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SUMMARY

A new approach is proposed for constructing a fully explicit third-order mass-conservative semi-Lagrangian
scheme for simulating the shallow-water equations on an equiangular cubed-sphere grid. State variables are
staggered with velocity components stored pointwise at nodal points and mass variables stored as element
averages. In order to advance the state variables in time, we first apply an explicit multi-step time stepping
scheme to update the velocity components and then use a semi-Lagrangian advection scheme to update the
height field and tracer variables. This procedure is chosen to ensure consistency between dry air mass and
tracers, which is particularly important in many atmospheric chemistry applications. The resulting scheme
is shown to be competitive with many existing numerical methods on a suite of standard test cases, and
demonstrates slightly improved performance over other high-order finite-volume models. Copyright c© 0000
John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the past decade the speed of individual computer processors has flatlined, leading to new hardware
architecture based around large-scale multi-processor supercomputing systems. This development
has led to the need for new software which performs well on these systems. In particular, it has
become increasingly important to design atmospheric models which are capable of scaling on
systems with tens to hundreds of thousands of processors. Many projects are currently underway that
tackle this problem, including the Community Atmosphere Model (CAM) Spectral-Element (SE)
dynamical core [1, 2] based on the work of [3] and the Geophysical Fluid Dynamics Laboratory
cubed-sphere finite-volume model [4, 5] based on the work of [6], among others. In this paper
we present one such effort in designing a novel numerical method that tackles this problem, here
utilizing the Conservative Semi-LAgrangian Multi-tracer scheme (CSLAM) of [7, 8] to solve
the shallow-water equations on a cubed-sphere grid. Building a model atop the infrastructure of
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2 P.A. ULLRICH, P.H. LAURITZEN AND C.JABLONOWSKI

CSLAM immediately leads to an intrinsic consistency of the total mass and tracer mass fields,
among other desirable properties (see, for example, [9]).

Modeling the shallow-water equations is an important first step in understanding how a
discretization of the atmospheric primitive equations would behave in practice. The shallow-water
equations are the simplest equation set to maintain the defining features of atmospheric motions,
such as Rossby waves and inertia-gravity waves, without the added complexity of the vertical
dimension. Many numerical schemes have previously been developed that model these equations on
the sphere. Other models include the spectral transform method [10], finite-difference approaches
[11, 12, 13], high-order finite-volume methods [14], hybrid finite-difference / finite-volume methods
[15, 16] and finite-element models [3, 17, 18, 19, 20]. Closely related to the current effort is the
work of [21], which describes a semi-implicit shallow-water model in Cartesian geometry based on
CSLAM.

In contrast with other semi-Lagrangian shallow-water models, the method described in this paper
uses an inherently conservative flux-form formulation to guarantee conservation of mass. The
velocity field is updated using a third-order multi-step time-stepping procedure (eBDF3) along with
a flow-dependent fourth-order hyperdiffusion operator to maintain stability. In conjunction with the
quasi-uniform cubed-sphere grid, this combination maintains locality of the update operation, at
the cost of a strict Courant-Friedrichs-Lewy (CFL) condition imposed by the fully explicit update.
Time-stepping procedures which allow for a more lenient time-step constraint, such as semi-implicit
methods [22] or Laplace transforms[23], were not explored in this work since they do not preserve
strict locality.

The explicit time-stepping procedure described in this paper is applicable to any conservative
semi-Lagrangian transport scheme, including the family of semi-Lagrangian integrated-mass
schemes [24], the SLICE scheme [25, 26, 27] and certain dimension-split semi-Lagrangian
formulations [28, 29]. However, the flux-form implementation of CSLAM is particularly well suited
for implementation as a dynamical core on the cubed-sphere grid since it does not use dimension
splitting (which is potentially problematic near cubed-sphere corner points) and can be modified
to guarantee formal third-order accuracy [30]. In particular, the use of quadratic upstream edges
[30] is important for avoiding errors in the numerically computed divergence which can pollute the
solution.

Quasi-uniform meshes are of particular interest, since their quasi-uniformity significantly reduces
the complexity of developing numerical methods capable of scaling to a large number of processors.
The regular latitude-longitude (RLL) grid, for instance, does not share the quasi-uniformity property
since it suffers from convergence of grid lines at the poles. Consequently, gridpoint-based numerical
methods using the RLL grid require filtering to maintain numerical stability. The cubed-sphere grid,
which is harnessed by the model in this paper, has been the basis for models which scale well on
massively parallel computing platforms [31, 5]. Parallel scalability for models using the cubed-
sphere grid is ensured as long as communication is sufficiently localized: that is, as long as the
discretization only requires communication with a small number of processing units, independent
of the total number of processors used for computing the simulation.

The paper is organized as follows. In section 2 we introduce the cubed-sphere grid under the
equiangular projection, followed by a discussion of the shallow-water equations in cubed-sphere
geometry in section 3. Evolution of the velocity field is described in section 4. The discretization of
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A HIGH-ORDER FLUX-FORM SEMI-LAGRANGIAN SHALLOW-WATER MODEL 3

the advected components of the flow, which includes the continuity equation and any tracer fields,
is discussed in section 5. Numerical results from this method are presented in section 6, followed
by our conclusions in section 7.

2. THE CUBED-SPHERE

The cubed-sphere grid [32, 12] consists of a cube with six Cartesian patches arranged along
each face, which is then ‘inflated’ to fill a spherical shell. On the equiangular cubed-sphere
grid, coordinates are given as (α, β, np), with central angles α, β ∈ [−π4 , π4 ] and panel index
np ∈ {1, 2, 3, 4, 5, 6}. By convention, we choose panels 1− 4 to be along the equator and panels
5 and 6 to be centered on the northern and southern pole, respectively. Gnomonic coordinates are
related to equiangular coordinates via the transform

X = tanα, Y = tanβ. (1)

Gnomonic coordinates are particularly useful since any straight line in gnomonic coordinates is also
a great circle arc, which is not the case for general line segments in equiangular coordinates. Further,
integration over regions in gnomonic coordinates is typically much simpler than in equiangular
coordinates. Throughout this paper we will be making use of the metric term

δ =
[
1 + tan2 α+ tan2 β

]1/2
, (2)

which appears frequently in geometric calculations on the cubed-sphere grid.
The discrete resolution of the cubed-sphere is typically written in the form c〈Nc〉, where each

coordinate direction consists of Nc grid elements. Hence, the total number of grid elements on the
cubed-sphere is Nc ×Nc × 6. Grid elements on a particular panel are denoted by Zi,j with indices
(i, j) ∈ [0, . . . , Nc − 1]2, which refers to the region bounded by

α ∈
[
i∆α− π

4
, (i+ 1)∆α− π

4

]
, β ∈

[
j∆β − π

4
, (j + 1)∆β − π

4

]
, (3)

where on an equiangular grid, the grid spacing is

∆α = ∆β = π/(2Nc). (4)

Equiangular element center points are defined for each element as the point αi,j = (αi, βj) with

αi =

(
i+

1

2

)
∆α− π

4
, βj =

(
j +

1

2

)
∆β − π

4
. (5)

Some properties of the cubed-sphere grid for a variety of resolutions is given in Table I. For a
comprehensive mathematical description of the equiangular cubed-sphere grid see [20], Appendices
A, B and C or [33], Appendices A and B.
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4 P.A. ULLRICH, P.H. LAURITZEN AND C.JABLONOWSKI

Table I. Properties of the cubed sphere grid for different resolutions. Here ∆x is the grid spacing at the
equator, Aavg is the average area of all cubed sphere grid elements, Amin is the minimum element area
and Amax is the maximum element area. RLLequiv denotes the equivalent grid spacing (in degrees) on
the regular latitude-longitude grid with the same number of elements and Tequiv denotes the approximate

triangular truncation of a spectral transform method.

Resolution ∆x Aavg Amin/Amax RLLequiv Tequiv
c20 500 km 2.125× 105 km2 0.7359 5.2◦ T21

c40 250 km 5.313× 104 km2 0.7213 2.6◦ T42

c80 125 km 1.328× 104 km2 0.7141 1.3◦ T85

c160 62.5 km 3.321× 103 km2 0.7106 0.65◦ T170

3. THE SHALLOW-WATER EQUATIONS ON THE CUBED-SPHERE

The shallow-water equations on the sphere can be concisely formulated using two equations. The
first, known as the continuity equation, effectively describes the principle of conservation of mass
as it moves under some background flow field. In an Eulerian or fixed frame, the conservative form
of this equation takes the form

∂h

∂t
+∇ · (hu) = 0, (6)

where h denotes the fluid depth and u denotes the underlying horizontal velocity vector. Global
conservation of h is immediately evident upon integrating this equation over the surface of the
sphere and applying Gauss’ divergence theorem, leading to

d

dt

∫
hdA = 0, (7)

where dA is an appropriately chosen area element. The second shallow-water equation describes
the evolution of the velocity field, and can be expressed as

∂u

∂t
+ u · ∇u = SC + SP , (8)

where SC and SP respectively denote forcing terms due to the Coriolis force and variations in the
fluid pressure (due to the height field and underlying topography). Using the standard unit-length
radial coordinate vector gr, SC can be written as

SC = −fgr × u, (9)

where f = 2Ω sinϕ is the Coriolis parameter in terms of the rotation rate Ω = 7.292× 10−5 s−1

and latitude ϕ. Similarly, SP can be written as

SP = −g∇H, (10)

where g = 9.80616 m s−2 represents the mean constant of gravity at the Earth’s surface and
H = h+ z denotes the free surface height, which is the sum of the fluid depth h and the height
of the bottom topography z.
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A HIGH-ORDER FLUX-FORM SEMI-LAGRANGIAN SHALLOW-WATER MODEL 5

Under equiangular coordinates the velocity field is written as

u = uαgα + uβgβ , (11)

where gα = (∂x/∂α)β and gβ = (∂x/∂β)α have units of length and denote the natural
basis vectors of the underlying coordinate system (under Cartesian coordinates x(α, β) =

(x(α, β), y(α, β), z(α, β))). The coefficients uα and uβ are known as the contravariant components
of the velocity vector, and have units of rad/s in the natural basis. This choice allows us to write the
velocity evolution equation (8) in component form

∂uα

∂t
+ u · ∇uα = SαC + SαP , (12)

∂uβ

∂t
+ u · ∇uβ = SβC + SβP . (13)

By writing the covariant derivative as ∇iuj = ∂uj

∂xi + Γjiku
k (where Γjik are the Christoffel symbols

of the second kind in cubed-sphere coordinates and summation is implied over the repeated index
k), we can express the advective term as

u · ∇uα = uα
∂uα

∂α
+ uβ

∂uα

∂β
+

2XY 2

δ2
(uα)2 − 2Y (1 + Y 2)

δ2
uαuβ , (14)

u · ∇uβ = uα
∂uβ

∂α
+ uβ

∂uβ

∂β
− 2X(1 +X2)

δ2
uαuβ +

2X2Y

δ2
(uβ)2. (15)

In component form, the Coriolis term takes the form

SC =

 SαC

SβC

 =
f

δ

 −XY uα + (1 + Y 2)uβ

−(1 +X2)uα +XY uβ

 , (16)

where the Coriolis parameter f can be written as

f =


2ΩY

δ
on equatorial panels (np < 4),

2Ωσ

δ
on polar panels.

(17)

Here σ is a panel indicator variable,

σ = sign(ϕ) =

 1 on the northern panel (np = 5),

−1 on the southern panel (np = 6).
(18)

Finally, the forcing term due to fluid pressure is written in component form as

SP =

 SαP

SβP

 = − gδ2

a2(1 +X2)(1 + Y 2)

 (1 + Y 2)∂H∂α +XY ∂H
∂β

XY ∂H
∂α + (1 +X2)∂H∂β

 , (19)
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6 P.A. ULLRICH, P.H. LAURITZEN AND C.JABLONOWSKI

Figure 1. A depiction of the Arakawa B-grid used in the semi-Lagrangian shallow-water model. The free
surface height field and tracer mass are stored as element averages within each element, whereas the velocity

field is stored pointwise at element nodes.

uα, uβ

uα, uβ uα, uβ uα, uβ

uα, uβuα, uβ

β

α

H H

where a is the radius of the Earth (a = 6.37122× 106 m). Additional details about the derivation of
the equations of motion in cubed-sphere coordinates can be found in [20].

4. EVOLUTION OF THE VELOCITY FIELD

The semi-Lagrangian shallow-water model makes use of the Arakawa B-grid [34], so that prognostic
velocity points are located at the corners of each finite-volume element (nodes) and conserved
variables (including air mass and tracer mass) are stored as element-averaged densities (see Figure
1). Note that we store the element-averaged free-surface height H instead of the fluid depth h, since
H is generally a smooth function, whereas rapid variations in the underlying topography may lead
to rapid variations in h. This choice of grid also allows us to maximize the accuracy of the trajectory
calculation over small time steps, which are unlikely to deviate far from element nodes. Although
it is known that finite-difference methods suffer from poor dispersion properties on the B-grid as
a consequence of its treatment of the divergent modes [35], the semi-Lagrangian approach handles
divergence via area deformation and so is not subject to the same analysis. Further, the largest wave
numbers are damped as a consequence of the incremental-remapping procedure and so should not
be responsible for added noise.

Evolution of the velocity field is performed via time-splitting, wherein the space and time
components of the update equation (8) are discretized separately. Only the mass variables are exactly
conserved under this approach; no explicit effort is made to conserve other invariant quantities, such
as energy or potential vorticity.

4.1. Spatial discretization

To proceed, we first define a spatial operator S = (Sα,Sβ) which allows us to write (12) and (13)
as

∂uα

∂t
= Sα(H,uα, uβ),

∂uβ

∂t
= Sβ(H,uα, uβ). (20)
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A HIGH-ORDER FLUX-FORM SEMI-LAGRANGIAN SHALLOW-WATER MODEL 7

That is, S incorporates advective terms, Coriolis forces, topographical forces, height (pressure)
gradient forces and artificial diffusion into a single operator which is applied to the height and
velocity fields at a fixed point in time. We expand the spatial operator in terms of its individual
contributions as

S = SA + SC + SP + SD, (21)

where the subscripts A, C, P and D denote discretizations of advection (14)-(15), the Coriolis force
(16), forcing due to fluid pressure (19) and artificial diffusion, respectively. Fourth-order central
discretizations are used when derivatives are required within each of these expressions. In particular,
the advection term (14)-(15) relies on derivatives of the velocity field along lines of constant α and
β, which are computed as(

∂uc

∂α

)
i+1/2,j+1/2

≈
−uci+5/2,j+1/2 + 8uci+3/2,j+1/2 − 8uci−1/2,j+1/2 + uci−3/2,j+1/2

12∆α
, (22)(

∂uc

∂β

)
i+1/2,j+1/2

≈
−uci+1/2,j+5/2 + 8uci+1/2,j+3/2 − 8uci+1/2,j−1/2 + uci+1/2,j−3/2

12∆β
, (23)

where the superscript c represents either α or β. The fluid pressure term (19) requires fourth-order
approximations to derivatives of the total height field at element nodes (denoted with half indices).
These derivatives are computed via the 12-point stencil(

∂H

∂α

)
i+1/2,j+1/2

≈ 1

24∆α

{[
−Hi+2,j+1 +Hi−1,j+1 −Hi+2,j +Hi−1,j

]
+ 2

[
−Hi+1,j+2 +Hi,j+2 −Hi+1,j−1 +Hi,j−1

]
+ 17

[
Hi+1,j+1 +Hi+1,j −Hi,j+1 −Hi,j

]}
(24)(

∂H

∂β

)
i+1/2,j+1/2

≈ 1

24∆β

{[
−Hi+1,j+2 +Hi+1,j−1 −Hi,j+2 +Hi,j−1

]
+ 2

[
−Hi+2,j+1 +Hi+2,j −Hi−1,j+1 +Hi−1,j

]
+ 17

[
Hi+1,j+1 −Hi+1,j +Hi,j+1 −Hi,j

]}
(25)

Since the expression for the Coriolis force (16) contains no derivatives, it is simply evaluated
pointwise at the element node.

4.2. Artificial diffusion

The artificial diffusion term SD is required in our numerical discretization to preserve stability
and prevent the formation of 2∆α noise in the velocity field that may lead to a failure in the
trajectory algorithm. The choice of artificial diffusion is not necessarily grounded in the physics
of the problem, but should instead depend on the properties of the numerical scheme, and should
target regions where errors in the advection and velocity evolution algorithms are most prominent.
Motivated by these restrictions, we have settled on a choice of the artificial diffusion which takes
the form

SD =
CDδ

4

a4

 D4
αu

α +D4
βu

α

D4
αu

β +D4
βu

β

 , (26)
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8 P.A. ULLRICH, P.H. LAURITZEN AND C.JABLONOWSKI

Table II. Value of the coefficient CR used at several possible cubed-sphere grid resolutions.

Resolution CR
c20 2.0× 1014 m3

c40 1.3× 1013 m3

c80 1.1× 1012 m3

c160 1.3× 1011 m3

where CD is the hyperdiffusion coefficient (with units m4/s) and the operators D4
α and D4

β are
approximations to the fourth α and β derivative, respectively. This choice of diffusion operator is
constructed to loosely approximate the fourth-order Laplacian for the velocity field on the cubed-
sphere grid and is third-order accurate as long as CD is at least proportional to ∆α3.

Analogous to the differences of the velocity field used in the advection term, the fourth-order
derivative operators are approximated as

(
D4
αu

c
)
i+1/2,j+1/2

≈
uci+5/2,j+1/2 − 4uci+3/2,j+1/2 + 6uci+1/2,j+1/2 − 4uci−1/2,j+1/2 + uci−3/2,j+1/2

∆α4
,(27)(

D4
βu

c
)
i+1/2,j+1/2

≈
uci+1/2,j+5/2 − 4uci+1/2,j+3/2 + 6uci+1/2,j+1/2 − 4uci+1/2,j−1/2 + uci+1/2,j−3/2

∆β4
.(28)

The flow-dependent diffusion coefficient CD is chosen to approximate numerical diffusion from the
Rusanov flux function [36], leading to

CD = −CR
(
a|u|i+1/2,j+1/2 +

√
ghi+1/2,j+1/2

)
, (29)

whereCR has units of m3 and depends purely on the resolution of the grid, |u| denotes the magnitude
of the velocity (in rad/s) and hi+1/2,j+1/2 is a fourth-order approximation to the height field at this
element node, given by

hi+1/2,j+1/2 =
1

24

{
8
[
Hi+1,j+1 +Hi,j+1 +Hi+1,j +Hi,j

]
−
[
Hi+1,j+2 +Hi,j+2 +Hi+2,j+1 +Hi−1,j+1

+ Hi+2,j +Hi−1,j +Hi+1,j−1 +Hi,j−1
]}
− zi+1/2,j+1/2. (30)

Observe that the term within the brackets in (29) is simply the maximum shallow-water wave speed,
which corresponds to the maximum eigenvalue of the exact spatial operator. The values of CR
used in this paper are given in Table II for several cubed-sphere grid resolutions. These values are
determined empirically by selecting the smallest diffusion coefficient that leads to a stable numerical
scheme. For a field with h(α, β) = 8000 m, these coefficients are approximately five times smaller
than the default values used in the CAM-SE dynamical core.

4.3. Temporal discretization

Time evolution of the velocity field is performed using a high-order multi-step method in order to
preserve locality of the update operation. A multi-step method is needed for the velocity update,
since multi-stage methods such as the Runge-Kutta family of schemes require information on the h
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A HIGH-ORDER FLUX-FORM SEMI-LAGRANGIAN SHALLOW-WATER MODEL 9

field over fractional time steps, which is not available until the velocity update has completed. The
time update makes use of the spatial operator S evaluated at time level tn, which we denote

Sn = S(Hn, (uα)n, (uβ)n). (31)

The extrapolated backward differentiation formulas (eBDF) [37] are preferred in our case, since
they provide a good balance between stability and accuracy. The third-order eBDF scheme (eBDF3)
takes the form

un+1 =
18

11
un − 9

11
un−1 +

2

11
un−2 +

18

11
∆tSn − 18

11
∆tSn−1 +

6

11
∆tSn−2. (32)

Since multi-step methods require an initial startup, we make use of the forward Euler method
initially,

un+1 = un + ∆tSn, (33)

and at the second time step use the second-order Adams Bashforth scheme (AB2),

un+1 = un +
3

2
∆tSn − 1

2
∆tSn−1. (34)

For reasons of efficiency, the velocity field u and the spatial operator Sn are stored at time levels
tn−1 and tn−2 and then reused in subsequent update operations.

5. CONSERVATIVE SEMI-LAGRANGIAN ADVECTION

Once the velocity field has been updated, all conserved mass fields are then advanced via passive
advection. Using the updated velocity field we compute trajectories backwards in time so as to
obtain a flux volume associated with each edge. Integrating the total tracer mass within each flux
volume then yields the total mass that has passed through that edge over the duration of the time
step. These mass fluxes are then used to update the element averages.

5.1. Treatment of advection

The advection scheme we use for this work is the Gaussian quadrature variant of the simplified
flux-form CSLAM scheme [30]. The advection component is used for updating the height field plus
any tracer fields which are transported by the velocity field.

The conservative semi-Lagrangian method we use in this paper is based on the simplified flux-
form semi-Lagrangian formulation [38], which has been recently implemented on the cubed-sphere
[39]. Under this approach, we begin by considering the conservation law

∂ψ

∂t
+∇ · (ψu) = 0, (35)

where ψ = h for the shallow-water height equation (6) or ψ = hφ for an arbitrary tracer with
mixing ratio φ. We integrate the conservation law over an arbitrary grid cell Zi,j and apply Gauss’
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10 P.A. ULLRICH, P.H. LAURITZEN AND C.JABLONOWSKI

divergence theorem to obtain

dψi,j
dt

= − 1

|Zi,j |

∮
∂Zi,j

F · dS, (36)

where ∂Zi,j denotes the boundary of Zi,j , |Zi,j | is the area of Zi,j and F · dS denotes the pointwise
outward flux through the boundary. The overbar denotes an area average of the form

ψ =
1

|Zi,j |

∫
Zi,j

ψdV, (37)

where dV = Jdαdβ is the volume element in equiangular coordinates, with

J =
(1 + tan2 α)(1 + tan2 β)

δ3
. (38)

Integrating (36) in time from tn to tn+1 gives

ψ
n+1

i,j = ψ
n

i,j −
1

|Zi,j |

∫ tn+1

tn

∮
∂Zi,j

F · dSdt. (39)

Since Zi,j is a rectangular region in computational (α, β) space, we can denote its four edges by the
compass directions East (E), North (N), West (W) and South (S). Hence, (39) can be written in the
form

ψ
n+1

i,j = ψ
n

i,j +
1

|Zi,j |
[FE + FN + FW + FS ] , (40)

where FE is the total mass flux into the element through the east edge from time tn to tn+1, and
similarly for the north, west and south edges. Note that the fluxes can be positive or negative,
depending on the direction of advection. Under the flux-form semi-Lagrangian formulation (see
Figure 2) these fluxes are computed by integrating over the flux volume for each edge. This flux
volume consists of a region of the simulation domain bounded on one side by the corresponding
fixed edge of Zi,j at time tn+1 and on the other by the numerically computed upstream projection
of that edge at time tn. The four regions associated with the east, north, west and south edges are
depicted in Figure 2c-f, respectively, and denoted by aτ=1

i,j through aτ=4
i,j . For example, for the east

edge we have

FE = σE

∫
aτ=1
k

ψn(X)dV, (41)

where σE indicates the direction of the flux (positive or negative depending on whether flow is into
or out of the element), aτ=1

k is the upstream flux volume defined by Figure 2c and dV is a volume
element. Summation over sub-volumes is implied if the flux volume consists of both an inward and
outward component.

The accuracy of the semi-Lagrangian advection scheme partially relies on obtaining an accurate
approximation of the flux volume. The use of remapping-based methods for transport is known
to introduce spurious divergence into an otherwise divergence-free flow [40]. These errors are
especially evident for divergence-free sheared flows on the cubed-sphere which pass near panel
corner points. In this region small defects in the divergence can easily drive wavenumber 4
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Zi,j

a b

ai,j

c

aτ=1
i,j

d
aτ=2
i,j

e f

aτ=4
i,j

aτ=3
i,j

Figure 2. An illustration of the semi-Lagrangian approach. The nodes of element Zi,j (a) are tracked
upstream to element ai,j (b). Under the flux-form formulation we integrate over flux areas for the (c) east
aτ=1
i,j , (d) north aτ=2

i,j , (e) west aτ=3
i,j and (f) south aτ=4

i,j face. The original element (a) plus the sum of all
flux area masses (c-f), weighted by the direction of the flow, is equal to the mass in the upstream element

ai,j regardless of the detailed shape of the trajectory.

imprinting from the underlying grid and reduce the formal accuracy of the transport scheme
to second-order [30]. In order to avoid these issues we follow [30] and instead approximate
the upstream source region with a quadratic curve, which dramatically reduces the appearance
of spurious divergence and further guarantees third-order convergence. These curves can be
reconstructed by interpolating a quadratic through three nodal points, which include the upstream
projection of the two endpoints of each edge plus the upstream projection of the edge centerpoint
(see Figure 3). Each of the nodal points depicted in this Figure 3 can be written in terms of gnomonic
coordinates as pi = (Xi, Yi) for nodes along the flux edge and p′i = (X ′i, Y

′
i ) for nodes along the

upstream edge.
Further, the flux volume is not necessarily convex and, in fact, can be quite deformed depending

on the trajectory of each edge. All possibilities which are allowed by our model have been
enumerated in Figure 4 for an edge that bounds the eastern side of an element. In this figure regions
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12 P.A. ULLRICH, P.H. LAURITZEN AND C.JABLONOWSKI

p1

p3

p′
3

p′
1

p2

p′
2

Figure 3. An illustration of a third-order approximation to an upstream flux volume which has been
obtained by tracking the edge (p1,p2,p3) upstream to points (p′1,p

′
2,p
′
3). A quadratic curve is fit through

(p′1,p
′
2,p
′
3) so as to approximate the upstream projection of the edge. The dashed arrows denote backwards

trajectories, in this case corresponding to a westward flow.

which lead to an outward mass flux (σE = −1) are lightly shaded, whereas regions that lead to an
inward mass flux (σE = 1) are heavily shaded.

5.2. Integration of the Flux Volume

In this section we discuss the numerical procedure for evaluating the integral of the flux volume
(41). We assume that a gnomonic sub-grid-scale reconstruction of the form

ψi,j(X,Y ) =
∑
p,q

c(p,q)X
pY q (42)

is known within each element Zi,j , such as the one described in Appendix A. Here c(p,q) are the
reconstruction coefficients associated with the sub-grid-scale reconstruction, and the range of the
indices (p, q) is determined by the choice of reconstruction. Following the simplified flux-form
approach [38, 39, 30], integration of the flux volume is only performed over the sub-grid-scale
reconstruction of neighboring elements. For example, if a given edge separates elements Zi,j and
Zi+1,j , then in accordance with Figure 4 the sub-grid-scale reconstruction ψi,j(X,Y ) is used for
computing the mass in the lightly shaded regions and ψi+1,j(X,Y ) is used for computing the mass
in the heavily shaded regions. This approach greatly simplifies the integration procedure since there
is no need to identify where overlaps between the fixed grid and flux volume occur. Note that if the
given edge is also a cubed-sphere panel edge, the integration must be applied on the correct panel
to ensure consistency.

Several options exist for computing the integrals over the flux volume. Under the quadrature-
based formulation [30], these integrals are computed via an appropriately chosen quadrature rule.
For fourth-order accuracy a four-point quadrature rule, such as the one described below, can be
used. In case 3 and 4 of Figure 4 the convex property of the generalized quadrilaterals has been lost,
and so a single quadrature rule for each flux volume is insufficient. Instead, for case 3b and 4b we
break the flux volume into two sub-volumes and, treating these as generalized quadrilaterals, simply
apply the quadrature rule to each sub-volume. For case 3a, 3c, 4a and 4c the integral is instead over
a wedge-shaped region. To integrate over the wedge, we extend the integration region outward to
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Case 1
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p3p′
3

p′
1

Case 2

Case 3a Case 3b Case 3c

Case 4a Case 4b Case 4c
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2 p2

p3

p2
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p′
1

p′
2

p′
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p3

p′
3

p′
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p′
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p′
3

p′
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p′
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p′
3

p′
2

p′
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p1

p1 p1

p2
p2 p2

p3
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p′
1

p′
1

p′
1p′

2

p′
2

p′
2

p′
3

p′
3

p′
3

p3

Figure 4. Depiction of each of the cases that must be treated by the flux integration algorithm, here with
an east edge as example. The edge (p1,p2,p3) denotes the edge for which the advective flux is desired.
The points (p′1,p

′
2,p
′
3) are determined by the upstream trajectory computation algorithm from points

(p1,p2,p3). All edges are straight line segments except for (p′1,p
′
2,p
′
3), which is a quadratic curve. Regions

which lead to a positive flux across the edge are lightly shaded, whereas regions which lead to a negative
flux across the edge are heavily shaded. The dotted lines denote the north/south edges of the left element.

form a generalized triangular region (dashed lines) so that the wedge can be viewed as the difference
between the generalized triangle and a convex quadrilateral region. A quadrature rule is then applied
to both regions and the difference taken to obtain the integral over the wedge. In using this approach
for dividing the flux region, two corner points of our integration domain will always lie along a line
of constant X . A four-point quadrature rule is used in this work to ensure fourth-order integration
of the upstream flux area, which is described in Appendix B.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (0000)
Prepared using fldauth.cls DOI: 10.1002/fld



14 P.A. ULLRICH, P.H. LAURITZEN AND C.JABLONOWSKI

5.3. Computing trajectories

To track the nodal points backwards in time (see Figure 3), we have made use of the definition of
the velocity field in Lagrangian form. That is,

dx

dt
= u(x, t), (43)

where x = (α, β) is a coordinate vector and u = (uα, uβ) is the vector of contravariant wind vector
components. Since this equation is simply a coupled system of two ordinary differential equations,
we can easily discretize it using, for instance, the fourth-order Runge-Kutta scheme

x(1) = x0 −
∆t

2
u
(
x0, t

n+1
)
, (44)

x(2) = x0 −
∆t

2
u

(
x(1), tn+1 − ∆t

2

)
, (45)

x(3) = x0 −∆tu

(
x(2), tn+1 − ∆t

2

)
, (46)

x(4) = −1

3
x0 +

1

3
x(1) +

2

3
x(2) +

1

3
x(3) − ∆t

6
u
(
x(3), tn

)
. (47)

The coordinates of x(4) are then adopted as the “origin” of the point x0. In particular, x(4) is a fourth-
order accurate approximation to the point at time tn that, on undergoing Lagrangian advection,
would have ended up at x0 at time tn+1. Notably, this approach only requires knowledge of the
velocity field at time tn+1, tn+1 −∆t/2 and tn = tn+1 −∆t. Since the velocity field is already
known at time tn+1 and tn from the velocity evolution procedure, it only remains for us to obtain
an approximation to the velocity field at the half time step tn+1 −∆t/2. Many possible polynomial
interpolants may be defined through all stored velocity fields, but we have found that a simple
average of the velocity field at tn and tn+1 is sufficient for accuracy and stability of this method.
That is, we make the approximation

u

(
x, tn+1 − ∆t

2

)
=

u(x, tn+1) + u(x, tn)

2
. (48)

5.4. Monotonicity and Positivity

For the advective scheme, positivity-preserving and monotonicity-preserving limiters have been
implemented and are described in Appendix A.2. The limiting algorithm is identical to that used
by [7] and [41]. These limiters are relatively inexpensive and do not require additional parallel
communications. However, for a flux-form semi-Lagrangian method this approach only guarantees
positivity or monotonicity up to a Courant number of 0.5. An alternative approach which is
compatible with the flux-form formulation of this scheme would use Flux-Corrected Transport
(FCT) [42, 8]. The use of FCT guarantees unconditional monotonicity or positivity, but typically
requires one additional parallel communication per time step.
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5.5. Stability Considerations

Stability of the scheme described in this paper has been verified empirically using energy estimates
and long-duration simulations. For the shallow-water variables (h,u), the maximum stable time step
size is limited by the critical wave speed uc = |u|+√gh. Instability generally manifests via the
appearance of 2∆x noise in the velocity field, which can lead to crossed trajectories and subsequent
breakdown of the simulation. Repeated tests suggest a maximum CFL limit of approximately 0.35,
which is competitive with the maximum per-stage CFL limit for a typical high-order finite-volume
scheme with a third-order three-stage Runge-Kutta time discretization. The CFL condition for pure
flux-form semi-Lagrangian advection (with prescribed velocities) is approximately 0.75 [39].

6. NUMERICAL RESULTS

In this section we present numerical results that demonstrate accuracy, stability and consistency
of the numerical method for several standard shallow-water test problems. These problems are
primarily from the well-known test suite of [43], although the barotropic instability test presented
in section 6.6 is from [44].

When required, standard error measures are calculated via

L1(h) =
I [|h− hT |]
I [|hT |]

, (49)

L2(h) =

√
I [(h− hT )2]

I [h2T ]
, (50)

L∞(h) =
max |h− hT |

max |hT |
, (51)

where hT is the height field at the initial time (which is the analytical solution for steady-state test
cases) and I denotes an approximation to the global integral, given by

I[x] =
∑

all cells k
xkAk, (52)

with Ak denoting the area of element k. For advection of a cosine bell (section 6.1) we also make
use of the relative minimum and maximum,

〈Relative Minimum〉 =
minh−minhT

max |hT |
, (53)

〈Relative Maximum〉 =
maxh−maxhT

max |hT |
. (54)

6.1. Advection of a Cosine Bell

The first test case [43] simulates the advection of a cosine bell through one rotation around the
sphere over a 12-day time period. This test is primarily used to verify positivity and monotonicity,
and further allows the accuracy of the advective component of the numerical method to be evaluated
using standard error norms. The prescribed wind field is non-divergent, and so the continuity
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16 P.A. ULLRICH, P.H. LAURITZEN AND C.JABLONOWSKI

equation represents an advection equation for the tracer distribution. The velocity field is prescribed
initially and left unmodified by the numerical method.

The initial height field is given by

h =


(
h0

2

) (
1 + cos πrR

)
if r < R,

0 otherwise,
(55)

where r is the great circle distance from the center of the height profile, which is initially located at
(λ, ϕ) = (3π/2, 0). The height of the profile is chosen to be h0 = 1000 m and its radius is R = a/3

(recall a denotes the radius of the Earth). The non-divergent velocity field is specified in latitude-
longitude (ϕ, λ) coordinates as

uλ = u0(cosϕ cos α̃+ cosλ sinϕ sin α̃), (56)

uϕ = −u0 sinλ sin α̃, (57)

where u0 = πa/6 day−1. Here the parameter α̃ denotes the rotation angle transcribed between the
physical north pole and the center of the northern panel on the cubed-sphere grid (and should not be
confused with the equiangular coordinate α).

The simulation is run for 12 days using ∆t = 45 minutes (Courant number 0.5) with the unlimited
scheme, positivity-preserving limiter and monotonicity-preserving limiter. We use grid rotation
angles α̃ = 0◦ and α̃ = 45◦ at a fixed grid resolution of c40. Relative errors are then calculated after
12 days and presented in Table III. For both the positivity-preserving scheme and monotonicity-
preserving scheme the error norms suggest no evidence of undershoots or overshoots after one
rotation. Both the unlimited scheme and monotonicity-preserving scheme show reduced accuracy
when compared against the positivity-preserving scheme, in the first case because the unlimited
scheme experiences increased errors due to numerical oscillations and in the second case because
the monotonicity-preserving scheme crops off the maximum of the cosine bell. These errors are
apparent when examining contour plots of the absolute error for each method, which are depicted in
Figure 5. As with other Eulerian methods on the cubed-sphere grid (such as [14]), we observe
that the rotated test (with α̃ = 45◦) tends to lead to improved error norms over the unrotated
test (with α̃ = 0◦). This result is likely since the velocity field is parallel to coordinate lines for
approximately half the total simulation time (as the cosine bell passes over the panel edges). Tests
run with alternative choices of time step size ∆t have been performed, but do not suggest a strong
sensitivity of the method to choice of ∆t. The temporal evolution of error norms for this scheme is
presented in Figure 6 for α̃ = 45◦ with the positivity-preserving limiter. No significant sensitivity to
the underlying grid is observed in the evolution of these error norms.

To verify convergence of this method with grid refinement, a sequence of tests have been run with
α̃ = 45◦ and grid resolution c20, c40, c80 and c160. Both the unfiltered and positivity-preserving
scheme have been investigated. The time step ∆t for each resolution is 90, 45, 22.5 and 11.25

minutes, respectively. Error norms for this study are presented in Table IV. Although the scheme is
formally third-order accurate, the cosine bell field is onlyC1 and so will lead to at most second-order
convergence. Consequently at low resolutions the scheme exhibits near-third-order convergence
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Table III. Relative errors in the height field h for advection of a cosine bell at a resolution of c40 and after
t = 12 days. The value here is represented as “m (-b)” for sake of readability, which should be read as

m× 10−b.

Limiting Direction L1 error L2 error L∞ error Minimum Maximum
None α̃ = 0◦ 5.01 (−2) 3.09 (−2) 2.46 (−2) −1.50 (−2) −1.02 (−2)

α̃ = 45◦ 4.38 (−2) 2.53 (−2) 1.95 (−2) −1.18 (−2) −8.44 (−3)
Positive α̃ = 0◦ 2.84 (−2) 1.75 (−2) 1.56 (−2) 0 −1.01 (−2)

α̃ = 45◦ 2.61 (−2) 1.52 (−2) 1.31 (−2) 0 −1.03 (−2)
Monotone α̃ = 0◦ 4.55 (−2) 4.87 (−2) 1.07 (−1) 0 −1.07 (−1)

α̃ = 45◦ 4.43 (−2) 4.96 (−2) 1.14 (−1) 0 −1.13 (−1)

Table IV. Relative errors in the height field h for advection of a cosine bell at t = 12 days for c20, c40, c80
and c160 resolutions. The computed order of accuracy is obtained from a least squares fit through the data.

The value here is represented as “m (-b)” for sake of readability, which should be read as m× 10−b.

Unfiltered, Rotated test case (α̃ = 45◦)
Resolution L1 error L2 error L∞ error Minimum Maximum

c20 2.70(−1) 1.56(−1) 1.53(−1) −3.46(−2) −1.34(−1)
c40 4.38(−2) 2.53(−2) 1.95(−2) −1.18(−2) −8.44(−3)
c80 7.32(−3) 5.31(−3) 4.90(−3) −3.83(−3) −1.09(−3)
c160 1.33(−3) 1.28(−3) 1.42(−3) −1.31(−3) −1.29(−4)

Order 2.56 2.31 2.22 1.58 3.30

Positivity-preserving, Rotated test case (α̃ = 45◦)
Resolution L1 error L2 error L∞ error Minimum Maximum

c20 1.74(−1) 1.29(−1) 1.45(−1) 0 −1.29(−1)
c40 2.61(−2) 1.52(−2) 1.31(−2) 0 −1.03(−2)
c80 6.18(−3) 4.69(−3) 5.37(−3) 0 −1.09(−3)
c160 1.56(−3) 1.64(−3) 2.60(−3) 0 −1.29(−4)

Order 2.24 2.06 1.87 − 3.31

which flattens to second-order at higher resolution. The extremum of the cosine bell, which is
infinitely smooth, exhibits third-order convergence as expected.

The results from this test compare favorably to other methods, in particular against [14] and [45],
keeping in mind that the semi-Lagrangian approach in this paper is formally third-order accurate.
Further tests of the advective component of this method can be found in [46], which presents tests
from a new standard test case suite for tracer transport [47], including novel mixing diagnostics
[48].

6.2. Steady-State Geostrophically Balanced Flow

Test case 2 of [43] simulates a zonally symmetric geostrophically balanced flow. This test utilizes
an unstable equilibrium solution to the shallow-water equations which is generally not preserved in
atmospheric models which do not use the latitude-longitude grid. However, this test is nonetheless
useful to study the convergence properties of numerical methods. The analytical height field is given
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18 P.A. ULLRICH, P.H. LAURITZEN AND C.JABLONOWSKI

Figure 5. Difference between the numerically computed solution and analytical solution (a) without limiting,
(b) with positivity-preserving limiter and (c) with monotone limiter after one rotation (12 days) on a c40 grid.
The direction of rotation is α̃ = 45◦, which corresponds to motion to the top-right. Contours are in intervals
of 5 m with solid lines denoting positive contours and dashed lines denoting negative contours. The zero line

is enhanced.

Figure 6. Time series of the normalized height errors for the cosine bell advection with positivity-preserving
limiter and direction of rotation α = 45◦ after one rotation (12 days) on a c40 grid.

by

h = h0 −
1

g

(
Ωu0a+

u20
2

)
(− cosλ cosϕ sin α̃+ sinϕ cos α̃)

2
, (58)

with background height h0 and velocity amplitude u0 chosen to be

h0 =
2.94× 104 m2 s−2

g
, and u0 =

πa

6
day−1. (59)

This height field also serves as the reference solution. Again the parameter α̃ denotes the angle
transcribed between the physical north pole and the center of the northern panel. The velocity field
is the same as in (56) and (57) and so is not repeated here.

We sample the velocity field pointwise at element nodes and apply high-order Gaussian
quadrature to initialize the element-averaged height field. The model is then run for five days
with a time step of ∆t = 3.75 minutes at c40 resolution (Courant number 0.27). The results of
the convergence study are given in Table V for the unrotated (α̃ = 0◦) and rotated (α̃ = 45◦) grids.
As expected, we observe near-third-order convergence for the semi-Lagrangian scheme in both the
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Figure 7. Height field (left, in m) and absolute errors associated with the semi-Lagrangian scheme on a c40
grid for the steady-state geostrophically balanced flow test with α̃ = 45◦ (right). Contour lines are in units
of 0.01 m, with solid lines corresponding to positive values and long dashed lines corresponding to negative
values. The thick line corresponds to zero error. The short dashed lines show the location of the underlying

cubed-sphere grid.

Table V. Relative errors in the height field h for the steady-state geostrophically balanced flow test at
t = 5 days. The computed order of accuracy is obtained from a least squares fit through the data. The value

here is represented as “m (-b)” for sake of readability, which should be read as m× 10−b.

Unrotated test case (α̃ = 0◦)
Resolution L1 error L2 error L∞ error

c20 3.78(−5) 4.81(−5) 1.27(−4)
c40 2.75(−6) 3.55(−6) 9.57(−6)
c80 2.72(−7) 3.59(−7) 9.61(−7)
c160 3.38(−8) 4.44(−8) 1.19(−7)

Order 3.37 3.36 3.35

Rotated test case (α̃ = 45◦)
Resolution L1 error L2 error L∞ error

c20 3.24(−5) 5.39(−5) 2.08(−4)
c40 4.44(−6) 6.56(−6) 2.36(−5)
c80 5.11(−7) 7.67(−7) 2.78(−6)
c160 6.48(−8) 9.57(−8) 3.45(−7)

Order 3.00 3.05 3.08

rotated and unrotated tests, with slightly better performance from the unrotated test. Plots of the
absolute error after five days are shown in Figure 7 for the rotated test. As expected, the largest
errors associated with this test seem to occur in regions where both the gradient of the height field
is steepest and the flow field is misaligned with the underlying grid. The error norms for this test
compare favorably with other third-order schemes in the literature; in particular, the error norms for
the semi-Lagrangian approach appear to be roughly a factor of five smaller than those of [14].

6.3. Steady-State Geostrophically Balanced Flow with Compact Support

Test case 3 of [43] considers another geostrophically balanced flow, but in this case the velocity
field is chosen to be a nonlinearly sheared zonal jet with compact support. This test is particularly
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difficult for semi-Lagrangian methods since the nonlinear shearing leads to significant deformation
of the flux volume. The analytical velocity field is given in rotated latitude-longitude coordinates
(ϕ′, λ′) by

u′λ = u0b(x)b(xe − x) exp(4/xe), and u′ϕ = 0, (60)

where

b(x) =

{
0 if x ≤ 0,
exp(−1/x) if 0 < x.

(61)

and
x = xe

(ϕ′ − ϕb)
(ϕe − ϕb)

. (62)

The grid rotation angle α̃ is imposed using the rotated coordinate system described in [43]. The
initial and reference height field is given by

h = h0 −
a

g

∫ ϕ′

−π/2

(
2Ω sin τ +

u′λ(τ) tan τ

a

)
u′λ(τ)dτ, (63)

which must be integrated numerically at each point where h is required. The background height and
velocity amplitude are again chosen to be

h0 =
2.94× 104 m2 s−2

g
, and u0 =

πa

6
day−1. (64)

Further, the compact velocity field has additional free parameters chosen as

ϕb = −π
6
, ϕe =

π

2
, and xe = 0.3. (65)

As with the geostrophically balanced flow test described in section 6.2, this test case represents an
unstable equilibrium solution to the shallow-water equations, and so is generally not preserved in
shallow-water models on non-latitude-longitude grids.

As before, we sample the velocity field pointwise and use high-order Gaussian quadrature to
initialize the element-averaged height fields in the numerical model. The test is then run for five
days and the final solution is compared against the initial state. The grid rotation angle is chosen as
either α̃ = 0◦ or α̃ = 60◦. The time step at c40 resolution for this test is ∆t = 3.75 minutes (Courant
number 0.2). The error norms at day 5 obtained for this test for various choices of resolution are
given in Table VI. As anticipated, we observe better than third-order convergence of this test as
resolution is refined for both the rotated and unrotated versions of the test, as errors in the calculation
of the upstream velocity field improve with fourth-order accuracy. At coarser resolutions the rotated
version attains slightly smaller errors, likely since for α̃ = 60◦ the velocity field is more closely
aligned with the grid. The reference field and absolute errors for α̃ = 60◦ are depicted in Figure 8.
Again we see maximal errors occur in regions where the gradient of the height field is maximal and
the flow field is most significantly misaligned with the cubed-sphere grid. At lower resolutions
error norms for this test are roughly comparable or slightly worse than those reported in [14],
since the semi-Lagrangian scheme struggles with strong nonlinearly shearing in the velocity field.
However, at higher resolutions this discrepancy has disappeared and the semi-Lagrangian scheme
again produces better overall results.
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Figure 8. Height field (left, in m) and absolute errors on a c40 grid for the geostrophically balanced flow with
compact support test with α̃ = 60◦ (right). Contour lines are in units of 0.1 m, with solid lines corresponding
to positive values and dashed lines corresponding to negative values. The thick line corresponds to zero error.

Table VI. Relative errors in the height field h for the geostrophically balanced flow with compact support
test at t = 5 days. The computed order of accuracy is obtained from a least squares fit through the data. The

value here is represented as “m (-b)” for sake of readability, which should be read as m× 10−b.

Unrotated test case (α̃ = 0◦)
Resolution L1 error L2 error L∞ error

c20 4.74(−4) 7.50(−4) 2.53(−3)
c40 3.24(−5) 5.39(−5) 2.08(−4)
c80 2.02(−6) 3.44(−6) 1.37(−5)
c160 1.68(−7) 2.90(−7) 1.16(−6)

Order 3.84 3.80 3.72

Rotated test case (α̃ = 60◦)
Resolution L1 error L2 error L∞ error

c20 2.76(−4) 4.90(−4) 2.19(−3)
c40 1.88(−5) 3.41(−5) 1.61(−4)
c80 1.56(−6) 2.83(−6) 1.38(−5)
c160 1.93(−7) 3.49(−7) 1.71(−6)

Order 3.50 3.50 3.45

6.4. Zonal Flow over an Isolated Mountain

Test case 5 in [43] considers zonal flow with a topographically driven source term. The wind and
height fields are defined as in section 6.2, except with α̃ = 0◦, h0 = 5960 m and u0 = 20 m s−1. A
conical mountain is used for the topographic forcing, given by

z = z0(1− r/R), (66)

with z0 = 2000 m,R = π/9 and r2 = min
[
R2, (λ− λc)2 + (ϕ− ϕc)2

]
. The center of the mountain

is at λc = 3π/2 and ϕc = π/6. The reference solution for this test is [10], which is run on
the spectral transform shallow-water model (STSWM) at T426 resolution. This high resolution
reference solution was computed by the German Weather Service (DWD). The T426 simulation
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utilizes a Gaussian grid with 640× 1280 grid points in latitudinal and longitudinal direction which
corresponds to a grid spacing of about 31 km at the equator. The STSWM results are sampled on a
cubed-sphere grid of c40 resolution using high-order Gaussian quadrature for comparison with our
simulated element averages.

We simulate this test case on a c40 grid with a time step of 4.25 minutes for 50 days in order to
verify long-term stability of the scheme (initial Courant number 0.27). The results at days 5, 10 and
15 are plotted in Figure 9. These results agree visually with the numerically computed reference
solution of this test. Total energy E, defined by

E = 1
2hv · v + 1

2g(H2 − z2) (67)

is an invariant quantity in the shallow-water equations. Although some numerical diffusivity is
generally required to ensure stability of a numerical scheme, this diffusivity will also lead to loss
of energy over time, which is particularly important for long-term climate simulations. In Figure 10
we plot the normalized total energy difference, given by

∆E(t) =
E(t)− E(t = 0)

E(t = 0)
, (68)

for the first fifteen days of this test along with the numerically sampled reference solution. The total
energy loss is roughly comparable to the more diffusive third-order scheme of [14], but is generally
still fairly small. We expect that energy conservation will improve with third-order accuracy if the
model is run at higher resolutions. For practical applications where nearly exact conservation of
energy is required (such as in 3D simulations), one could augment hyperdiffusion (see section 4.2)
with a corresponding source term for internal energy. However, such a modification would still not
completely conserve total energy since the semi-Lagrangian advection operator implicitly includes
a diffusive averaging mechanism. Hence, for long-term simulations, a global energy fixer would
likely be necessary.

6.5. Rossby-Haurwitz Wave

Test case 6 in [43] consists of a Rossby-Haurwitz wave with wavenumber 4. This test is an analytical
solution of the nonlinear barotropic vorticity equation on the sphere, but is not an exact solution of
the shallow-water equations. For this test the height and velocity fields are known analytically at the
initial time, but at later times the solution is only known from comparison with a high-resolution
numerically computed reference solution. We choose initial fields identical to those specified in [43],
which are not repeated here for brevity. Initialization of the height field is via high-order Gaussian
quadrature.

It is well known that the wave number 4 Rossby-Haurwitz wave is susceptible to instability which
can be driven by truncation error in the initial conditions (see, for example, [49]), and hence the
simulation will generally lose symmetry at some point. The exact time of breakdown is highly
dependent on the numerical scheme, and does not necessarily depend on resolution or formal order
of accuracy.

We plot the height field for our scheme in Figure 11 at day 0, 7, 14, 30, 60 and 90 at a grid
resolution of c80 and using a time step of ∆t = 100 s. The higher resolution required by this test is
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due to small-scale features in the wave profile that are only captured at this resolution. Observable
breakdown of symmetry occurs at roughly 65 days. As in section 6.4, we calculate the total energy
at each time step and plot the normalized total energy difference in Figure 12 for a grid resolution of
c40 and time step size ∆t = 200 s (initial Courant number 0.32) and compare against the STSWM
reference solution (computed at T511 resolution, corresponding to approximately 26 km resolution).
The total loss of energy is again roughly comparable to the results reported by [14].

6.6. Barotropic Instability

The barotropic instability test case of [44] consists of a zonal jet with compact support at a latitude
of 45◦, with a latitudinal profile roughly analogous to a much stronger version of test case 3 of
[43]. A small height perturbation is added atop the jet which leads to the controlled formation
of an instability in the flow. The relative vorticity of the flow field at day 6 can then be visually
compared against a high-resolution numerically computed solution [44, 50]. For comparison we
use the simulation without additional explicit diffusion, since the additional diffusion suggested
in [44] leads to a significantly different flow field. Relative vorticity at day 6 obtained from the
semi-Lagrangian scheme is plotted for c40, c80, c120 and c160 resolution grids in Figure 13. These
simulations use a time step of ∆t = 160 s at c40 resolution (initial Courant number 0.25), which is
scaled downward at higher resolutions to maintain a constant Courant number.

This test case is particularly difficult for models using the cubed-sphere to handle [50]. Since
the jet is significantly stronger than test case 3 of [43], is aligned in such a way that it passes over
cubed-sphere panel edges eight times, and is driven by a relatively mild perturbation, it turns out
that wave number four grid forcing is significant in disturbing the collapse for resolutions less than
approximately c100. For higher resolutions however, we observe rough convergence to the reference
solution given by [50] and similarity to the solution calculated by [14].

6.7. Efficiency Considerations

A wall-clock comparison has been run for the semi-Lagrangian method (c40 grid with ∆t = 300

s) and the high-order finite-volume method of [14] (c40 grid with ∆t = 900 s, three-stage Runge-
Kutta operator) on the geostrophically-balanced flow test (as in section 6.2). The total run time for
the serial semi-Lagrangian method was observed to be 30.8 s, compared to the serial high-order
finite-volume method with 34.5 s. Both codes were run with identical command-line options and
optimization flags, although there is inevitably a sensitivity to software implementation which was
not accounted for in this test.

A breakdown of the simulation time for the semi-Lagrangian scheme is given in Table VII. The
clear majority (80.6%) of computation time is occupied by the advection operator, although only
15.5% of run-time (4.7 s) is needed per tracer. Of the per-tracer requirement, the monotonicity filter
adds approximately 0.4 s to the total run-time.
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Table VII. Wall-clock time required the major components of the semi-Lagrangian method as observed for
the geostrophically-balanced flow test over a 5 day total integration period (∆t = 300 s). Each added tracer

would theoretically only needs to apply operations indicated by (one tracer).

Process Runtime (percent of total)
Update Velocities 10.9%
Advection 80.6%

Compute trajectories 44.4%
Compute area-integrated weights 22.1%
Reconstruction (one tracer) 4.0%

Monotone Limiter (one tracer) 1.4%
Other overhead (one tracer) 10.1%

Other 8.5%

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a semi-Lagrangian shallow-water model based on the CSLAM
scheme[7, 8, 30] using explicit time stepping and local flux operators. This model is built on
the quasi-uniform cubed-sphere grid so as to maximize parallel performance of the underlying
scheme. This scheme has been subjected to a suite of standard test cases, including the test
suite of [43] and the barotropic instability [44], to verify accuracy, stability and convergence. We
have confirmed third-order convergence of the scheme with spatial refinement, and have generally
observed excellent performance as compared with other shallow-water models. Although the strict
time step restrictions for our semi-Lagrangian scheme do not lead to a significant improvement
in performance over other models, this approach nonetheless maintains an implicit consistency
between the dry air mass and tracer mass fields which is desirable for applications in atmospheric
chemistry.

The work in this paper lays the foundation for a full atmospheric dynamical core using the semi-
Lagrangian discretization. In extending this model to a full 3D atmospheric model we have the
option of either using a fully 3D implementation of the CSLAM scheme or using some form of
dimension splitting [33]. Work is ongoing to determine which of these approaches may be more
desirable for a fully 3D implementation.
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Figure 9. Surface height field H for the flow over an isolated mountain test case at day 5, 10 and 15 on
a c40 resolution grid. Contour levels are from 4950 m to 5950 m in intervals of 50 m, with the highest
elevation being near the equator (the enclosed contours). The dashed circle represents the location of the

conical mountain.
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Figure 10. Normalized total energy difference for the flow over an isolated mountain test case at c40
resolution for the semi-Lagrangian scheme and STSWM reference scheme. Note that the total energy
difference has been scaled by a factor of 10−6, so the total energy loss over 15 days represents roughly

0.0036% of total energy.

Figure 11. Height field of the wavenumber four Rossby-Haurwitz wave. The solution is computed at c80
resolution on day 0, 7 and 14 (left column, from top to bottom) and day 30, 60 and 90 (right column, from
top to bottom). The contour levels are from 8100 m to 10500 m in increments of 100 m, with the innermost

contours being the highest.
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Figure 12. Normalized total energy difference for the Rossby-Haurwitz wave test case simulated on a c40
grid for the semi-Lagrangian scheme and STSWM reference scheme. Note that the total energy difference
has been scaled by a factor of 10−5, so the total energy loss over 14 days represents roughly 0.011% of total

energy.
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Figure 13. Relative vorticity field associated with the barotropic instability test at day 6 at c40 (top), c80,
c120 and c160 resolution (bottom). Contour lines are in increments of 2.0× 10−5s−1 from−1.1× 10−4s−1

to −0.1× 10−4s−1 (dashed) and from 0.1× 10−4s−1 to 1.5× 10−4s−1 (solid). The zero line is omitted.
Only the northern hemisphere is depicted in this plot.
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Figure 14. A depiction of the stencil used for computing the third-order sub-grid-scale reconstruction on the
cubed-sphere.

A. THE SUB-GRID-SCALE RECONSTRUCTION

In this appendix we provide our sub-grid-scale reconstruction strategy for each of the mass
fields. Our approach leads to a third-order accurate reconstruction which correctly accounts for
the underlying geometry. Monotonicity and positivity are enforced by appropriately limiting the
reconstruction prior to the advection step.

A.1. Computing the reconstruction coefficients

The reconstruction strategy proceeds as follows. The stencil we use in the reconstruction step is
depicted in Figure 14. First and second derivatives are calculated using standard finite-difference
formulae, which leads to approximations which are O(∆α2) accurate.

Dαψi,j =
−ψi+2,j + 8ψi+1,j − 8ψi−1,j + ψi−2,j

12∆α
, (69)

Dβψi,j =
−ψi,j+2 + 8ψi,j+1 − 8ψi,j−1 + ψi,j−2

12∆β
, (70)

Dααψi,j =
−ψi+2,j + 16ψi+1,j − 30ψi,j + 16ψi−1,j − ψi−2,j

24∆α2
, (71)

Dαβψi,j =
ψi+1,j+1 − ψi−1,j+1 − ψi+1,j−1 + ψi−1,j−1

4∆α∆β
, (72)

Dββψi,j =
−ψi,j+2 + 16ψi,j+1 − 30ψi,j + 16ψi,j−1 − ψi,j−2

24∆β2
. (73)

A third-order reconstruction relies on obtaining aO(∆α3) approximation to the centerpoint value
of ψ which additionally correctly accounts for the underlying cubed-sphere geometry. Here we
follow the deconvolution procedure of [33], which leads to the following fourth-order approximation
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in terms of the approximate derivatives of the underlying field and pre-computed derivatives of the
cubed-sphere Jacobian:

ψ(0)i,j = ψi,j −
∆α4

12|Z|i,j
∂J

∂α
Dαψ −

∆β4

12|Z|i,j
∂J

∂β
Dβψ −

∆α2

24
Dααψ −

∆β2

24
Dββψ. (74)

Integration over flux volumes is performed in gnomonic coordinates. Hence, the derivatives in
equiangular (α, β) coordinates must be converted to the gnomonic basis. We initially convert first
derivatives to gnomonic coordinates via

DXψi,j =
1

1 +X2
Dαψi,j , (75)

DY ψi,j =
1

1 + Y 2
Dβψi,j , (76)

and then second derivatives using

DXXψi,j =
1

1 +X2

(
−XDXψi,j +

1

1 +X2
Dααψi,j

)
, (77)

DXY ψi,j =
1

(1 +X2)(1 + Y 2)
Dαβψi,j , (78)

DY Y ψi,j =
1

1 + Y 2

(
−Y DY ψi,j +

1

1 + Y 2
Dββψi,j

)
. (79)

Upon computing all gnomonic derivatives, the third-order reconstruction within element Zi,j takes
the form

ψi,j(X) = ψ(0)i,j + (X −Xi)DXψi,j + (Y − Yj)DY ψi,j (80)

+ (X −Xi)
2DXXψi,j

2
+ (X −Xi)(Y − Yj)DXY ψi,j + (Y − Yj)2

DY Y ψi,j
2

,

where X = (X,Y ) is the vector form of the gnomonic coordinate.
The reconstruction coefficients c(p,q), which are then required in the expansion (42), are

computed by expanding (81) and collecting like terms. This procedure leads to the following set
of reconstruction coefficients:

c(0,0) = ψ(0)i,j −XiDXψi,j − YjDY ψi,j

+X2
i

DXXψi,j
2

+XiYjDXY ψi,j + Y 2
j

DY Y ψi,j
2

, (81)

c(1,0) = DXψi,j −XiDXXψi,j − YjDXY ψi,j , (82)

c(0,1) = DY ψi,j − YjDY Y ψi,j −XiDXY ψi,j , (83)

c(2,0) =
DXXψi,j

2
, (84)

c(1,1) = DXY ψi,j , (85)

c(0,2) =
DY Y ψi,j

2
. (86)
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A.2. Limiter Procedure

The advection algorithm currently supports two limiters. A positivity-preserving limiter is available
to avoid spurious negative values due to undershoots in the reconstruction and a stricter monotonic
limiter is available for removing all unphysical oscillations. The limiters follow the approach of [51],
wherein extreme values of the sub-grid-scale reconstruction are detected and the reconstruction is
scaled so that these extreme values fit within some predefined range. For the positivity-preserving
limiter the range is simply chosen to be [0,+∞], implying maximum values of the reconstruction
are left untouched while minimum values are cropped to zero if they are anywhere negative. For the
monotonicity-preserving limiter, the range is chosen to be [φmin, φmax], where

φmin = min
Nk

φk,

φmax = max
Nk

φk,

and Nk is the set of all neighboring elements to element k, including element k itself. On a
regular Cartesian grid, even diagonal neighbors are considered when determining the minimum
and maximum value of the scalar field, so in total 9 elements are used.

A.3. Treatment of Panel Edges

Panel edges in cubed-sphere geometry require some additional consideration since they represent
discontinuities in the equiangular coordinate system. To compute central derivatives, as required for
both the sub-grid-scale reconstruction of the height field and derivatives in the velocity evolution,
we must extend each panel outward into a “halo region” which overlaps neighboring panels. A
remapping scheme is then required to remap the height field and velocity field into the halo region
using only known information on neighboring panels.

The remapping scheme we use for the semi-Lagrangian dynamical core is identical to the method
discussed in [14] for element-averaged scalar fields. This approach first builds the sub-grid-scale
reconstruction in neighboring elements using one-sided derivatives, and then samples the resulting
reconstruction at Gaussian quadrature points in order to assemble a fourth-order approximation to
the element average of each scalar field in the halo region. For the velocity field, we instead use
a fourth-order one-sided sampling scheme to sample the velocity field at nodal points in the halo
region, since we only require knowledge of pointwise values. This approach has been shown to be
effective at suppressing low-order errors due to the coordinate discontinuity.

B. UPSTREAM INTEGRATION OF THE MASS FLUX

The mass flux is computed in gnomonic coordinates, with volume element dV = JXY (X)dXdY .
Consequently, (41) can be written for an arbitrary edge as

F = σ

∫
aτk

ψ(X)JXY (X)dXdY, (87)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (0000)
Prepared using fldauth.cls DOI: 10.1002/fld



32 P.A. ULLRICH, P.H. LAURITZEN AND C.JABLONOWSKI

p1

p3

p′
3

p′
1

p′
2

p2

t

s

Figure 15. The location of quadrature points (empty circles) for an arbitrary generalized quadrilateral and
associated coordinate axes (s, t).

where σ ∈ {−1, 1} is again a sign indicator depending on the direction of the flux and aτk denotes an
arbitrary flux region. Summation over distinct flux regions is implied, as in case 3 and 4 of Figure
4. The Jacobian in gnomonic coordinates is given by JXY , which takes the form

JXY (X) =
1

(1 +X2 + Y 2)3/2
. (88)

With an appropriate sub-grid-scale reconstruction of the form (42), we can write (87) as

F = σ
∑
p,q

c(p,q)

∫
aτk

XpY qJXY (X)dXdY, (89)

and so reduce the problem to a linear combination of the reconstruction coefficients c(p,q) and the
integrated Jacobian-weighted polynomial basis functions. This formulation is particularly efficient
when transporting multiple tracers, as the integrals must only be computed once for each pair (p, q).

To compute the geometric integrals (89) we must first introduce a coordinate transform that maps
the flux region to the unit square. Here we describe the procedure for an edge of constant X , noting
that the equations for an edge of constant Y are analogous. The coordinates s = (s, t) ∈ [0, 1]2 are
defined implicitly via

X(s) = X(s, t) = X1 + s(a2t+ bt+ c), Y (s) = Y (s, t) = Y1 + fs+ (s(g − f) + ∆X)t,

(90)
where f = Y ′1 − Y1, g = Y ′3 − Y3 and ∆X = Y3 − Y1. The quadratic coefficients (a, b, c) are defined
by fitting a quadratic through points

(t,X) = {(0, X ′1 −X1), (t∗, X
′
2 −X1), (1, X ′3 −X1)} , with t∗ =

Y ′2 − Y ′1
Y ′3 − Y ′1

. (91)
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This choice leads to

a =
X ′3t∗ −X ′2 +X ′1(1− t∗)

t∗(1− t∗)
, (92)

b =
X ′2 −X ′1 + t2∗(X

′
1 −X ′3)

t∗(1− t∗)
, (93)

c = X ′1 −X1. (94)

This construction requires that Y ′1 6= Y ′3 , Y ′3 6= Y ′2 and Y ′1 6= Y ′2 which should not occur for
sufficiently laminar flows and small enough Courant number. These coordinate axes are depicted
for a certain generalized quadrilateral in Figure 15.

Integration of (89) by substitution then leads to an additional Jacobian term which takes the form

Φ(s) =

∣∣∣∣det

(
∂(X,Y )

∂(s, t)

)∣∣∣∣ =

∣∣∣∣(−a(g − f)t2 − 2aft− bf + c(g − f))s+
(X(s)−X1)∆X

s

∣∣∣∣ .
(95)

Consequently, the geometric integrals can be written as∫
aτk

Xp Y q JXY (X) dXdY =

∫ 1

s=0

∫ 1

t=0

Xp Y qJXY (X(s)) Φ(s)dtds, (96)

Given an arbitrary quadrature rule with quadrature points sk = (sk, tk) and associated weights
wk, the numerical integral is then computed via∫

aτk

XpY qJXY (X)dXdY =
∑
k

X(sk)p Y (sk)q JXY (X(sk)) Φ(sk)wk. (97)

For quadrilateral integration we use a four-point fourth-order quadrature rule (see Figure 15) given
by

s1 =

(
− 1√

3
,− 1√

3

)
, s2 =

(
1√
3
,− 1√

3

)
, s3 =

(
− 1√

3
,

1√
3

)
, s4 =

(
1√
3
,

1√
3

)
,

(98)

and wi = 1/4 for each i ∈ {1, 2, 3, 4}.
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