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Idealised studies of key dynamical features of the atmosphere provide insight
into the behaviour of atmospheric models. A very important, well understood,
aspect of mid-latitude dynamics is baroclinic instability. This can be idealised
by perturbing a vertically-sheared basic state in geostrophic and hydrostatic
balance. An unstable wave mode then results with exponential growth (due to
linear dynamics) in time until, eventually, nonlinear effects dominate and the
wave breaks.
A new, unified, idealised baroclinic instability test case is proposed. This
improves on previous ones in three ways. First, it is suitable for both deep-
and shallow-atmosphere models. Second, the constant surface pressure and
zero surface geopotential of the basic state makes it particularly well-suited
for models employing a pressure- or height-based vertical coordinate. Third,
the wave triggering mechanism selectively perturbs the rotational component of
the flow: this, together with a vertical tapering, significantly improves dynamic
balance.
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1. Introduction

Exact solutions of the governing equations of the
atmosphere are very useful for the development and testing
of numerical models (Williamson et al. 1992; Läuter et al.
2005; Staniforth and White 2007, 2008a,b; White and
Staniforth 2008, 2009). Most known exact solutions are
steady, with a dearth of time-dependent solutions to test
the important temporal behaviour of numerical models.
Exceptionally, the Läuter et al. (2005) and Staniforth and
White (2008b) solutions are unsteady. However they are
based on the transformation of steady solutions in an inertial
frame of reference to a rotating frame of reference, leading
to periodic solutions of intrinsic diurnal frequency. None
of these exact solutions represent a very important property
of the governing equations, viz. baroclinic development. To

this end, and inspired by the work of Hoskins and Simmons
(1975) and Simmons and Hoskins (1975), Jablonowski and
Williamson (2006a) (hereafter referred to as JW06) and
Jablonowski and Williamson (2006b) proposed a baroclinic
instability test case for atmospheric dynamical cores.

Their proposal consists of two parts. First, a model
is initialised with a balanced steady-state solution of
the hydrostatic primitive equations that is stable to
axisymmetric disturbances about the Earth’s rotation axis.
This tests the extent to which a model can maintain this
exact solution in the presence of numerical truncation
and round-off errors. Second, a small-amplitude, relatively
large-scale, but localised, Gaussian hill perturbation of the
zonal wind field in northern midlatitudes is superimposed
on this atmospheric state at initial time. This then triggers
the evolution of a baroclinic wave over the course of several
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days. Since, for this part of the test, no analytic solution
exists, an accurate approximation to the exact solution is
obtained using an ensemble of high resolution reference
numerical solutions. The JW06 test case has proven
to be very useful. For example, it enabled Williamson
et al. (2009) to expose and remedy two dynamical core
formulation flaws.

In a related development, Lauritzen et al. (2010) suggest
rotating the computational grid of the JW06 test case so
that the balanced flow is no longer aligned with a latitude-
longitude (lat-lon) grid, thereby eliminating a favourable
bias of the JW06 test case towards models based on lat-
lon grids. Lauritzen et al. (2010) then used this modified
test case to examine the performance of six dynamical
cores that employ different computational grids (regular lat-
lon, cubed-sphere, icosahedral hexagonal/triangular) and
different numerical schemes. The results of all models
agreed, to within an acceptable tolerance, with one another
at sufficiently high resolution, confirming the value of an
ensemble of high-resolution integrations as a proxy for
the exact solution. Of further interest is the degree of
“grid imprinting” observed as a function of model grid
and associated discretisation, i.e. the extent to which the
geometry of an underlying computational grid affects the
structure of the numerical solution and the geographic
distribution of errors. (Errors are typically largest, and
systematic, in the vicinity of any special points of the
underlying geometry: e.g. around the poles of a lat-lon grid,
and the vertices of sphered cubes and icosahedra.)

The basic state of the JW06 test problem is constructed to
be an exact steady axially-symmetric state of the hydrostatic
primitive equations. Because the vertical acceleration,
Dw/Dt, is identically zero for this basic state, it is
also an exact steady state of the non-hydrostatic primitive
equations. ∗

Although JW06’s basic state is an exact steady state of
the shallow-atmosphere equations, it is not an exact steady
state of the deep-atmosphere equations. However, with the
advent of ever-more-powerful computers, numerical atmos-
pheric models based on the deep-atmosphere equations have
become operationally feasible (Cullen 1993; Davies et al.
2005), and the development of deep-atmosphere dynamical
cores is currently an active area of research (Staniforth and
Wood 2008; Satoh et al. 2008; Walko and Avissar 2008;
Ullrich and Jablonowski 2012a; Wood et al. 2013). There is
therefore growing interest in devising suitable test problems
to aid in the validation of deep-atmosphere dynamical
cores. The question thus arises as to how to construct an
analogous baroclinic-wave test case to the JW06 one, that
is appropriate not only for shallow-atmosphere dynamical
cores, but also for deep-atmosphere ones. The goal of this
work is to provide an answer to this question. Although
some sample, illustrative results from model integrations
of several models are presented herein, an in-depth inter-
comparsion of model performance for the new test case,
similar to that given in JW06 for their more-limited test
case, is beyond the scope of the present study.

It is highly desirable that basic-state fields, and initial
perturbations, be expressed in an analytical manner. The
very essence of the problem is thus to devise an appropriate

∗The reader unfamiliar with the definition of the various equation sets
discussed herein, and the key differences between them, is referred to the
in-depth discussion of White et al. (2005), and to the summary discussion
given in section 2 herein.

exact steady axially-symmetric basic-state solution of the
deep-atmosphere equations that, when suitably perturbed,
captures the essential features of a baroclinic wave, and to
do so in such a way that it straightforwardly leads to an
analogous shallow-atmosphere basic state which behaves
similarly when similarly perturbed. This is not at all as easy
as one might expect. An obvious approach is to follow the
JW06 derivation for a shallow atmosphere, but to instead
use the deep-atmosphere equations. This was attempted,
but proved fruitless. The JW06 derivation is intrinsically
based on the use of an isobaric coordinate system, and
it leads to r (spherical radius) varying along isobaric
surfaces. Unfortunately, many terms in the deep-atmosphere
equations have an explicit functional dependence on r that
is missing in the shallow-atmosphere equations: application
of the shallow-atmosphere assumption results in r being
systematically replaced by a (Earth’s radius), wherever it
appears as a coefficient. This, coupled with the existence
of additional (Coriolis and metric) terms, and consequent
different (and more complex) horizontal and vertical
balances, renders the problem analytically intractable in
isobaric coordinates. A key element of the approach taken
herein is to therefore abandon the use of the isobaric
coordinate system, and to instead adopt spherical radius
(and/or its equivalent, geometric height, defined by z ≡
r − a) as vertical coordinate. It is then possible to exploit
the exact shallow- and deep-atmosphere class of steady
axisymmetric solutions derived in Staniforth and White
(2011) and Staniforth and Wood (2013) (hereafter referred
to as SW11 and SW12, respectively).

JW06 use a mean temperature profile that is constructed
by adding a term, above the tropopause, to a background
profile: this term then leads to the representation of an
idealised stratosphere. However, consistent with synoptic
baroclinic development being a tropospheric phenomenon,
it has been found by experimentation (Chris Smith and
John Thuburn - private communication) that omitting this
term has virtually no impact on the development of the
baroclinic wave. Thus no attempt is made to include a
realistic representation of the stratosphere in the basic state
for the test problem proposed herein.

The organisation of the paper is as follows. The non-
hydrostatic deep-atmosphere equations are given in section
2, together with a discussion of three related equation sets.
The deep-atmosphere basic state for the test problem is
defined in section 3, the analogous shallow-atmosphere one
in section 4, and the baroclinic wave-triggering mechanism
in section 5. Details of the configuration of the basic state
for the test problem, including parameter values, are given
in section 6. Illustrative results using various models may
be found in section 7, and conclusions are drawn in section
8.

2. Governing equations

In standard notation, the governing equations for a dry deep
spherical atmosphere are (White et al. 2005; White and
Staniforth 2008):

Du

Dt
+
uw

r
− uv tanφ

r
+ 2Ωw cosφ− 2Ωv sinφ

+
RT

r cosφ

∂q

∂λ
= 0, (1)

Dv

Dt
+
vw

r
+
u2 tanφ

r
+ 2Ωu sinφ+

RT

r

∂q

∂φ
= 0, (2)
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Dw

Dt
−
(
u2 + v2

)
r

− 2Ωu cosφ+ g
(a
r

)2
+RT

∂q

∂r
= 0,

(3)
Dρ

Dt
+ ρD = 0,

Dθ

Dt
= 0, p = ρRT. (4)

Here

q ≡ ln

(
p

p00

)
, θ ≡

(
p

p00

)−κ

T, (5)

u ≡ r cosφ
Dλ

Dt
, v ≡ rDφ

Dt
, w ≡ Dr

Dt
, (6)

D ≡ 1

r cosφ

∂u
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+

1

r cosφ

∂

∂φ
(v cosφ) +

1

r2
∂

∂r

(
r2w

)
,

(7)
D

Dt
≡ ∂

∂t
+

u

r cosφ

∂

∂λ
+
v

r

∂

∂φ
+ w

∂

∂r
, (8)

p00 being a constant reference pressure.
Equations (1)-(3) are, respectively, the longitudinal

(λ), latitudinal (φ) and radial (r) components of the
momentum equation. Eqs. (4) are the continuity equation,
the thermodynamic equation, and the ideal gas law. The
gravity term in the radial momentum equation (3) varies
as r−2 so as to preserve basic kinematic and geometric
properties under the spherical geopotential approximation
(White et al. 2005); g is a representative mean value of the
acceleration due to gravity at the Earth’s surface, and a is
the Earth’s mean radius.

A very brief overview is now given regarding the
definition of the four closely-related equation sets discussed
in depth in White et al. (2005), and the nomenclature used to
refer to them herein. The most general of these are (1)-(8),
and they are termed the non-hydrostatic deep-atmosphere
equations. Dropping the vertical acceleration term Dw/Dt
from the vertical momentum equation (3) gives the quasi-
hydrostatic deep-atmosphere equations. (Quasi-hydrostatic,
as opposed to hydrostatic, is used to reflect the fact
that when Dw/Dt ≡ 0, the force balance in the deep-
atmosphere vertical momentum equation is not exactly
hydrostatic: this is due to the presence of the metric terms
−
(
u2 + v2

)
/r and of the Coriolis term −2Ωu cosφ, and

also to the presence of the vertically-varying factor (a/r)
2

in the term for the acceleration due to gravity, all of which
are neglected when making the hydrostatic approximation.)

There are two analogous shallow-atmosphere equation
sets. For both of these, the shallow-atmosphere assumption
is made, whereby

• r is replaced everywhere in (1)-(8) by a, except where
it appears as ∂/∂r, on the basis that the depth of
the Earth’s atmosphere is two orders of magnitude
smaller than a.

Also the so-called “traditional” assumptions are made
(these are needed to preserve the underlying conservation
properties on which the governing equations are based, see
White et al. (2005)) whereby

• the 2Ω cosφ Coriolis terms are dropped from (1) and
(3); and

• the metric terms uw/r, vw/r and−
(
u2 + v2

)
/r are

dropped from (1), (2) and (3), respectively.

The only difference between the two shallow-atmosphere
equation sets is the absence or presence of the vertical

acceleration term Dw/Dt in the resulting shallow-
atmosphere vertical momentum equation

Dw

Dt
+ g +RT

∂q

∂r
= 0. (9)

In the absence of Dw/Dt, (9) reduces to hydrostatic
balance and, together with the other modified equations,
the well-known (shallow-atmosphere) hydrostatic primi-
tive equations result. These are the shallow-atmosphere
analogue of the quasi-hydrostatic deep-atmosphere equa-
tions. Equation (9) (with Dw/Dt retained), together with
the other modified equations, results in the (shallow-
atmosphere) nonhydrostatic primitive equations, which are
the shallow-atmosphere analogue of the the non-hydrostatic
deep-atmosphere equations.

It is well known that synoptic-scale, mid-latitude,
tropospheric flows, such as baroclinic instability, are
both qualitatively and quantitatively well represented
by any of the above-described equation sets, the most
approximated of which is the hydrostatic primitive equation
set. This is because, for these flows, the shallow-atmosphere
and hydrostatic approximations are very accurate, and
dropped terms are insignificant. (If this were not so,
then operational medium-range weather forecast models
based on the hydrostatic primitive equations, i.e. most
current operational models, would be very poor, which is
not the case.) Thus, for the baroclinic-wave test problem
described herein (with parameters set at Earth values),
one expects that integrations performed with any of these
equations sets should give solutions that are qualitatively
and quantitatively very close to one another. For the
small-Earth experiments discussed in Section 7.3, this is
no longer the situation: the reduction of Earth’s (true)
radius by a factor of twenty is such that the shallow-
atmosphere assumption no longer holds, and deep- and
shallow-atmosphere results can then be expected to differ
significantly from one another.

3. Deep-atmosphere basic state

3.1. A class of exact solutions

A broad class of closed-form non-separable exact zonal
solutions to the nonlinear equations (1)-(8) is developed
in SW11 and SW12. These solutions are exploited herein
to define the basic state for the proposed baroclinic-wave
test problem. To obtain an exact nonlinear midlatitude
baroclinic jet solution to (1)-(8), SW11 sought axially-
symmetric solutions of the form

u = u (φ, r) , v = w = 0,

ρ = ρ (φ, r) , T = T (φ, r) , p = p (φ, r) (10)

This leads to a set of trivially satisfied equations plus the
two, non-trivial, constraint equations (cf. (2) and (3) of
SW11)

u2

r
tanφ+ 2Ωu sinφ+

RT

r

∂ ln p

∂φ
= 0, (11)

− u2

r
− 2Ωu cosφ+ g

a2

r2
+RT

∂ ln p

∂r
= 0. (12)
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SW11 assumed (their equation (8)) a temperature field of
a form equivalent to

T (φ, r) =
(a
r

)2{
τ̃1 (r)− τ̃2 (r)

[( r
a

cosφ
)k

−
(

k

k + 2

)( r
a

cosφ
)k+2

]}−1

, (13)

where τ̃1 (r) and τ̃2 (r) are fairly arbitrary functions, con-
strained by atmospheric realism and tractable integration,
and k ≥ 2 is assumed integer. (The precise connection
between (13) above, and SW11’s equation (8), is that
τ̃1 (r) ≡ (r/a) τ1 (r) and τ̃2 (r) ≡ (r/a) τ2 (r). Rewriting
the functional form of T in this way then simplifies the par-
allel treatment of the deep- and shallow-atmosphere cases.)
They then derived the balancing flow and accompanying
pressure field: cf. their equations (12), (13) and (24). The
SW11 solutions are analytic, provided that the functional
forms of τ̃1 (r) and τ̃2 (r) are chosen such that the integrals∫ r
a
τ̃1(r

′
)dr

′
and

∫ r
a
τ̃2(r

′
)dr

′
may be obtained in closed

form. The reciprocal functional form of T (φ, r) in (13)
was adopted in SW11 because T appears as 1/T in the
compatibility equation (their equation (4)), which is the
basis for their derivation of a class of exact solutions. The
factor (a/r)

2, which would otherwise be absent, is due to
the inclusion in (3) and (12) of vertical variation of gravity.

3.2. The basic state

Let

τ̃1 (r) = A
Γ

T0
exp

[
Γ

T0
(r − a)

]
(14)

+ B

[
1− 2

(
r − a
bH

)2
]

exp

[
−
(
r − a
bH

)2
]
,

τ̃2 (r) = C

[
1− 2

(
r − a
bH

)2
]

exp

[
−
(
r − a
bH

)2
]
,

(15)

where T0 is a representative constant value of temperature,
Γ is an assumed lapse rate, H ≡ RT0/g is the scale height
of the atmosphere, b is a half-width parameter, andA,B and
C are arbitrary constant parameters.

These functional forms for τ̃1 (r) and τ̃2 (r) are inspired
by those used in Staniforth (2012) for exact solutions in z
coordinates on a β − γ plane, which were in turn inspired
by those used in Ullrich and Jablonowski (2012b) for their
channel flow test problems in isobaric coordinates on a
β plane. They also correspond to the illustrative example
solution examined in section 3.1 of SW12 in the context of
a broader class of exact solutions of the Euler equations.

As shown in SW12, A, B and C can be equivalently
rewritten in terms of more-meaningful, physical, quantities.
Consider the special case B = C = 0, i.e. when (from
(13)-(15)) the temperature only varies vertically, but not
horizontally. Evaluating (13) at r = a, with B = C = 0 in
(14)-(15), then gives T (r = a) = T0/ (AΓ). It is therefore
natural to set

A =
1

Γ
, (16)

and T0 is then to be interpreted as being a representative
surface value of temperature, in the absence of horizontally-
varying perturbations. The physical interpretation of Γ now

becomes apparent by: setting A = 1/Γ and B = C = 0
in (14)-(15); using these in (13); and differentiating the
resulting equation with respect to r, followed by evaluation
at r = a. This then yields (dT/dr)|r=a = −Γ. Thus Γ can
be interpreted as being a representative value of the lapse
rate of temperature at r = a, as in JW06.

Evaluating (13) at r = a, and then at the equator and
at the two poles, i.e. at φ = 0,±π/2, allows the two
arbitrary parameters B and C to be expressed in terms
of the two more-meaningful, physical, quantities TE0 ≡
T (φ = 0, r = a) and TP0 ≡ T (φ = ±π/2, r = a), where
TE0 and TP0 are the surface values of temperature at the
equator and at the poles. Thus

B =
T0 − TP0
T0TP0

, C =

(
k + 2

2

)(
TE0 − TP0
TE0 T

P
0

)
. (17)

Although T0 can be arbitrarily set to any representative
value, for simplicity, it is set to

T0 =
1

2

(
TE0 + TP0

)
, (18)

as in SW12. Using this value in (17) then gives B and C in
terms of the surface temperature values TE0 and TP0 as

B =

(
TE0 − TP0

)(
TE0 + TP0

)
TP0

, C =

(
k + 2

2

)(
TE0 − TP0
TE0 T

P
0

)
,

(19)
cf. (46) of SW12.

The arbitrary integration function F (r cosφ) in (12) of
SW11 is chosen to be identically zero. This is not only
simple, it has two further useful properties. First, it leads
to u being identically zero at the surface r = a. Second,
it makes the isobaric surface p = p0 coincide with the
surface r = a. This is very convenient for setting up the test
problem developed herein, since the lower surface is then
a coordinate surface for both height-based and pressure-
based coordinates (this is not so for the JW06 basic state).
In pressure-based coordinates this choice is equivalent to
setting the surface geopotential to be 0 m2 s−2 globally.

The proposed deep-atmosphere basic state is summarised
in appendix A.

4. The analogous shallow-atmosphere basic state

As shown in SW11 and SW12, it is straightforward
to develop a shallow-atmosphere analogue of the deep-
atmosphere basic-state solution described above.

The shallow-atmosphere analogue of the deep-
atmosphere functional form (13) for T (φ, r) is obtained
by simply setting the factor (a/r)

2 equal to unity therein.
This is because, for consistency reasons, the gravitational
acceleration in a shallow-atmosphere model is constant
(White et al. 2005; White and Wood 2012), and this factor
was only introduced in (13) to accommodate its vertical
variation in a deep-atmosphere model. Thus (cf. (31) of
SW11)

T (φ, r) =

{
τ̃1 (r)− τ̃2 (r)

[
cosk φ (20)

−
(

k

k + 2

)
cosk+2 φ

]}−1

,
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where τ̃1 (r) and τ̃2 (r) are defined by (14)-(15), and A, B
and C by (16) and (19).

SW11 show that the balancing flow is then given by
their equations (32), (33) and (41). For simplicity, and
consistency with the analogous choice made above for the
deep-atmosphere case, the arbitrary integration function
F (a cosφ) in (32) of SW11 is set identically zero. The
consequences of this are again that it leads to u being
identically zero at the surface r = a, and to also making
p = p0 there.

Note that there is no approximation involved here. Just
as the assumed functional form (13) for T (φ, r) leads,
by rigorous mathematical analysis, to exact solutions of
the nonlinear deep-atmosphere equations, so the assumed
functional form (20) for T (φ, r) leads, by rigorous
mathematical analysis, to exact solutions of the nonlinear
shallow-atmosphere equations. Because the deep- and
shallow-atmosphere equation sets are subtly different, so
the appropriate assumed functional forms (13) and (20)
for T (φ, r) to tractably obtain exact solutions are also
subtly different. That said, the factor of (a/r)

2 in (13), that
multiplies τ̃1 (r) and τ̃2 (r), equals unity to within one third
of a percent for z ≡ r − a < 10 km, i.e. throughout the
depth of the troposphere. The assumed deep- and shallow-
atmosphere functional forms (13) and (20) for T (φ, r) are
therefore quantitatively very close indeed to one another.

The proposed shallow-atmosphere configuration is
summarised in appendix B.

5. Baroclinic wave triggering mechanism

To trigger a baroclinic instability, JW06 add a perturbation
to the zonal wind field u that is of Gaussian form in the
horizontal, and uniform in the vertical. This is improved
upon herein by instead perturbing both the zonal and
meridional wind fields using a stream function

ψ
′

= −8d0Vp

3
√

3π
T (z) cos4

(
πd

2d0

)
, 0 ≤ d ≤ d0, (21)

where

T (z) ≡ 1− 3

(
z

zt

)2

+ 2

(
z

zt

)3

, 0 ≤ z ≤ zt, (22)

is a vertical taper function over depth zt with zero derivative
at z = 0 and z = zt. Here

d = a cos−1 [sinφc sinφ+ cosφc cosφ cos (λ− λc)] ,
(23)

is great circle distance away from the geographic location
(λc, φc), d0 defines the boundary of the horizontal domain
over which the perturbation is applied, and Vp is the
maximum value of the perturbed wind speed, which occurs
at z = 0 on d = d0/3. The perturbed zonal and meridional
wind fields then follow from

u
′
≡ −1

a

∂ψ
′

∂φ
, v

′
≡ 1

a cosφ

∂ψ
′

∂λ
, (24)

in combination with (21), and lead to the explicit
expressions

u
′

= − 16Vp

3
√

3
T (z) cos3

(
πd

2d0

)
sin

(
πd

2d0

)
(25)

× [− sinφc cosφ+ cosφc sinφ cos (λ− λc)]
sin (d/a)

,

v
′

=
16Vp

3
√

3
T (z) cos3

(
πd

2d0

)
sin

(
πd

2d0

)
(26)

× cosφc sin (λ− λc)
sin (d/a)

.

When d = 0 or d = aπ these expressions are singular and
so require the additional specification u

′
= v

′
= 0 at these

points (this is consistent with taking the appropriate limits
in (25) and (26)).

The above specification improves on the JW06 perturba-
tion in two ways. First, the use of a vertical taper function
T(z) avoids unnecessarily creating gravitational and acous-
tic oscillations in the upper atmosphere. Second, the use of
a stream function selectively perturbs the vorticity (which
is what drives the baroclinic instability mechanism) whilst
significantly reducing the creation of undesirable gravita-
tional and acoustic oscillations in the lower atmosphere due
to significantly-reduced divergence at early time. Although
the flow at the initial time is non-divergent, the divergence
tendency is not: so although there is still some gravitational
and acoustic activity, it is much reduced.

6. Configuring the basic state

6.1. Parameter settings

Values used for the various parameters are displayed in
Table 1. The first six parameters (R, Ω, a, g, γ and p0),
i.e. those that are common to both the present and to the
JW06 studies, are set to the values used in JW06. The jet-
configuration parameters b, k, TP0 and TE0 are set to the
values used in SW12. The perturbed wind amplitude Vp
and d0 are chosen analogous to JW06. The parameter zt is
chosen to drive the perturbation to zero at 15 km altitude.
The longitudinal centre of the perturbation λc is chosen
to be slightly eastwards of 0◦ to facilitate visualisation
and constrain the initial development to λ > 0. Finally,
the latitudinal centre of the perturbation φc is chosen to
be slightly southwards of the centre of the jet to avoid
bifurcating the baroclinic instability, as would occur if the
perturbation were placed directly over the jet.

Regarding the value taken for k, JW06’s midlatitude
jets vary as sin2 (2φ) along isobaric surfaces, so that the
jet maxima are located at φ = ±π/4 along any isobaric
surface. For u� 2Ωa, i.e. for small Rossby number, and
for r − a� a, (32) can be approximated as

u (φ, r) ≈ gk

2Ωa

(
cosk−1 φ− cosk+1 φ

)
×

r∫
a

τ̃2(r
′
)dr

′
T (φ, r) . (27)

Setting k = 3 then leads to u ∼ sin2 (2φ) along constant-
height surfaces, provided that the modulating function
T (φ, r) does not vary too strongly along these surfaces.
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This is in broad agreement with JW06, under the
assumption that isobaric and constant-height surfaces do
not differ from one another too significantly. Thus k ≡ 3
is an appropriate choice for configuring a baroclinic-wave
test problem analogous to the JW06 one.

6.2. Characteristics of the basic state

The initial temperature, zonal wind, potential temperature
and Brunt-Väisälä frequency fields for a deep atmosphere,
corresponding to the parameter values of Table 1, are
displayed in Fig. 1, and some vertical profiles of the
temperature, zonal-wind and pressure fields in Fig. 2.

The depicted fields approximate the primary dynamic
characteristics of Earth’s atmosphere, with a single westerly
jet of magnitude ∼ 28 m s−1 in each hemisphere and an
equatorial belt with weak static stability. As mentioned
previously, unlike the baroclinic instability test of JW06,
this formulation does not include a vertical temperature
inversion which might be associated with an idealised
tropopause.

Because r/a varies so little over the lowest 30 kms of
the atmosphere, the corresponding fields and profiles for a
shallow atmosphere are almost identical, as evidenced by
the difference fields of Fig. 3. It is seen that the impact of
r/a being replaced by unity leads to differences that are of
very large horizontal and vertical scale, and of very small
amplitude.

6.3. Numerical determination of r from given values of
pressure and latitude

For a model with a vertical coordinate based on spherical
radius/ geometric height, it is straightforward to evaluate
the dependent variables on a coordinate surface. This is
because the deep- and shallow-atmosphere basic states
are most naturally expressed in terms of the spherical
polar coordinate r. For a model based on pressure, a way
is needed of accurately determining the value of r that
corresponds to given values of pressure p and latitude φ.
Newton iteration satisfies this requirement and, as applied
to the present work, the associated procedure is given in
appendix C for both deep and shallow atmospheres.

6.4. Initialisation routine

To aid in the implementation and intercomparison of results
using different atmospheric models, a Fortran initialisation
routine has been provided as an online adjunct to this paper.
The initialisation routine umjsbcinst.f90 includes
comments to explain how it can be used for models that
employ either a height-based or a pressure-based vertical
coordinate.

7. Illustrative results

7.1. Evolution of the baroclinic instability

For a discussion of the theoretical properties governing
evolution of the baroclinic instability in the context of quasi-
geostrophic theory, see e.g. Holton (1992). An analysis of
a similar basic state for flow in a channel has also been
recently performed by Ullrich et al. (2013).

The initial state described in sections 3 through 6
was implemented in the MCore (Ullrich and Jablonowski

2012a) and ENDGame (Wood et al. 2013) non-hydrostatic
atmospheric dynamical cores and run for a period of 15
days. Specific parameter values used for each simulation
are given in Table 2. MCore was run with a 90× 90 array
of elements on each panel of a cubed sphere (corresponding
to 1◦ resolution along the equator) and a time step of ∆t =
200 s. ENDGame was run with a global resolution of 1◦

on a regular lat-lon grid with a time step of ∆t = 3600 s.
Both models were configured to have 30 vertical levels and
a model top at ztop = 30 km. A non-uniform distribution
of vertical levels was chosen to enhance resolution near the
surface, where the vertical shear is strong. Specifically, the
height of the nth model interface zn (with n = 0, 1, . . . , 30)
is given by

zn = ztop

[
µ(n/30)2 + 1

]1/2 − 1

(µ+ 1)1/2 − 1
, (28)

where µ = 15 is the flattening parameter. Model levels are
spaced half way between model interfaces. Results after
8 and 10 simulation days using a full deep-atmosphere
configuration are shown in Fig. 4 for MCore and Fig. 5
for ENDGame. Shallow-atmosphere simulations were also
run, but the results were visually indistinguishable from the
deep-atmosphere ones and so are not shown.

The two model integrations agree very well until day 8,
when wave-breaking occurs, as evidenced by overturning
in the temperature field. The linear theory governing the
evolution of a baroclinic instability predicts exponential
growth of the most unstable mode and the results are
consistent with this until approximately day 8. After day 8,
non-linear effects become important, and consequently the
behaviour of models for this test can be expected to quickly
diverge thereafter.

A cross-section through the perturbed pressure field
of the baroclinic instability at 50◦N is shown in Fig.
6 for the MCore simulation. The perturbation shows
the characteristic westward shift with height observed
by Ullrich et al. (2013) for baroclinic instability in a
channel. This westward shift with altitude is a characteristic
signature of the most unstable mode of a baroclinic
instability.

7.2. Surface pressure evolution

The initialisation procedure described above was also
implemented in the Community Atmosphere Model
framework (Neale et al. 2010, CAM) using the parameters
specified in Table 2. The CAM version 5 dynamical
core suite includes the spectral-transform semi-Lagrangian
(SLD), the spectral-transform Eulerian (EUL), the Finite-
Volume (FV) and the Spectral Element (SE) dynamical
cores. SLD and EUL were run with the triangular truncation
T106 which corresponds to a Gaussian grid spacing of about
1.125◦. FV and SE were run with 1◦ × 1◦ grid spacings
which are approximate values for the cubed-sphere grid of
the SE model. All CAM models used 30 vertical levels with
a model top around 2 hPa. The distribution of the hybrid
pressure-based vertical levels follows the CAM version 5
default, with enhanced resolution near the surface (Reed
and Jablonowski 2012, their Appendix B). A plot of the
minimum surface pressure over time from this suite of
dynamical cores is given in Fig. 7.

Three of the models follow a similar evolution up to day
8, including CAM-SLD, ENDGame and MCore. However,
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Figure 7. Minimum surface pressure for the suite of dynamical cores given
in Table 2 running the shallow-atmosphere baroclinic instability test for a
15 day simulation.

CAM-FV displays slightly weaker growth relative to the
other models, whereas CAM-EUL and CAM-SE show
stronger development of the wave, especially between days
5 and 8. The overall qualitative features of the wave are
identical in all six models as shown in Fig. 8 for the surface
pressure at day 7. However, these results suggest some
sensitivity of the developing wave to the dynamic character
of each model. Notably, for this suite of models these
results do not seem to be very sensitive to further refinement
in horizontal or vertical resolution. Many of the models
were tested at higher resolution (roughly 0.5◦ equatorial
resolution) with essentially no change in the day 6 observed
minimum pressures, and with only a small intensification
(∼ 2 hPa) in the day 8 observed minimum pressures of
MCore, CAM-FV and CAM-SLD.

7.3. Small-Earth experiments

As noted earlier, the shallow-atmosphere and deep-
atmosphere formulations of the baroclinic instability
test produce visually indistinguishable results over the
integration period for the given choice of parameters. The
small-Earth framework of Wedi and Smolarkiewicz (2009)
is helpful in this situation to exaggerate differences between
shallow- and deep-atmosphere formulations. It thereby
allows a user to specifically test the deep-atmosphere
aspects of the formulation of a deep-atmosphere model.

Following this approach, the MCore model was run
in both shallow-atmosphere and deep-atmosphere modes
with a new small-Earth radius of a∗ ≡ a/X and increased
rotation rate of Ω∗ ≡ ΩX , whereX = 20 is the small-Earth
scaling factor. The baroclinic instability was evolved until
time 43 200 s, which corresponds to 10 days (complete
rotations) on the small Earth, with a time step of ∆t =
10 s. Significant differences in the surface pressure of
the baroclinic instability can be observed, even very early
in the simulation, as shown in Fig. 9. In particular, the
shallow-atmosphere results closely match those of Fig. 4;
this is not unexpected since X = 20 is insufficient to drive
the simulation to scales where non-hydrostatic effects are

relevant for large-scale dynamics. However, the results from
the deep-atmosphere integration show a significantly more
rapid intensification of the wave, which has already driven
the minimum pressure below 900 hPa by day 10.

This experiment was repeated with the ENDGame
dynamical core, run with a time step of ∆t = 180 s,
producing similar results (not shown) to those of Fig. 9.

8. Summary and Conclusion

A proposed formulation of an idealised baroclinic
instability test has been developed herein for deep-
and shallow-atmosphere models. Equivalence between the
deep- and shallow-atmosphere formulations holds in the
limit r/a→ 1. The initial conditions feature a constant
surface pressure, and so are well-suited to both height-
based and pressure-based terrain-following coordinate
models. An improved wave-triggering mechanism has
also been introduced, featuring a vertical tapering of
the perturbation to eliminate undesirable oscillations in
the upper atmosphere. Furthermore, the perturbation is
constructed to selectively target the vorticity field and
thereby reduce the initial contamination of the solution by
rapidly-propagating gravity waves.

This proposed test case has been run in the non-
hydrostatic deep-atmosphere MCore and ENDGame
dynamical cores, as well as the hydrostatic shallow-
atmosphere dynamical cores from the CAM framework.
Furthermore, output after 8 and 10 simulated days has
been provided to facilitate the future development of
this proposal into a fully-fledged test case. Small-planet
tests have also been run with the purpose of exaggerating
differences between the deep- and shallow-atmosphere
formulations.

The test case formulated here is effective at capturing
the essential physical features of a baroclinic wave in
an idealised setting, and presents a formulation which is
a natural improvement to prior approaches to modeling
this phenomenon. This proposed test case is the first in
a proposed series of standard idealised test cases that
bridge the gap between deep- and shallow-atmosphere
models, and hence is of importance for model development
and intercomparison efforts. It further opens up a path
for defining, in a similarly unified manner, an analogous
baroclinic-wave test problem for deep- and shallow-
atmosphere models in β− and β − γ plane geometries as
reviewed by Staniforth (2012).

References

Cullen MJP. 1993. The unified forecast/ climate model. Meteorol. Mag.
122: 81–94.

Davies T, Cullen M, Malcolm A, Mawson M, Staniforth A, White A,
Wood N. 2005. A new dynamical core for the Met Office’s global
and regional modelling of the atmosphere. Q. J. R. Meteorol. Soc.
131: 1759–1782.

Holton JR. 1992. An introduction to dynamic meteorology. Academic
Press, Inc., Third edn. 511 pp.

Hoskins BJ, Simmons AJ. 1975. A multi-layer spectral model and the
semi-implicit method. Q. J. R. Meteorol. Soc. 101: 637–655.

Jablonowski C, Williamson DL. 2006a. A baroclinic instability test case
for atmospheric model dynamical cores. Q. J. R. Meteorol. Soc. 132:
2943–2975.

Jablonowski C, Williamson DL. 2006b. A baroclinic wave test case for
dynamical cores of general circulation models: Model intercompar-
isons. Technical Report TN-469+STR, NCAR. Available online at
http://www.library.ucar.edu/uhtbin/hyperion-image/DR000790.

Copyright c© 2013 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 1–10 (2013)
Prepared using qjrms4.cls



8 P. A. Ullrich, T. Melvin, C. Jablonowski and A. Staniforth

Lauritzen PH, Jablonowski C, Taylor MA, Nair RD. 2010. Rotated
versions of the Jablonowski steady-state and baroclinic wave test
cases: A dynamical core intercomparison. J. Adv. Model. Earth Syst.
2: Art. #15, 34 pp.
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A. The deep-atmosphere basic state

Integrating (14)-(15) gives

r∫
a

τ̃1(r
′
)dr

′
= A

{
exp

[
Γ

T0
(r − a)

]
− 1

}
(29)

+ B (r − a) exp

[
−
(
r − a
bH

)2
]
,

r∫
a

τ̃2(r
′
)dr

′
= C (r − a) exp

[
−
(
r − a
bH

)2
]
. (30)

The basic-state temperature field T (φ, r) is obtained
from (13), i.e. from

T (φ, r) =
(a
r

)2{
τ̃1 (r)− τ̃2 (r)

[( r
a

cosφ
)k

−
(

k

k + 2

)( r
a

cosφ
)k+2

]}−1

, (31)

where τ̃1 (r) and τ̃2 (r) are given by (14)-(15).
Setting F (r cosφ) identically zero in (12) of SW11, the

wind proxy U (φ, r) is given by

U (φ, r) ≡ 2Ωu+
u2

r cosφ

=
g

a
k T (φ, r)

r∫
a

τ̃2(r
′
)dr

′
(32)

×

[(
r cosφ

a

)k−1

−
(
r cosφ

a

)k+1
]
,

where
∫ r
a
τ̃2(r

′
)dr

′
is given by (30).

The wind field u (φ, r) is then obtained from (32) (cf. (13)
of SW11) by solving it as a quadratic, so that

u (φ, r) = −Ωr cosφ+
√

Ω2r2 cos2 φ+ r cosφU (φ, r).
(33)
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Finally, the pressure field is obtained by setting Q (r cosφ)
identically zero in (24) of SW11, so that

p (φ, r) = p0 exp

− gR
r∫
a

τ̃1(r
′
)dr

′

+
g

R

r∫
a

τ̃2(r
′
)dr

′

[(
r cosφ

a

)k

− k

(k + 2)

(
r cosφ

a

)k+2
]}

, (34)

where
∫ r
a
τ̃1(r

′
)dr

′
and

∫ r
a
τ̃2(r

′
)dr

′
are given by (29)-(30).

Note that (31)-(34) correspond to (47), (41), (42) and
(37), respectively, of SW12.

B. The shallow-atmosphere basic state

The basic-state temperature field T (φ, r) is obtained from
(20), i.e. from

T (φ, r) =

{
τ̃1 (r)− τ̃2 (r) (35)

×
[
cosk φ−

(
k

k + 2

)
cosk+2 φ

]}−1

,

where τ̃1 (r) and τ̃2 (r) are given by (14)-(15).
Setting F (a cosφ) identically zero in (32) of SW11, the

wind proxy U (φ, r) is given by

U (φ, r) =
g

a
k

r∫
a

τ̃2(r
′
)dr

′ (
cosk−1 φ− cosk+1 φ

)
T (φ, r) ,

(36)
where

∫ r
a
τ̃2(r

′
)dr

′
is given by (30).

The wind field u (φ, r) is then obtained from (33) of
SW11, so that

u (φ, r) = −Ωa cosφ+
√

Ω2a2 cos2 φ+ a cosφU (φ, r).
(37)

Finally, the pressure field is obtained by setting F (a cosφ)
identically zero in (41) of SW11, so that

p (φ, r) = p0 exp

− gR
r∫
a

τ̃1(r
′
)dr

′

+
g

R

r∫
a

τ̃2(r
′
)dr

′ [
cosk φ

−
(

k

k + 2

)
cosk+2 φ

]}
, (38)

where
∫ r
a
τ̃1(r

′
)dr

′
and

∫ r
a
τ̃2(r

′
)dr

′
are given by (14)-(15).

C. Numerical determination of r from given values of
p and φ

C.1. Deep atmosphere

Assume that specific values are prescribed for pressure
p, and latitude φ, and that one wishes to obtain

the corresponding value of r from (34). This can be
accomplished by defining

F (φ, r) ≡ ln

(
p

p0

)
+
g

R

r∫
a

τ̃1(r
′
)dr

′
− g

R

r∫
a

τ̃2(r
′
)dr

′

×

[(
r cosφ

a

)k
− k

(k + 2)

(
r cosφ

a

)k+2
]
,

(39)

(which corresponds to rewriting (34) in logarithmic form)
and then using Newton iteration to obtain

r(n+1) = r(n) −
F
(
φ, r(n)

)
[∂F (φ, r) /∂r]|r=r(n)

. (40)

Here n denotes the iteration count and the initial estimate
is chosen to be r(0) = a+ 10 km. In (40), F

(
φ, r(n)

)
is

straightforwardly obtained from (39) by explicit evaluation
at r = r(n). Typically 5-10 iterations are needed for
convergence to machine precision.

Differentiating (39) with respect to r gives

∂F (φ, r)

∂r
=
g

R
τ̃1 (r)− g

R
τ̃2 (r)

×

[(
r cosφ

a

)k
− k

(k + 2)

(
r cosφ

a

)k+2
]

− g

R
k

cosφ

a

r∫
a

τ̃2(r
′
)dr

′

×

[(
r cosφ

a

)k−1

−
(
r cosφ

a

)k+1
]
.

(41)

Using (14)-(15) and (30) in this equation yields the explicit
formula

∂F (φ, r)

∂r
= A

g

R

Γ

T0
exp

[
Γ

T0
(r − a)

]
− C

g

R
k

cosφ

a
(r − a) exp

[
−
(
r − a
bH

)2
]

×

[(
r cosφ

a

)k−1

−
(
r cosφ

a

)k+1
]

+
g

R

[
1− 2

(
r − a
bH

)2
]

exp

[
−
(
r − a
bH

)2
]

×

{
B − C

[(
r cosφ

a

)k
− k

(k + 2)

(
r cosφ

a

)k+2
]}

, (42)

which is then evaluated at r = r(n).
Finally, (40) is applied iteratively to obtain the value of r

that corresponds to given values of p and φ.
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C.2. Shallow atmosphere

The analogous procedure for the shallow atmosphere is
identical to that for the deep atmosphere except that F (φ, r)
is redefined as

F (φ, r) ≡ ln

(
p

p0

)
+
g

R

r∫
a

τ̃1(r
′
)dr

′
− g

R

r∫
a

τ̃2(r
′
)dr

′

×
[
cosk φ−

(
k

k + 2

)
cosk+2 φ

]
. (43)

Differentiating (43) with respect to r, and using (14)-(15),
then yields the explicit formula

∂F (φ, r)

∂r
= A

g

R

Γ

T0
exp

[
Γ

T0
(r − a)

]
(44)

+
g

R

[
1− 2

(
r − a
bH

)2
]

exp

[
−
(
r − a
bH

)2
]

×
{
B − C

[
cosk φ−

(
k

k + 2

)
cosk+2 φ

]}
,

instead of (42). Equation (40) is then applied iteratively to
obtain the value of r that corresponds to given values of p
and φ.
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Parameter Value Description

R 287.0 J kg−1 K−1 Gas constant
Ω 7.29212× 10−5 s−1 Earth’s angular velocity
a 6.371229× 106 m Mean radius of Earth
g 9.80616 m s−2 Gravitational acceleration at Earth’s surface
Γ 0.005 K m−1 Lapse rate
p0 105 Pa Surface pressure
b 2 Half-width parameter
k 3 Power used for temperature field
TP0 240 K Surface polar temperature
TE0 310 K Surface equatorial temperature
Vp 1.0 m s−1 Perturbed wind amplitude
zt 1.5× 104 m Top of perturbation domain
d0 a/6 Horizontal radius of perturbation domain
(λc, φc) (π/9, 2π/9) Geographical location of perturbation centre

Table 1. Parameter values.

φ

Z

−80 −60 −40 −20 0 20 40 60 80
0

5

10

15

20

25

30

170

160

180

190

200

230

240

250

270

300

210

220

260

280

290

(a)

φ

Z

−80 −60 −40 −20 0 20 40 60 80
0

5

10

15

20

25

30

25

20

15

10

5

(b)

φ

Z

−80 −60 −40 −20 0 20 40 60 80
0

5

10

15

20

25

30

510
490

450

330

320

310 290

470

430

410

390

370

350

250270

(c)

φ

Z

−80 −60 −40 −20 0 20 40 60 80

5

10

15

20

25

0.008

0.012

0.016

0.020

0.018

0.014

0.010

(d)

Figure 1. Deep-atmosphere basic-state fields for: (a) temperature T (φ, z), contour interval = 10 K; (b) zonal wind u (φ, z), contour interval = 5 ms−1;
(c) potential temperature θ (φ, z), contour interval = 20 K, but with supplementary 320 K contour; and (d) Brunt-Väisälä frequency N (φ, z), contour
interval = 0.002 s−1. Height z is in kms.
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(a) (b) (c)

Figure 2. Deep-atmosphere polar (dotted), midlatitude (solid) and equatorial (dashed) profiles for: (a) temperature T (z) in K; (b) zonal wind u (z) in
m s−1; and (c) pressure p (z) in Pa. Height z is in kms.

φ

Z

−80 −60 −40 −20 0 20 40 60 80
0

5

10

15

20

25

30

−1.5

−1.4

−1.3

−1.2

−1.1

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

(a)

φ

Z

−80 −60 −40 −20 0 20 40 60 80
0

5

10

15

20

25

30

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15 −0.1 −0.05

(b)

φ

Z

−80 −60 −40 −20 0 20 40 60 80
0

5

10

15

20

25

30

−0.5

−1

−1.5

−2

−3

−3.5

−4

−6

−2.5

−4.5

−5.5

−5

(c)

φ

Z

−80 −60 −40 −20 0 20 40 60 80

5

10

15

20

25

−16e−5

−14e−5

−10e−5

−8e−5

−12e−5

−20e−5

−18e−5

(d)

Figure 3. As Fig. 1 but for basic-state (deep-atmosphere minus shallow-atmosphere) difference fields, and much reduced contour intervals: (a) 0.1 K;
(b) 0.05 m s−1; (c) 0.5 K; (d) 0.00002 s−1.

Table 2. Parameters used in running the baroclinic instability test for each dynamical core at a grid spacing of approximately 1 degree. dif4
denotes the coefficient of the∇4 hyperdiffusion and np = 4 refers to the use of cubic polynomials in the spectral element method.

Dynamical core Parameters
MCore Deep/Shallow, non-hydrostatic, no hyperdiffusion, third-order Runge-Kutta in time, ∆t = 200 s
ENDGame Deep/Shallow, non-hydrostatic, off-centring ε = 0.002, no polar filtering, 2× 2 iterations, ∆t = 3600 s
CAM-FV Shallow, hydrostatic, 4th-order divergence damping option, ∆t = 180 s
CAM-SLD Shallow, hydrostatic, default off-centring ε = 0.2, no diffusion, energy fixer, ∆t = 1200 s
CAM-EUL Shallow, hydrostatic, 4th-order hyperdiffusion dif4 = 0.5e15 m4 s−1, energy fixer, ∆t = 450 s
CAM-SE Shallow, hydrostatic, 4th-order hyperdiffusion dif4 = 0.5e15 m4 s−1, np = 4, ∆t = 360 s
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Figure 4. Results from MCore (deep-atmosphere) at days 8 (left panels) and 10 (right panels), showing (from top to bottom) surface pressure, 850 hPa
temperature and 850 hPa relative vorticity. The northern hemisphere between 0 degrees and 120W longitude is shown, as other regions are visually
indistinguishable from the initial state.

Copyright c© 2013 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 1–10 (2013)
Prepared using qjrms4.cls



14 P. A. Ullrich, T. Melvin, C. Jablonowski and A. Staniforth

Figure 5. As in Fig. 4, but for ENDGame (deep-atmosphere).
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Figure 6. Cross-section through 50◦N latitude of the perturbation of the pressure field from its initial state using MCore (deep-atmosphere) at (a) day
8 and (b) day 10. Dashed curves indicate negative contours. The zero line is enhanced.
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Figure 8. Northern hemisphere surface pressure fields (in hPa) at day 7 for the suite of dynamical cores given in Table 2. MCore and ENDGame are
run using deep-atmosphere configurations.
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Figure 9. Surface pressure for the shallow-atmosphere and deep-atmosphere formulations simulated using MCore and the small-Earth approach with a
scaling factor of X = 20 and time step ∆t = 10 s. Results are plotted (from top to bottom) at (scaled) days 6, 8 and 10, which correspond to 25920 s,
34560 s and 43200 s of unscaled simulation time.
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