revolution, showing tracer density ψ(x, y) on a 20× 20 cubic spectral element mesh (total
60 nodes per coordinate direction) with ∆t = 0.006. The top plot shows a 3D surface view of the tracer density. Four different cross-sections are shown
in the lower plots at y = 0.25, y = 0.75, x = 0.25 and x = 0.5 (top left to bottom right). The solid line depicts the exact solution.

defined by

ψ(x, y) = 1
4 [1 + cos(πr)]

2
, (55)

r = min

{
1, 4

[(
x− 1

4

)2
+
(
y − 1

4

)2]1/2
}
.

This distribution is chosen over the standard C1 cosine bell
since the latter allows at most second-order convergence of
the error norms. Over the duration of the test, the cosine bell
is deformed to a narrow stretched band at t = T/2, at which
point the flow reverses and (optimally) the tracer field will
return to its initial distribution (Durran 1998).
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Figure 8. As Figure 7 except run on a 40× 40 mesh (total 120 nodes per coordinate direction) with ∆t = 0.003.

This test case was run with and without the positivity
filter described in section 2.6. On the 40× 40 mesh of
spectral elements (120 total nodes in each coordinate
direction) the time step was chosen to be ∆t = 0.01
which corresponds to a Courant number of ν = 1.2. The
results from this test are plotted in Figure 10. The filter
is clearly effective at removing spurious negative values
from the results, although it has the effect of also somewhat

degrading the quality of the solution. Further, the scheme
appears effective at maintaining the tracer field even when
it has been stretched to a very thin filament a few grid points
across.

Error norms with and without the positivity filter are
plotted in Figure 11. Below a mesh resolution of 40× 40
the filament is not resolved on the grid at t = T/2, and so
sub-optimal convergence is observed. However, at higher
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Figure 9. Mass difference from the solid body rotation test on a 40× 40 mesh over the duration of the simulation. All errors are within machine
truncation.

Table 2. Error norms for the 2D solid body rotation test with all three
objects (All), only the C1 cosine bell (Bell), only the C0 cone (Cone)
and only the discontinuous slotted cylinder (S.Cyl.).

Test Mesh size L1 Error L2 Error L∞ Error
All 20× 20 2.60 (-2) 9.67 (-2) 8.09 (-1)

40× 40 1.45 (-2) 6.70 (-2) 9.08 (-1)
80× 80 8.92 (-3) 5.28 (-2) 9.52 (-1)

Bell 20× 20 2.07 (-4) 6.65 (-4) 6.14 (-3)
40× 40 3.65 (-5) 1.28 (-4) 1.01 (-3)
80× 80 7.30 (-6) 2.92 (-5) 3.53 (-4)

Cone 20× 20 1.48 (-3) 5.89 (-3) 1.49 (-1)
40× 40 5.21 (-4) 2.35 (-3) 8.26 (-2)
80× 80 1.81 (-4) 9.45 (-4) 4.57 (-2)

S.Cyl. 20× 20 2.44 (-2) 9.70 (-2) 8.08 (-1)
40× 40 1.38 (-2) 6.71 (-2) 9.07 (-1)
80× 80 8.50 (-3) 5.28 (-2) 9.52 (-1)

resolutions the method is attaining third order convergence,
as expected from the analysis in section 3. The filter
degrades the errors slightly over the unfiltered scheme, but
still leads to convergence at roughly third-order.

4.4. 2D divergent flow

A new 2D divergent flow test has been formulated to
demonstrate that this method can be used even for divergent
flow fields. The basic flow field is closely modeled after
the divergent flow test of (Nair and Lauritzen 2010), except
modified for Cartesian geometry. It consists of a divergent
component overlaid on top of a steady flow in the positive x
direction,

u(x′, y′, t) = − sin2

(
x′

2

)
sin y′ cos2 y′ cos

(
πt

T

)
+

1

T
,

(56)

v(x′, y′, t) =
1

2
sinx′ cos3 y′ cos

(
πt

T

)
, (57)

where

x′ = 2π

(
x− t

T

)
, y′ = π

(
y − 1

2

)
, (58)

where T = 1 is the period of the flow. Since the divergent
component of the flow reverses exactly over one period, the

final state of the tracer field should match exactly with the
initial state. The domain is the unit square D = [0, 1]2 with
periodic boundary conditions in all directions. The tracer
field consists of two C3 cosine bells, centered at (x1, y1) =
(0.25, 0) and (x2, y2) = (0.75, 0) with radius R = 0.35,

ψi(x, y) =


1

4

[
1 + cos

(πri
R

)]2
if ri < R,

0 otherwise,
(59)

where
ri =

√
(x− xi)2 + (y − yi)2, (60)

so that the total tracer density is given by ψ(x, y) =
ψ1(x, y) + ψ2(x, y). Since the flow field is divergent,
it is no longer appropriate to approximate the density
field as constant in space and time. To simulate coupling
with a dynamically evolved density field, a fourth-order
spectral-element method with Runge-Kutta time integrator
is used to solve the continuity equation with an initially
constant density field. The coupling procedure is described
in section 2. The results of this test are depicted in
Figure 12 for a 40× 40 mesh (120 nodes total in each
coordinate direction) with ∆t = 0.006. The tracer field
reaches maximum deformation at time t = T/2, where
the divergence of the flow field has enhanced ψ to
approximately 2.38. To verify that convergence holds for
the divergent flow field, error norms have been plotted in
Figure 13 for meshes from 20× 20 elements (60 nodes
total in each coordinate direction) to 160× 160 elements
(480 nodes in each coordinate direction). The method is
super-convergent for low resolutions at around fourth-order
accuracy, but eventually exhibits asymptotic third-order
convergence in all norms.

5. Conclusions

This paper has presented a Flux-Form Semi-Lagrangian
Spectral Element (FF-SLSE) method for conservative tracer
transport on the nodal spectral element grid. In particular,
this scheme differs from other semi-Lagrangian finite-
element methods by ensuring exact conservation in a
nodal framework without any imposition on the character
of the velocity field. This approach addresses many of
the known issues with tracer transport using the standard
spectral element method; in particular, the small time step
restriction is loosened with fewer parallel communications.
The proposed approach computes time-integrated fluxes at
GLL nodes to obtain pointwise updates, and so does not
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Figure 10. Results from the deformational flow test with (a,b,c) the filtered scheme and (d,e,f) the unfiltered scheme on a 40× 40 mesh (120 total nodes
in each coordinate direction) with ∆t = 0.01 (ν = 1.2). Results are shown at (a,d) the initial time t = 0, (b,e) maximum deformation t = T/2 and
(c,f) the final time t = T . The zero line is depicted in grey.

require potentially complicated area integration. Since the method is formulated in flux-form, the spectral element
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Figure 11. Log10-plot of the error norms from the deformational flow test with (a) the filtered scheme and (b) the unfiltered scheme (the values a along
the y-axis denote 10a). Mesh resolution is varied with a constant Courant number 1.20, corresponding to ∆t = 0.01 at 40× 40 resolution. The thick
grey line shows third-order convergence.
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Figure 12. Results from the divergent flow test at time (a) t = 0, (b) t = T/4, (c) t = T/2, (d) t = T showing tracer density ψ(x, y) on a 40× 40
cubic spectral element mesh with ∆t = 0.006. The contour interval is 0.1 for plots (a) and (d) and 0.2 for plots (b) and (c).

method also guarantees exact conservation of tracer mass.
Time-integrated fluxes are computed using a combination of
backwards trajectories and Simpson’s rule, so as to ensure at
least fourth-order accuracy with the base scheme. Although
the base scheme exhibits mild instability, the instability can
be controlled with the application of ∇4 hyperdiffusion

with a coefficient which scales at O(∆x3). Consequently
the scheme with cubic basis functions exhibits third-order
convergence on sufficiently smooth problems, matching the
approach currently used in the spectral element dynamical
core. A positivity filter is also presented which is effective
at removing spurious negative values using a combination
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Figure 13. Log10-plot of the error norms from the divergent flow test after one period with variable grid resolution and filtering (the values a along the
y-axis denote 10a). Mesh resolution is varied with a constant Courant number 1.50, corresponding to ∆t = 0.006 at 40× 40 resolution.

of flux-corrected transport and local optimized filtering.
The positivity filter can be extended to impose strict
monotonicity as well, although this approach was not
pursued here. By using the native spectral element grid,
issues which may arise due to remapping between the
dynamics and tracer grid are avoided and optimal parallel
scalability of the underlying method is retained.

Several numerical tests have been performed to verify
stability, accuracy, conservation and robustness of the
method. These tests include transport, solid body rotation,
deformational flow and divergent flow in 2D and are
useful for verifying the theoretical properties of the method
under a variety of flow situations. As expected, third-order
convergence of the method is observed when hyperdiffusion
is applied and a sufficiently smooth tracer field is used. The
positivity filter has also been verified to remove spurious
negative values without greatly affecting the quality of the
solution.

This paper argues that this scheme is effective for
an accurate, efficient treatment of atmospheric transport
problems. In the future it is expected that this scheme will
be incorporated into the CAM spectral element dynamical
core as an alternative method for tracer transport.
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A. Understanding the 1D semi-Lagrangian instability

This appendix addresses the observed instability in the FF-
SLSE method in the 1D case, which imposes the need
for an explicit hyperdiffusion operator to ensure stability.
Specifically, the instability can be traced back to two
approximations which, in the variational formulation, have
been made in evaluating the space-time integral on the right-
hand-side of (5). Both approximations are associated with
the use of a quadrature rule to integrate the 2D space-
time flux (see Figure 14∗), which is discontinuous in its
first derivative along the characteristic that passes through
the element boundary (the corner characteristic). The first

approximation, here denoted Approximation A, uses a
single quadrature rule in space (here we have used GLL
quadrature) to integrate over the time-averaged fluxes F

n
in

each element j. In the differential formulation (section 2.4)
this approximation is equivalent to expanding the flux using
the GLL basis functions in (24). The second approximation,
here denoted Approximation B, is associated with the
quadrature in time and only appears when the Courant
number is sufficiently large for the characteristic to bisect
the quadrature of F (performed via Simpsons’ rule) which
is used to compute F

n
at each GLL node.

To remove the instability associated with Approximation
A, the spatial quadrature can be separated into two regions
aligned with the corner characteristic (see Figure 14a).
Using this approach the amplification factor is recalculated
and plotted in Figure 15a. The modification has an
immediate and dramatic effect on the amplification factor,
leading to a drop from a maximum of 1.8 for ν ≤ 2.5 (see
Figure 4) to 1.001 and a removal of the mild instability
around ν = 0.3.

To remove the instability associated with Approximation
B, all fluxes which are bisected by the corner characteristic
are evaluated using separate quadrature rules (see Figure
14b). Using this approach the amplification factor is
recalculated and plotted in Figure 15b. This modification
reduces the amplification factor to approximately 1.1,
but retains a tri-modal instability structure. However,
this approach is also stable for all ν ∈ [0, 3] when
hyperdiffusion is applied.

Finally, to remove both approximations the integration
procedure is formulated to separate both spatial and
temporal integration (see Figure 14c). The amplification
factor is again recalculated and plotted in Figure 15c,
leading to a scheme which is stable for all ν ∈ [0, 3]
(and hence unconditionally stable in 1D) even without the
application of hyperdiffusion. Since the flux integral is
evaluated exactly, this unapproximated scheme is equivalent
to a flux-form formulation of a remapping scheme.

In 2D, these approximations are more difficult and costly
to practically overcome. In this case Approximation B is
likely the easiest to remove, by detecting when backwards
traced characteristics intersect with the element boundary.
However, a modification to remove Approximation A
would effectively require a search algorithm to detect
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Figure 14. Four approaches for evaluating the flux integral in (5) over a single element j. The diagonal line denotes a characteristic which passes through
the left-most point of element j at the initial time and so represents a discontinuity in the first derivative of the tracer density ψ. Consequently, the shaded
region uses flux information from the element immediately to the left (element j − 1), whereas the white region derives flux information from element
j. The open circles denote points where the flux is evaluated as part of the integration procedure.
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Figure 15. Maximum normalized amplification factor A(k) over all resolved wave modes k∆x ∈ [0, π] for various modified versions of the FF-SLSE
method over cubic basis functions with values of the Courant number ν ∈ [0, 3]. The left plot shows the basic scheme with no added hyperdiffusion and
the right plots shows the scheme with added hyperdiffusion (α = 0.00034∆x3). The dotted line indicates the maximum stable Courant number for the
scheme with hyperdiffusion. Note the extent of the y-axis is different for each case.

overlapped areas which would increase the complexity of
the underlying method.
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