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ABSTRACT

This paper presents a new approach for discretizing the nonhydrostatic Euler equations in Cartesian geo-

metry using an operator-split time-stepping strategy and unstaggered upwind finite-volume model formu-

lation. Following the method of lines, a spatial discretization of the governing equations leads to a set of

coupled nonlinear ordinary differential equations. In general, explicit time-stepping methods cannot be ap-

plied directly to these equations because the large aspect ratio between the horizontal and vertical grid

spacing leads to a stringent restriction on the time step to maintain numerical stability. Instead, an A-stable

linearly implicit Rosenbrock method for evolving the vertical components of the equations coupled to

a traditional explicit Runge–Kutta formula in the horizontal is proposed. Up to third-order temporal accuracy

is achieved by carefully interleaving the explicit and linearly implicit steps. The time step for the resulting

Runge–Kutta–Rosenbrock–type semi-implicit method is then restricted only by the grid spacing and wave

speed in the horizontal. The high-order finite-volume model is tested against a series of atmospheric flow

problems to verify accuracy and consistency. The results of these tests reveal that this method is accurate,

stable, and applicable to a wide range of atmospheric flows and scales.

1. Introduction

One reason explicit time-stepping schemes are desir-

able in atmospheric models is locality of data, which

allows the equations of motion to be evaluated with

minimal communication between neighboring elements.

In the context of large-scale parallel systems, this benefit

means that communication between processors is sig-

nificantly less than with equivalent implicit methods.

Nonetheless, purely explicit methods have strict time-step

restrictions that are required for stability. The fast-moving

waves in the governing equations largely determine this

time-step restriction, although they may possess little

physical significance. In general, the maximum stable

time step for explicit time discretizations is determined

by the dimensionless Courant–Friedrichs–Lewy (CFL)

number, which takes the form

n 5
cmaxDt

Dx
, (1)

where cmax denotes the maximum wave speed of the

system, Dx is the minimum grid spacing, and Dt is the

maximum stable time step. Most explicit time-stepping

methods are limited to n & 1. In atmospheric flows,

sound waves are the fastest propagating wave modes,

with an average speed of 340 m s21 at sea level. At Dx ’

110-km resolution [which corresponds to about a 18 grid

spacing at the equator or the spectral triangular trun-

cation T85, as argued by Williamson (2008)], this leads

to an explicit time-step restriction of about 5 min. Con-

trasting this against a vertical discretization with a mini-

mum near-surface grid spacing of about 100 m, the

maximum time-step restriction is merely Dt & 0.3 s,

1000 times smaller than the horizontal time step. With

our current computing power, atmospheric modeling

would be effectively impossible at such a time step.

Various methods have been developed to deal with

the computational restrictions introduced by fast waves

in the atmosphere. The first method arises from a mod-

ification of the equation set to ‘‘filter’’ out fast-moving

waves. At large horizontal scales, hydrostatic models

[including Taylor et al. (2008) and Lin (2004)] are usually

employed to remove the acceleration of the vertical ve-

locity from the system. This approach eliminates vertically
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propagating sound waves but reaches its limitations when

the grid size is reduced to nonhydrostatic scales around

10 km. Motions at this scale can be dominated by large

vertical velocities, and so the vertical acceleration term

cannot be neglected. Further, the dispersion relation of

the hydrostatic equation set reveals that the phase speed

of gravity wave modes can be overestimated at these

scales, as compared to the full nonhydrostatic equations

(Durran 1999). Alternatively, so-called sound-proof sys-

tems of equations, including the Boussinesq equations, the

anelastic system of Ogura and Phillips (1962), the pseudo-

incompressible system of Durran (1989), and the unified

approximation of Arakawa and Konor (2009), have been

successfully used in models by removing sound waves

from the governing equations. Nonetheless, it remains an

open question as to whether these modified systems are

valid on all scales [see, e.g., the discussion in Davies et al.

(2003) and Klein et al. (2010)].

The second method for dealing with computationally

fast waves relies on numerical methods that treat these

modes in a stable manner. In particular, we focus on

methods that integrate the full nonhydrostatic equation

set but introduce a splitting strategy to deal with fast

wave modes. These approaches are generally referred

to as ‘‘operator-split methods.’’ Operator-split methods

have been in use for atmospheric models for quite some

time, beginning with the first semi-implicit methods

of Kwizak and Robert (1971). Since then, semi-implicit

methods have been used in atmospheric models at prac-

tically all scales (see, e.g., Bonaventura 2000; Giraldo

2005; Restelli and Giraldo 2009). Closely related to semi-

implicit methods are split-explicit and fractional step

techniques. These methods are similar but instead com-

bine explicit operators, generally splitting on the slow and

fast waves. These methods were originally developed

by Gadd (1978) for atmospheric models, but they con-

tinue to be in use today. The Weather Research and

Forecasting model (WRF; Skamarock and Klemp 2008),

for example, uses both semi-implicit and explicit splitting,

utilizing implicit integration for vertically propagating

waves and a split-explicit technique for fast waves in the

horizontal.

In this paper, we introduce a new time discretization

for models that split the temporal and spatial derivatives

using the method of lines (Schiesser 1991; Schiesser and

Griffiths 2009). The proposed method offers a simple

framework for achieving up to third-order temporal ac-

curacy in a semi-implicit scheme while maintaining com-

putational efficiency. In particular, this approach is

designed to outperform a purely explicit formulation for

models with a horizontal–vertical aspect ratio greater than

5. Following an operator-split Runge–Kutta–Rosenbrock

(RKR) strategy, which combines an explicit Runge–Kutta

(RK) method with a linearly implicit Rosenbrock step

(Rosenbrock 1963), we obtain a method whose maximum

stable time step is constrained only by the horizontal CFL

number. To maximize efficiency on parallel systems,

the splitting is performed on the horizontal and vertical

components of the governing equations so that the im-

plicit solve occurs without requiring off-processor com-

munication (here we assume that vertical columns are

not distributed among multiple processors). This strat-

egy differs from the approach of St-Cyr and Neckels

(2009), for instance, who apply the implicit solve over the

entire domain. In this paper, the RKR time discretization

strategy is demonstrated using a high-order finite-volume

method in 2D and 3D so as to verify accuracy and sta-

bility, but this approach is easily extended to other

methods that independently discretize space and time.

In particular, discontinuous Galerkin methods, which

have been growing in popularity in recent years, would

be excellent candidates for use with these time inte-

grators. The approach presented herein is valid for all

horizontal scales and hence may be especially well

suited for models that utilize adaptively refined meshes

with scale differences.

In section 2, we introduce the full nonhydrostatic

fluid equations and explain how to incorporate terrain-

following coordinates. The RKR discretization is in-

troduced in section 3, wherein we present a first-order,

a second-order, and a third-order temporal discretiza-

tion that is stable for high-order spatial discretizations.

We will demonstrate these techniques using high-order

finite-volume spatial discretizations, which are explained

in section 4, followed by numerical results in section 5.

Our conclusions and future work are given in section 6.

2. The nonhydrostatic fluid equations in Cartesian
coordinates

We utilize the shallow-atmosphere nonhydrostatic fluid

equations written in terms of the conservative variables

density r, momentum ru (where u is the 3D velocity

vector), and potential temperature density ru. In vector

form, these equations are written as follows:

›r

›t
1 $ � (ru) 5 0, (2)

›ru

›t
1 $ � (ru5u 1 pI) 5 2rgez 2 f ez 3 (ru), and

(3)

›ru

›t
1 $ � (ruu) 5 0. (4)

Here, 5 denotes the tensor (outer) product,I denotes the

identity matrix, ez is the basis vector in the z direction, g is
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gravity, and f is the Coriolis parameter. The pressure p in

the momentum equation is related to the potential tem-

perature density via the equation of state,

p 5 p0

�
Rd(ru)

p0

�c
p
/c

y

. (5)

A list and explanation of the constants used in this paper

and their corresponding values can be found in Table 1.

The second terms on the left-hand side of (2)–(4) are

referred to as flux terms, because they determine the

flow rate of the conservative state variables through the

edges of a spatial region. The terms on the right-hand

side of these equations are source terms. Nonhydrostatic

mesoscale models that use a closely related equation set

include the WRF (see, e.g., Skamarock and Klemp 2008)

and the model by Ahmad and Lindeman (2007).

a. Reference profile splitting

A splitting of the hydrostatic and nonhydrostatic

components of the thermodynamic variables is used that

takes the form

r(x, t) 5 rh(x) 1 r9(x, t), (6)

p(x, t) 5 ph(x) 1 p9(x, t), and (7)

(ru)(x, t) 5 (ru)h(x) 1 (ru)9(x, t), (8)

where the quantities denoted by the superscript h are in

local hydrostatic balance,

›ph

›z
5 2rhg, (9)

and satisfy (5). This choice is desirable to remove errors

in approximating the hydrostatic state of the atmosphere

that could be responsible for significant generation of

spurious vertical momentum. Under this splitting, the

nonhydrostatic fluid equations (2)–(4) take the form

›r9

›t
1

›

›x
(ru) 1

›

›y
(ry) 1

›

›z
(rw) 5 0, (10)

›ru

›t
1

›

›x
(ru2 1 p9) 1

›

›y
(ruy) 1

›

›z
(ruw) 5 2

›ph

›x
1 f y,

(11)

›ry

›t
1

›

›x
(ruy) 1

›

›y
(ry2 1 p9) 1

›

›z
(ryw) 5 2

›ph

›y
2 fu,

(12)

›rw

›t
1

›

›x
(ruw) 1

›

›y
(ryw) 1

›

›z
(rw2 1 p9) 5 2r9g,

and (13)

›(ru)9

›t
1

›

›x
(ruu) 1

›

›y
(ruy) 1

›

›z
(ruw) 5 0. (14)

Note that the hydrostatic background state can be cho-

sen to vary spatially in the horizontal. This variation is

included as a source term in the momentum evolution

equations. This choice is made to avoid numerical errors

in the calculation of the horizontal pressure gradient in

the presence of steep topography.

b. Incorporating topography

When topography is present, terrain-following co-

ordinates as introduced by Gal-Chen and Somerville

(1975) (GS coordinates) are used to deform the com-

putational domain to match the physical space. How-

ever, we do not modify the governing equations from the

form (10)–(14) but instead make use of orthonormali-

zation and deorthonormalization operators to accu-

rately compute fluxes in the presence of topography (see

section 4d). This approach is analogous to the treatment

of edge fluxes that arises on unstructured grids. In ad-

dition to simplifying the arithmetic, this approach also

avoids problems that may arise from the explicit com-

putation of metric terms (Klemp et al. 2003).

A possible alternative to terrain-following coordinates

are so-called shaved-cell methods (see, e.g., Adcroft et al.

TABLE 1. List of parameters and physical constants used in this paper.

Parameter Description Control value

A Radius of the earth 6.371 22 3 106 m

V Rotational speed of the earth 7.292 3 1025 s21

G Gravity 9.806 16 m s22

p0 Background surface pressure 1000 hPa

cp Specific heat capacity of dry air at constant pressure 1004.5 J kg21 K21

cy Specific heat capacity of dry air at constant volume 717.5 J kg21 K21

Rd Ideal gas constant of dry air 287.0 J kg21 K21

g Ratio of specific heats cp/cy 1.4
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1997), which remove the portions of a cell occupied by

topography. Unfortunately, if terrain is accurately re-

solved, this approach will reduce the horizontal extent of

an element, and hence the maximum allowable hori-

zontal time step. Modified shaved cells that do not re-

duce the horizontal extent of cells could also be used, but

this technique may significantly degrade the accuracy of

the terrain discretization.

As has been shown by Schär et al. (2002), GS coor-

dinates are suboptimal for atmospheric motions, be-

cause they tend to introduce spurious grid artifacts

above rough terrain. More accurate numerical methods

may assist in reducing these errors; in particular, for the

tests presented in this paper, these coordinates have

been shown to be sufficiently smooth. In the future, this

choice of terrain-following coordinate in our model will

likely be revisited.

3. RKR schemes

The method of lines approach is one of the most pop-

ular methods for constructing high-order finite-volume

methods that are applicable to general systems of par-

tial differential equations (PDEs) (Jameson et al. 1981;

McCorquodale and Colella 2011). Under this frame-

work, the spatial terms, including the flux and source

terms, are discretized first, leading to a system of ordi-

nary differential equations (ODEs) for the state vari-

ables within each grid cell. This system is then discretized

by means of choosing an appropriate time-stepping

scheme. The time-stepping scheme must be chosen so

that the eigenvalues of the spatial operator fit within

the scheme’s stability region. Explicit schemes are gen-

erally computationally inexpensive but possess a re-

stricted stability region, whereas implicit schemes are

more costly but possess a large stability region. How-

ever, different physical processes can have eigenvalues

that have dramatically different structure, and so it may

not be appropriate to use a single time-stepping method

to integrate all terms of the ODE system.

a. The Runge–Kutta–Rosenbrock approach

Implicit–explicit (IMEX) methods represent a cate-

gory of general-purpose schemes for ODEs that couple

implicit and explicit time integration methods. These

methods have been in use as early as the 1970s (e.g.,

Crouzeix 1980; Varah 1980). More recently, a family of

implicit–explicit Runge–Kutta (IMEX-RK) schemes was

collected into a general framework by Ascher et al. (1997)

in their seminal paper. They showed that it is possible

to achieve an essentially arbitrary order of accuracy by

correctly interleaving explicit and implicit steps, although

with increasing computational expense.

IMEX methods are usually applied to an ODE of the

form
›q

›t
5 f(q) 1 g(q), (15)

where q is some state vector. In particular, we assume

that the terms f(q) are not stiff; mathematically, one can

think of this as saying that the eigenvalues of the oper-

ator f are close to the origin. On the other hand, the

terms grouped under the g(q) operator are assumed stiff,

containing eigenvalues that are potentially unbounded.

This stiffness can originate from short time-scale behav-

ior, such as chemistry or, as in our case, from geometric

stiffness due to a discrepancy in grid spacing in different

coordinate directions. Because we focus on the dynamical

aspects of the atmosphere, f(q) is assumed to be some

horizontal spatial discretization of the fluid equations

with grid spacing Dx and g(q) is a vertical discretization

with grid spacing Dz � Dx. The much smaller vertical

scale leads to eigenvalues of g that are typically far from

the origin. Herein, we will see that the terms f(q) and g(q)

arise naturally out of certain spatial discretizations of the

nonhydrostatic model equations (10)–(14).

To improve the performance of the IMEX methods,

we focus on the family of operator-split RKR methods,

which are identical to IMEX schemes, except replacing

the computationally expensive implicit step with a so-

called Rosenbrock step. Rosenbrock methods were

originally developed by Rosenbrock (1963) in the 1960s

and later refined by Nørsett and Wolfbrandt (1979). In

the atmospheric science community, Rosenbrock-type

methods have been used by Lanser et al. (2001) for

solving the shallow-water equations on the sphere and

adopted by St-Cyr and Neckels (2009) in the develop-

ment of a fully implicit discontinuous Galerkin meso-

scale model. More recently, a framework for high-order

RKR time-stepping methods has been presented by

Jebens et al. (2011) for use in atmospheric models uti-

lizing cut cells. These methods are also popular in at-

mospheric chemistry modeling (Sandu et al. 1997; Verwer

et al. 1999), because reaction equations tend to operate

on very fast time scales.

In an implicit approach, one usually ends up with a

nonlinear system of equations of the form

F(x) 5 0 (16)

that must be solved numerically for some vector x.

Perhaps the most well-known and robust technique for

solving this system is the Newton–Krylov algorithm,

which is an iterative approach defined by

x(i) 5 x(i21) 2

�
dF

dx

����
x5x(i21)

�21

F(x(i21)). (17)
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When applied to systems of ODEs obtained from

time-split PDE systems, the Newton–Krylov method is

usually initialized by taking x(0) to be the value of x

obtained at the previous time step. Although this method

converges quadratically, the Jacobian dF/dx must none-

theless be computed (numerically or analytically) at ev-

ery iteration. Under the Rosenbrock method, one does

not require nonlinear convergence of (16) and instead

only takes one step of (17). This significantly reduces the

costs associated with the implicit step and restricts the

number of Jacobian evaluations to one per Rosenbrock

step.

To obtain high-order accuracy in time with our scheme,

we consider a general Runge–Kutta method with in-

terleaved explicit and linearly implicit Rosenbrock

steps. In the general RKR framework, we define the

initial data by

q(0) 5 qn (18)

and then each subsequent step by

q(i) 5 �
i21

k50
ai,kq(k) 1 «ibiDtf(q(i21))

1 (1 2 «i)biDtfI 2 biDtDg(q(i21))g21g(q(i21)),

(19)

where ai,k and bi are arbitrary coefficients; Dt is the time

step; Dg denotes the Jacobian of g; and «i is a binary

indicator variable,

«i 5
1, for an explicit step,

0, for a Rosenbrock step.

�
(20)

This scheme description is interchangeable with the dual

Butcher tableau approach of Ascher et al. (1997) but is

preferred in this paper because it is more closely linked

with the method’s actual implementation.

b. Computation of the Jacobian

The main cost of the Rosenbrock method is in the

implicit vertical step, which consists first of the con-

struction of the Jacobian matrix and second of the

matrix solve. Under our current implementation, the

matrix solve is handled by the Linear Algebra Package

(LAPACK) banded matrix solver. These routines are

roughly twice as fast as the general matrix solver routines

but nonetheless contribute significantly to the total wall-

clock time of the implicit solve. No additional effort has

been made to optimize these routines for our problem.

The bulk of optimization efforts have instead focused on

the construction of the Jacobian matrix.

Perhaps the simplest method of constructing the

Jacobian matrix is via numerical differentiation. Consider

a vertical array of state variables ~q that consists of con-

catenating all element-wise state variables in a vertical

column. The vector ~q 5 (~q1, . . . , ~qN) will have length

N 5 Nz 3 Nc, where Nz is the number of vertical elements

and Nc is the number of degrees of freedom per element.

Under numerical differencing the Jacobian is written as

a concatenation of vectors

Dg(~q) 5

�
›g

›~q1

���� . . .

���� ›g

›~qN

�
, (21)

where

›g

›~qi

(q) ’
g(~q 1 di�) 2 g(~q)

�
. (22)

Here, � is a small positive constant (here chosen to be

1025) and di is the vector form of the Kronecker delta,

(di)j 5
1 if i 5 j,

0 if i 6¼ j:

�
(23)

Because the Jacobian is sparse, only the nonzero com-

ponents of each vector must be computed at each stage.

Nonetheless, this method can become quite expensive

because of repeated evaluation of the vector-valued

function g.

If the function g is simple enough, it may be possible to

instead formulate the Jacobian analytically. This strat-

egy significantly reduces the computation time required

for constructing the Jacobian and so will be our method

of choice in this paper. Under our finite-volume for-

mulation, a quasi-linear flux function in the vertical (see

section 4f) is chosen in order to facilitate an easy for-

mulation of the Jacobian matrix. It will be shown (see

section 5a) that the effort in formulating an analytic

Jacobian significantly reduces computation time for the

implicit solve. The analytic expressions for each term of

the Jacobian have been omitted here because they are

quite lengthy.

c. A crude splitting scheme

Perhaps the simplest stable scheme for splitting the

explicit and linearly implicit components of the evolu-

tion equations involves simply applying a high-order

explicit Runge–Kutta operator to the explicit terms

followed by the Rosenbrock operator applied at the full

time step. If we use the third-order strong-stability-

preserving (SSP) three-stage third-order Runge–Kutta

(RK3) scheme of Gottlieb et al. (2001) for the explicit

component, this scheme proceeds according to
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q(1) 5 qn 1 Dtf(qn), (24)

q(2) 5
3

4
qn 1

1

4
q(1) 1

Dt

4
f(q(1)), (25)

q(3) 5
1

3
qn 1

2

3
q(2) 1

2Dt

3
f(q(2)), and (26)

qn11 [ q(4) 5 q(3) 1 DtfI 2 DtDg(q(3))g21g(q(3)).

(27)

Here the indices n and n 1 1 denote the current and

future time step. This scheme is first-order accurate in

time and extremely diffusive (as demonstrated in section

5a). As a consequence, we do not recommend using this

scheme in practice.

d. The Strang carryover scheme

To achieve better accuracy in time, we suggest a

splitting scheme pointed out by S. Ruuth (2010, personal

communication) and based on Strang splitting of the

explicit and implicit operators. This scheme combines

a third-order SSP RK3 step with one implicit solve per

time step. However, at the first time step, we must per-

form one additional implicit operation, storing

G0 5

�
I 2

Dt

2
Dg(q0)

�21

g(q0). (28)

After this initialization step, the algorithm proceeds as

follows:

q(1) 5 qn 1
Dt

2
Gn, (29)

q(2) 5 q(1) 1 Dtf(q(1)), (30)

q(3) 5
3

4
q(1) 1

1

4
q(2) 1

Dt

4
f(q(2)), (31)

q(4) 5
1

3
q(1) 1

2

3
q(3) 1

2Dt

3
f(q(3)), (32)

Gn11 5

�
I 2

Dt

2
Dg(q(4))

�21

g(q(4)), and (33)

qn11 5 q(4) 1
Dt

2
Gn11. (34)

This scheme can achieve third-order linear and non-

linear accuracy in f plus second-order accuracy in g.

Comparing this method against the crude scheme, the

only significant difference is in the form of the implicit

step: that is, in using (27) versus (33). In fact, the use of

Dt/2 within the Jacobian term leads to an implicit step

that is analogous to a linear Crank–Nicolson step and so

gives us second-order accuracy.

e. The Ascher–Ruuth–Spiteri (2, 3, 3) scheme

A third-order operator-split RKR scheme can be ob-

tained from the Ascher–Ruuth–Spiteri (2, 3, 3) [ARS(2, 3,

3)] scheme of Ascher et al. (1997). If we simply replace the

implicit solve with a Rosenbrock step, the resulting scheme

takes the form

q(1) 5 qn 1 gcDtf(qn), (35)

q(2) 5 q(1) 1 gcDtfI 2 gcDtDg(q(1))g21g(q(1)), (36)

q(3) 5
1

gc

qn 1
(3gc 2 2)

gc

q(1) 1
(1 2 2gc)

gc

q(2)

1 2(1 2 gc)Dtf(q(2)), (37)

q(4) 5 q(3) 1 gcDtfI 2 gcDtDg(q(3))g21g(q(3)), and

(38)

qn11 5 2
1

2
qn 2

3gc

2
q(1) 1

3

2
q(2) 1

3(3gc 2 2)

2
q(3)

1
1

2gc

q(4) 1
Dt

2
f(q(4)), (39)

where

gc 5
3 1

ffiffiffi
3
p

6
. (40)

This scheme is linearly third-order accurate in both

f and g and any cross-terms that arise from the inte-

gration procedure, but it is only nonlinearly third-order

accurate in f. In fact, when g 5 0 the stability region for

this scheme is exactly the stability region of the usual

three-stage third-order-accurate Runge–Kutta operator.

This scheme requires three explicit steps per time step

and two Rosenbrock steps, with each Rosenbrock step

consisting of a single evaluation of the Jacobian and a

single linear solve. As a consequence, the overall com-

putational cost of this method is approximately twice that

of the Strang carryover scheme.

4. Spatial discretization

In this section, we turn our attention to the spatial

discretization of the 3D nonhydrostatic governing equa-

tions (10)–(14) using a high-order finite-volume scheme.

Here, we describe the key components of our algorithm

for discretely evolving the state vector over time.
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a. Finite-volume approach

In the full finite-volume approach, we first integrate

the Euler equations in the form (10)–(14) over an ele-

ment Z (with volume jZj) and make use of Gauss’s di-

vergence theorem to write the flux term as an integral

around the boundary ›Z, giving

›

›t
q 1

1

jZj

ð ð
›Z
F � n dS 5 cC 1 cG 1 cH . (41)

Here, the flux integral is taken over the surface with

normal vector n and infinitesimal area element dS. The

termF � n is a vector quantity that denotes the outward

flux of each of the state variables perpendicular to the

boundary. The double overline denotes either a 2D or

3D average of the form

f 5
1

jZj

ð
Z

f dV, (42)

where the term dV 5 dxdydz denotes the infinitesimal

volume element in 3D (or dV 5 dxdz for 2D x 2 z slice

configurations). Here, q again denotes the averaged

state vector in cell Z. Likewise, c
C

, c
G

, and c
H

denote

the source terms due to the Coriolis force, gravity, and

hydrostatic background pressure. Note that the volume-

averaged formulation (41) is exactly equivalent to the

original nonhydrostatic equations, and it is left to us to

define an appropriate discretization over each of the

terms in this expression.

The computational domain for our model is defined

over a regular Cartesian grid. Elements are equally

spaced with grid spacing DX in the X direction, DY in the

Y direction, and DZ in the Z direction. Cartesian co-

ordinates (x, y, z) are related to the coordinates in the

computational domain (X, Y, Z) via a transform

x 5 X, y 5 Y, z 5 z[Z, hT(x, y)], (43)

where z is a function of the bottom topography hT(x, y).

Under the terrain-following GS coordinate, this trans-

form takes the form

z 5 hT(x, y) 1
Z

H
[H 2 hT(x, y)], (44)

where H is the altitude of the model cap. Element cen-

troids Xi,j,k 5 (Xi, Yj, Zk) are located at

Xi 5 i 2
1

2

� 	
DX, Yj 5 j 2

1

2

� 	
DY,

Zk 5 k 2
1

2

� 	
DZ, (45)

with spatial indices (i, j, k) that start from (1, 1, 1). Edges

(or faces) are midway between neighboring element

centroids and so are defined by half-indices and denoted

by ›Z with initial index ½. For example, the edge

›Zi11/2, j,k is at the interface between element (i, j, k) and

(i 1 1, j, k) and defines a plane that is constant in both Y

and Z. Quantities which are defined as edge averages

will be denoted by a single overline. Average edge fluxes

are defined at element edges, which are denoted here by

F
i11/2, j,k

for a flux across edge (i 1 ½, j, k) and defined by

Fi11/2, j, k 5
1

jZji, j, k

ð ð
›Z

i11/2, j,k

F � n dS. (46)

Hence, the volume-averaged formulation (41) can be

written as

›

›t
qi, j,k 5 H(q) 1 V(q), (47)

where

H(q) 5 Fi21/2, j,k 2 Fi11/2, j,k 1 Fi, j21/2,k

2 Fi, j11/2,k 1 cC 1 cH and (48)

V(q) 5 Fi, j,k21/2 2 Fi, j,k11/2 1 cG. (49)

The choice of splitting into H(q) (horizontal) and V(q)

(vertical) is analogous to (15), with H(q) denoting terms

that are usually significantly less stiff than terms of V(q).

For each explicit substage, the 3D finite-volume al-

gorithm proceeds as follows:

1) Construct the left and right edge-averaged state

vector from the subgrid-scale reconstruction.

2) Deconvolve the edge averages to give a fourth-order-

accurate edge-centered approximation of the state

vector.

3) Transform vector quantities into the orthogonal

frame at the edge center point.

4) Compute the pointwise flux across the edge using

a Riemann solver.

5) Transform vector fluxes into the Cartesian frame

using the deorthonormalization matrix.

6) Convolve the pointwise fluxes to obtain a fourth-

order-accurate edge-averaged approximation of the

flux.

7) Compute element-averaged source terms.

8) Update the element-averaged state vector within

each element.

The algorithm is similar in the vertical, except the de-

convolution and convolution stages are ignored, which
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reduces the maximum formal order of accuracy of the

spatial discretization in the vertical to second order. Each

of the substages of this algorithm will be described in the

following sections.

b. The subgrid-scale reconstruction

In the upwind finite-volume framework, we require a

subgrid-scale reconstruction within each element that is

used to capture the continuous behavior of state vari-

ables below the grid scale. The finite-volume subgrid-

scale reconstruction is composed of a polynomial basis

whose coefficients are reconstructed from the state in-

formation of neighboring elements. This is in contrast to

discontinuous Galerkin methods, for instance, which

instead store the polynomial coefficients as independent

degrees of freedom. The subgrid-scale reconstruction is

then used for computing the approximate averaged flux

across each edge. Because reconstructions are inherently

discontinuous across edges, a Riemann problem must be

solved at each interface to obtain averaged edge fluxes.

So-called approximate Riemann solvers that are typically

used to solve each Riemann problem are pointwise op-

erators that take as input the approximate state vector

on each side of the interface (for simplicity referred to

as left and right states). Hence, the simplest form for an

approximate Riemann solver is

F* 5 F*(qL, qR), (50)

where qL is the left state and qR is the right state. In the

vertical, left and right instead correspond to bottom and

top, respectively.

In the X direction, the subgrid-scale reconstruction is

obtained by fitting a quartic polynomial through ele-

ments f(i 2 2, j, k), . . . , (i 1 2, j, k)g. Evaluating the

polynomial at the edge (i 1 ½, j, k) leads to recon-

structed edge values, which are computed as a linear

combination of element averages via

qL
i11/2, j,k 5

1

30
qi22, j,k 2

13

60
qi21, j,k 1

47

60
qi, j,k

1
9

20
qi11, j,k 2

1

20
qi12, j,k and (51)

qR
i11/2, j,k 5 2

1

20
qi21, j,k 1

9

20
qi, j,k 1

47

60
qi11, j,k

2
13

60
qi12, j,k 1

1

30
qi13, j,k. (52)

The magnitude of the discontinuity qR
i11/2, j,k 2 qL

i11/2, j,k

can be interpreted as a measure of the smoothness of the

underlying field. This property is used by the Riemann

solver in computing edge fluxes, so that diffusion can be

targeted at regions where the underlying state variables

are not smooth. The reconstruction formula for the Y

direction is identical, except with the j indices varied.

At vertical edges, we make use of either (51) and (52)

with k indices varied or a more compact three-point

stencil given by

qL
i, j,k11/2 5 2

1

6
qi, j,k21 1

5

6
qi, j,k 1

2

6
qi, j,k11 and (53)

qR
i, j,k11/2 5

2

6
qi, j,k 1

5

6
qi, j,k11 2

1

6
qi, j,k12. (54)

It should be emphasized the aforementioned recon-

structions produce either fifth-order-accurate (using the

five-point stencil) or third-order-accurate (using the three-

point stencil) approximations to the edge-averaged state

vector. If we were to directly evaluate the flux using these

reconstructed edge averages, the resulting edge-averaged

flux would only be second-order accurate. This result

arises because the flux function is not a linear operator,

and so the average of the flux is not the flux of the aver-

age. Hence, without further application of a convolution/

deconvolution operator, both of these reconstructed edge

averages will lead to a scheme that is formally second-

order accurate. Nonetheless, the stencil (51) and (52)

generally produces less diffusive and more accurate re-

sults, whereas using the three-point stencil (53) and (54)

reduces the bandwidth of the Jacobian matrix and so

generally results in a faster vertical solve.

Near no-flux boundaries, the reconstruction formula

is modified to only use one-sided information. For the

five-point stencil near the bottom edge, we use

qR
i, j,1/2 5

11

6
qi, j,1 2

7

6
qi, j,2 1

2

6
qi, j,3, (55)

qL
i, j,3/2 5

2

6
qi, j,1 1

5

6
qi, j,2 2

1

6
qi, j,3, (56)

qR
i, j,3/2 5

1

4
qi, j,1 1

13

12
qi, j,2 2

5

12
qi, j,3 1

1

12
qi, j,4, and

(57)

qL
i, j,5/2 5 2

1

12
qi, j,1 1

7

12
qi, j,2 1

7

12
qi, j,3 2

1

12
qi, j,4. (58)

For the three-point stencil, we use

qR
i, j,1/2 5

3

2
qi, j,1 2

1

2
qi, j,2 and (59)

qL
i, j,3/2 5

1

2
qi, j,1 1

1

2
qi, j,2. (60)

Near the upper boundary, the reconstructions are anal-

ogous, except with indices reordered.
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c. Fourth-order convolution and deconvolution
operators in 3D

As mentioned previously, the problem with using

edge averages as inputs to the Riemann solver is that this

operator is inherently pointwise, whereas edge averages

are only second-order approximations to the pointwise

edge-center value of the state vector. However, one may

apply a deconvolution operator (Barad and Colella

2005) to convert edge averages to pointwise values [here

denoted with a subscript (0)]. For example, along an

edge of constant X, it can be verified that

q
(0)i11/2, j,k 5 qi11/2, j,k 2

DY2

24

›2q

›Y 2

� 	
(0)i11/2, j,k

(61)

is a fourth-order approximation to q(0)i11/2,j,k, the value

of the state vector at the center point of edge ›Zi11/2, j,k.

Here, q
i11/2, j,k

is the edge average of the state vector and

(›2q/›Y2)(0)i11/2,j,k is the second derivative in Y of the

state vector evaluated at the edge center point. A second-

order approximation to (›2q/›Y2)(0)i11/2,j,k can be used,

such as

›2q

›Y2

� 	
(0)i11/2, j,k

’
qi11/2, j21,k 2 2qi11/2, j,k 1 qi11/2, j11,k

DY2
,

(62)

which, in combination with (61), gives a fourth-order ap-

proximation to q(0)i11/2,j,k. The Riemann solver is then

applied pointwise to qL
(0)i11/2, j,k and qR

(0)i11/2, j,k, and a con-

volution operation is applied to retrieve the edge average

of the flux vector F
i11/2, j,k

,

Fi11/2, j,k 5 F
(0)i11/2, j,k 1

DY2

24

›2F

›Y2

� 	
(0)i11/2, j,k

. (63)

In this case, the edge-average of the flux vector is a

fourth-order-accurate estimate of the flux across the

given edge.

To obtain fourth-order accuracy overall, the source

terms of the horizontal momentum equations must also

be evaluated with at least third-order accuracy. Simply

evaluating source terms using cell averages qi, j,k only

leads to second-order-accurate approximations of these

terms. Hence, to obtain high-order accuracy, we again

apply a deconvolution procedure to obtain an approxi-

mation to the state vector at the element center point,

q
(0)i, j,k 5 qi, j,k 2

DX2

24

›2q

›X2

� 	
(0)i, j,k

2
DY2

24

›2q

›Y2

� 	
(0)i, j,k

.

(64)

Source terms are then evaluated at the element center

point [c(0)i,j,k 5 c(q(0)i,j,k)], and a convolution pro-

cedure is applied to reaverage the source term over

each element,

ci, j,k 5 c
(0)i, j,k 1

DX2

24

›2c

›X2

� 	
(0)i, j,k

1
DY2

24

›2c

›Y2

� 	
(0)i, j,k

.

(65)

Again, all second derivatives are approximated to second-

order accuracy using (62),

›2c

›X2

� 	
(0)i, j,k

’
ci21, j,k 2 2ci, j,k 1 ci11, j,k

DX2
and (66)

›2c

›Y2

� 	
(0)i, j,k

’
ci,j21,k 2 2ci, j,k 1 ci,j11,k

DY2
. (67)

In our treatment, the edge averages in the vertical

direction are used as direct input to the Riemann solver.

This implies that this method is only second-order ac-

curate in the vertical. However, these errors are typi-

cally much smaller than the associated truncation errors

in the horizontal for two reasons: First, in operational

global atmospheric models the grid spacing in the verti-

cal is typically much smaller than the grid spacing in

the horizontal. Second, vertical wind speeds are typically

much less than the corresponding horizontal wind speeds.

d. Orthonormalization

In this paper, we make use of approximate Riemann

solvers for computing the flux F(q) across each edge.

However, generic Riemann solvers are purely one-

dimensional operators. To apply this class of solvers to

multidimensional problems, we must first isolate the

vector components that are perpendicular and parallel

to each edge. In 3D, the orthogonal frame consists of one

basis vector that is orthogonal to the active edge (denoted

e?) and two components that are parallel to the edge

(denoted e1 and e2). Hence, the nonorthogonal compo-

nents define a tangent plane to the active edge but are

not necessarily orthogonal to one another. At the point

where the orthogonal basis is defined, an arbitrary vector

v can be written in either the Cartesian basis,

v 5 y xex 1 y yey 1 y zez, (68)

with unit vectors ex, ey, and ez, or in the orthonormal

basis

v 5 y?e?1 y1e1 1 y2e2, (69)
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with unit vectors e?, e1, and e2. The transformation be-

tween these two systems is accomplished via the ortho-

normalization matrix O
d
(x, y, z),

y?

y1

y2

0
B@

1
CA 5 Od(x, y, z)

y x

yy

yz

0
@

1
A. (70)

Here, d denotes the coordinate being held constant, d 2
fx, y, zg. Analogously, transforming from the orthonor-

mal basis to the natural basis simply requires applying the

inverse operation,

yx

yy

yz

0
@

1
A 5 O21

d (x, y, z)

y?

y1

y2

0
B@

1
CA. (71)

In the absence topography, the orthonormalization

matrices reduce to permutation matrices of the form

Ox(x, y, z) 5

1 0 0

0 1 0

0 0 1

0
B@

1
CA,

Oy(x, y, z) 5

0 1 0

1 0 0

0 0 1

0
B@

1
CA,

Oz(x, y, z) 5

0 0 1

1 0 0

0 1 0

0
B@

1
CA. (72)

In the presence of topography, the coordinate system

has been constructed such that edges of constant X and

Y are also constant in x and y, respectively. Hence, the

matrices Ox and Oy are identical to those in (72). How-

ever, edges of constant Z (in computational space) no

longer correspond to edges of constant z (in Cartesian

space). Hence, an alternative orthonormalization matrix

must be constructed for these edges.

By definition, the GS coordinates define a mapping

between computational space and Cartesian space of

the form

z(Z) 5 Z 1 hT (x, y) 1 2
Z

H

� 	
, (73)

where hT is the height of the topography and H is the

height of the model cap. The coordinates z and Z are

defined in the range z 2 [hT, H] and Z 2 [0, H]. Hence,

surfaces of constant Z in Cartesian space take the form

f(x, y, z) [ z 2 Z 2 hT (x, y) 1 2
Z

H

� 	
. (74)

The perpendicular vector to the surface is obtained by

differentiating f, leading to

q? 5 $f 5

�
2

›hT

›x
1 2

Z

H

� 	�
ex

1

�
2

›hT

›y
1 2

Z

H

� 	�
ey 1 ez, (75)

and so at this edge we have

e? 5
1

jq?j
q?. (76)

To obtain basis vectors tangent to the edge we use Gram–

Schmidt orthonormalization to define

q1 5 ex 2 (ex � e?)e?, q2 5 ey 2 (ey � e?)e? (77)

and then normalize accordingly,

e1 5
1

jq1j
q1, e2 5

1

jq2j
q2. (78)

The deorthonormalization matrix at this edge is then

the composition of the three basis vectors,

O21
z 5 (e?e1e2), (79)

with Oz obtained via numerical inversion of O21
z .

e. The AUSM1-up Riemann solver

The Advection Upstream Splitting Method (AUSM1-

up) approximate Riemann solver of Liou (2006) was re-

cently developed with the goal of enhancing the accuracy

of the Riemann solution in the low Mach number regime.

Many other commonly used Riemann solvers, including

the popular solver of Rusanov (1961) and the solver of

Roe (1981), do a poor job in the very low Mach number

regime because they introduce a significant amount of

numerical diffusion that can smear out the solution (see

Ullrich et al. 2010). Here, we give a short overview of the

algorithmic implementation of this solver without delving

into the mathematical details.

In general, standalone Riemann solvers require that

the velocity components of the input state vector be

written in an orthogonal frame. Orthonormalization

is performed by multiplying the velocity vector by the

orthonormalization matrix, which is described in section

4d and yields velocity components (y?, y1, y2) in the or-

thogonal frame. The momentum flux, which is computed

in the orthogonal frame, must similarly be transformed

back into the Cartesian frame, which can be obtained by

multiplying the Riemann flux by the inverse of the or-

thonormalization matrix.
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Given a left state vector qL 5 [rL, (ry?)L, (ry1)L,

(ry2)L, (ru)L] and right state vector qR 5 [rR, (ry?)R,

(ry1)R, (ry2)R, (ru)R], we define the averaged density,

r1/2 5
1

2
(rL 1 rR); (80)

averaged sound speed,

a1/2 5
1

2

" ffiffiffiffiffiffiffiffiffi
gpR

rR

s
1

ffiffiffiffiffiffiffiffiffi
gpL

rL

s #
; (81)

perpendicular Mach numbers at the interface,

ML 5
y?L
a1/2

, and MR 5
y?R
a1/2

; (82)

and mean local Mach number,

M
2

5
(y?L)2

1 (y?R)2

2a2
1/2

. (83)

Here, pL and pR are the corresponding left and right

pressures, which are calculated from the state vector via

(5). Similarly, y?L 5 (ry?)
L/rL

and y?R 5 (ry?)
R/rR

are the

interfacial velocities.

The interface Mach number is then defined as

M1/2 5M1
(4)(ML) 1M2

(4)(MR)

2 Kp max(1 2 sM
2
, 0)

pR 2 pL

r1/2a2
1/2

, (84)

where

M6
(2)(M) 5

1

4
(M 6 1)2,

M6
(4)(M) 5

1

2
(M 6 jMj)

M6
(2)(M)[1 7 16~bM7

(2)(M)]

if jMj$ 1,

otherwise.

8><
>:

(85)

The advective component of the flux is then defined by

_m1/2 5 a1/2M1/2

rL if M1/2 . 0,

rR otherwise.

�
(86)

To obtain the pressure-driven component of the flux,

we make use of the definition

P6
(5)(M) 5

1

2
[1 6 sign(M)] if jMj$ 1,

M6
(2)(M)[(62 2 M) 7 16~aMM7

(2)(M)] otherwise.

8<
: (87)

The interface pressure-driven flux is then given by

p1/2 5P6
(5)(ML)pL 1 P2

(5)(MR)pR

2 KuP
6
(5)(ML)P2

(5)(MR)(rL 1 rR)a1/2(y?R 2 y?L).

(88)

Combining (84)–(86) and (88), we obtain that the total

numerical flux across the interface is then given by

F* 5 _m1/2

qL/rL if _m1/2 . 0,

qR/rR otherwise

� �
1 p1/2,

"
(89)

with

qL 5

2
6666664

rL

(ry?)L

(ry1)L

(ry2)L

(ru)L

3
7777775

, qR 5

2
6666664

rR

(ry?)R

(ry1)R

(ry2)R

(ru)R

3
7777775

, P1/2 5

2
666664

0

p1/2

0
0

0

3
777775.

(90)

Several free parameters are available in this scheme.

For simplicity, we follow Liou (2006) by choosing

~a 5
3

16
, ~b 5

1

8
, Ku 5

3

4
, Kp 5

1

4
, s 5 1. (91)

f. The modified AUSM1-up Riemann solver

The AUSM1 solver can be simplified dramatically for

approximately smooth flows with M� 1. This simplifi-

cation may be desirable to improve the computational

performance of the method and significantly reduce

the complexity of the analytic Jacobian needed in the

implicit step. This modified Riemann solver is then

applied in the vertical, where computing the Jacobian

requires multiple evaluations of the Riemann solver at

each time step. To begin, we assume that the difference

between the left and right states is small relative to the

magnitude of the hydrostatic background. In this case,

the speed of sound at the interface, which primarily

comes into play in the diffusion terms, can be approx-

imated as
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a1/2 5

ffiffiffiffiffiffiffiffiffiffiffi
grh

1/2

rh
1/2

s
, (92)

where the pressure and density field are taken to be the

quantities defined by the hydrostatic background. Fur-

ther, by making use of (5) the diffusive term in (84), which

involves the pressure difference across the interface, can

be approximated as

pR 2 pL 5 p0

�
Rd

p0

[(ru)h
1/2 1 (ru)R9 ]

�c
p
/c

y

2 p0

�
Rd

p0

[(ru)h
1/2 1 (ru)L9]

�c
p
/c

y

,

’
p0cp

c
y

[(ru)h]c
p
/c

y
21[(ru)R9 2 (ru)L9],

5
a2

1/2rh
1/2

(ru)h
1/2

[(ru)R9 2 (ru)L9].

The interfacial Mach number then takes the form

M1/2 5
rLy?L 1 rRy?R
a1/2(rL 1 rR)

2
Kp

(ru)h
1/2

[(ru)R9 2 (ru)L9]. (93)

Similarly, in the limit of small Mach number, the inter-

facial pressure term (88) takes the simplified form

p1/2 5 p0

�
Rd

p0

(ru)L 1 (ru)R

2

�c
p
/c

y

2
Kua1/2

2
(rRy?R 2 rLy?L). (94)

The flux calculation in this case otherwise follows (86)

and (89).

g. Nonreflecting boundary conditions

When required in the test cases of section 5, non-

reflecting boundary conditions are imposed in the form

of a sponge layer along the model top and at outflow

boundaries. These boundary conditions are imposed by

adding damping to the momentum and potential tem-

perature evolution equations. This damping takes the

form

›q

›t
5 2t(q 2 qb), (95)

where t 5 t(x, z) is the inverse time scale of the damp-

ing, q 2 fru, ry, rw, (ru)9g, and the subscript b denotes

some specified background state. Here, t 5 t(x, z) denotes

the local strength of the Rayleigh damping. Damping is

applied over a finite interval in the interior of the domain,

spanning the range [s0 2 sT, s0], where s 2 fx, zg for 2D

x 2 z slice simulations, s0 denotes the location of the

boundary, and sT denotes the thickness of the damping

layer. The strength of the damping within the damping

layer is determined by t, which, following Giraldo and

Restelli (2008), is defined as

t(s) 5

0 if s , s0 2 sT

t0

�
s 2 (s0 2 sT )

sT

�4
otherwise

,

8><
>: (96)

for mountain wave test cases (sections 5c and 5d) where

t0 5 2.0 3 1022 s21. If two boundary layers coincide, as

with the outflow lateral boundary and the upper bound-

ary, the strength of the Rayleigh friction is taken to be the

maximum of the two coefficients.

h. Explicit diffusion

Although the Riemann solver provides a mechanism

for maintaining stability via the addition of implicit

diffusion, in some circumstances it may be desirable to

specify an explicit viscous forcing. Traditionally, a pa-

rameterization of the viscosity appears in the form of a

Laplacian-type viscous term on the right-hand side of the

nonhydrostatic equations of motion (10)–(14). However,

as argued by Giraldo and Restelli (2008), more physical

parameterizations of dynamic viscosity exist. Nonethe-

less, for simplicity we will use this form of diffusion when

needed for selected test cases in section 5.

The viscosity augments the nonhydrostatic equations

by adding a term of the form $ � (nr$u) to the right-hand

side of the momentum equations and $ � (nr$u) to the

potential temperature density equation, for a given vis-

cosity coefficient n. For the case of zero topography, these

terms are incorporated into the finite-volume discretiza-

tion by adjusting the computed Riemann edge flux ac-

cording to

[F
(0)

]diff 5 F
(0)

1 nr$d qp, (97)

where F(0) is the output of the Riemann solver and qp 5

(0, u, y, w, u). Here, $d denotes the derivative across the

edge, which is discretized in the X direction as

($dq)i11/2, j,k 5
1

DX

�
1

12
qi21, j,k 2

15

12
qi, j,k

1
15

12
qi11, j,k 2

1

12
qi12, j,k

�
. (98)

For the y and z directions, the discretization is analogous.

Under the three-point vertical stencil (53) and (54), we
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instead use the central approximation to the vertical de-

rivative in (97), given by

($dq)i, j,k11/2 5
1

DZ
[qi, j,k11 2 qi, j,k]. (99)

5. Numerical results

In this section, we present a selection of 2D (x–z)

and 3D numerical results in order to verify the conver-

gence and accuracy properties of the schemes discussed

in this paper. In section 5a, we look at a rising thermal

bubble in order to verify that our scheme is consistent

with other models and to show the effect of the first-,

second-, and third-order-accurate time-stepping schemes.

In this section, we also compare the three- and five-point

vertical stencils and show the timing results for each of

the available model configurations. In section 5b, we

study the spatial and temporal convergence properties

of these schemes using a density current test case with

explicit viscous forcing. The performance of our model

for flow over topography is studied in sections 5c and 5d.

The latter case is used to verify stability of the time in-

tegrators, even for a large horizontal–vertical aspect ra-

tio. The problem of a 3D geostrophically balanced flow

in a channel is studied in section 5e, again using a large

FIG. 1. Plots of the potential temperature perturbation for the rising thermal bubble test case with crude splitting

and three-point vertical stencil at time t 5 700 s and four choices of resolution. The time step is chosen to be 0.05 s at

the coarsest resolution and is otherwise proportional to the grid spacing. Contour lines are from 300 to 300.5 K with

a contour interval of 0.05 K. The 300-K contour line is shown in light gray to emphasize numerical oscillations due to

undershoots and overshoots.
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horizontal–vertical aspect ratio. This test case is used to

verify fourth-order horizontal convergence of our numer-

ical method. Finally, in section 5f, we look at the evolution

of a baroclinic wave in the channel on both a constant f

plane and a constant b plane. These tests further evaluate

our scheme on a wide range of possible scales, ranging

from the microscale with the rising thermal bubble test to

the global scale with the baroclinic instability.

a. Rising thermal bubble

The 2D (x, z) rising thermal bubble test case is essen-

tially ubiquitous in the study of nonhydrostatic mesoscale

models. This test follows the evolution of a warm bubble

in a constant potential temperature environment. The

warm bubble leads to a positive perturbation in the ver-

tical velocity field, which acts to carry the bubble upward.

As the bubble moves upward, shearing quickly deforms

the circular bubble into a mushroom cloud. Here, we

follow the initialization procedure described by Giraldo

and Restelli (2008), which is a variation of the bubble

experiments of Robert (1993). Because no explicit dif-

fusion is added to this test, we do not anticipate that the

solution will converge as spatial resolution is refined.

However, at finer resolutions we do observe more fi-

nescale features of the thermal bubble, including tighter

winding of the trailing edges at later times and sharper

spatial gradients. Nonetheless, our comparisons for this

test case are purely qualitative.

FIG. 2. As in Fig. 1, but showing (left) the Strang carryover scheme and (right) the ARS(2, 3, 3) scheme on the same

axes with three-point vertical stencil given by (53) and (54). We have exploited the symmetry of the rising bubble to

plot these schemes side by side for comparison.
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The background consists of a constant potential temper-

ature field u 5 300K, with a small perturbation of the form

u9 5

0 for r . rc

uc

2

h
1 1 cos

pr

rc


 �i
for r . rc

,

8<
: (100)

where

r 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x 2 xc)2

1 (z 2 zc)2
q

. (101)

Here, we choose the amplitude and radius of the per-

turbation to be uc 5 0.5 K and rc 5 250 m, respectively.

The domain consists of a square region (x, z) 2 [2500,

500] 3 [0, 1000] m with t 2 [0, 700] s. The center point of

the bubble is located at xc 5 500 m and zc 5 350 m. The

boundary conditions are no flux along all boundaries.

No sponge layer or viscous forcing is used, and Coriolis

forces are set to zero.

The potential temperature perturbation at t 5 700 s

with crude splitting is plotted in Fig. 1. Four different

resolutions DX 5 DZ are shown that range between 20

and 2.5 m. At even the finest resolution, this scheme

performs exceptionally poorly, unable to even resolve the

correct convection velocity at low resolutions or the an-

ticipated winding of the bubble’s leading edges at higher

resolutions. This approach is equivalent to low-order time

splitting of the horizontal and vertical motions; its poor

behavior may be indicative of problems with other low-

order time-split approaches.

FIG. 3. As in Fig. 2, but using the five-point vertical stencil given by (51) and (52), showing (left) the Strang carryover

scheme and (right) the ARS(2, 3, 3) scheme on the same axes.
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The Strang carryover and ARS(2, 3, 3) schemes per-

form significantly better. The results with these two

methods are plotted in Fig. 2 for the three-point vertical

stencil (53) and (54) and in Fig. 3 for the five-point vertical

stencil (51) and (52). These plots show both time-stepping

schemes on the same axes, because the symmetry of the

bubble allows us to only plot half the domain. As a con-

sequence, we can clearly see differences between these

TABLE 2. Timing results from the rising thermal bubble test on a 50 3 50 grid (20-m resolution) with Dt 5 0.05 s until t 5 700 s using

a variety of model configurations. Timing is normalized to the fastest configuration, which uses an explicit RK3 method for time stepping

in both the horizontal and vertical. On a recent MacBook Pro with 2.2-GHz Intel Core i7 chip and two processors, this parallel config-

uration required 32 s to run.

Scheme Jacobian Vertical stencil Vertical solver Normalized time

Explicit RK3 — 3 point — 1.000

— 5 point — 1.044

Strang carryover Analytic 3 point Rosenbrock 2.325

Fully implicit 4.052

5 point Rosenbrock 2.911

Fully implicit 5.204

Numerical 3 point Rosenbrock 5.471

Fully implicit 10.435

5 point Rosenbrock 7.241

Fully implicit 13.977

ARS(2, 3, 3) Analytic 3 point Rosenbrock 4.043

Fully implicit 7.495

5 point Rosenbrock 5.211

Fully implicit 9.812

Numerical 3 point Rosenbrock 10.360

Fully implicit 20.260

5 point Rosenbrock 13.936

Fully implicit 27.226

FIG. 4. Plots of the potential temperature perturbation for the Straka density current test case with three-point

vertical stencil at time t 5 900 s and four choices of resolution. The time step is 0.5 s for a grid spacing of 200 m and

scales with the spatial resolution. Contour lines are from 291 to 300 K with a contour interval of 1 K. The 300-K

contour line is shown in light gray to emphasize numerical oscillations. At each resolution, we show (top) the Strang

carryover scheme and (bottom) the ARS(2, 3, 3) scheme for comparison.
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two time-stepping schemes in the final results. The plots

are again made at four resolutions after 700 s. In both

sets of plots, the ARS(2, 3, 3) scheme appears to perform

better than the Strang carryover scheme, exhibiting

slightly more winding and enhanced gradients, espe-

cially at lower resolutions. The results from using the

five-point stencil are observably better than those with

the three-point stencil, and so this wider stencil may be

desirable in improving accuracy in real applications. Both

of these schemes match the results reported in Giraldo

and Restelli (2008) very closely.

Timing results for the rising thermal bubble test on a grid

with 20-m horizontal and vertical resolution with Dt 5 0.05

s are given in Table 2 for a variety of model configurations.

We have tested out the Strang carryover and ARS(2, 3, 3)

schemes with either a numerical or an analytic Jacobian,

either a three-point or a five-point vertical stencil, and ei-

ther a Rosenbrock solve or a fully implicit solve in the

vertical. The timing results from the crude splitting scheme

were not reported here because they very closely match

the timing results from the Strang carryover scheme. As

a baseline, we have run a fully explicit scheme that uses the

RK3 method of Gottlieb et al. (2001) for the full set of

nonhydrostatic equations. We observe that the cheapest

RKR method is the Strang carryover scheme with analytic

Jacobian, three-point vertical stencil, and Rosenbrock

solver. This scheme is just over twice as expensive as the

corresponding explicit method. The more accurate five-

point stencil adds an overhead of approximately 25%. The

fully implicit method approximately doubles the compu-

tation time, implying that roughly twice as many implicit

solves are computed at each time step, but does not sig-

nificantly increase the accuracy of the results. The ARS(2,

3, 3) scheme leads to a similar overhead, because it ex-

plicitly requires two implicit solves per time step.

b. Straka density current

The 2D (x–z) density current test proposed by Straka

et al. (1993) considers the evolution of a cold bubble in a

neutrally stratified atmosphere. In this setting, the bubble

sinks and hits the ground, forming shearing currents,

which then lead to the generation of Kelvin–Helmholtz

rotors. Explicit viscosity with the coefficient n 5

75 m2 s21 is added in order to obtain a grid-converged

solution. Again, no sponge layers are used and Coriolis

forcing is set to zero. The initial conditions are similar

to the rising thermal bubble and consist of a constant

potential temperature background with u 5 300 K. The

perturbation 712 in the temperature field is defined by

T9 5
0 if r . 1:0,

2Tc[1 1 cos(pr)] if r # 1:0,

�
(102)

where Tc 5 2158C and

r 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 2 xc

xr

� 	2

1
z 2 zc

zr

� 	2
s

. (103)

FIG. 5. As in Fig. 4, but with a five-point vertical stencil. Again, we plot (top) the Strang carryover scheme and

(bottom) the ARS(2, 3, 3) scheme for comparison.
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Note that following Straka et al. (1993) we apply the

perturbation to the temperature field, whereas in Giraldo

and Restelli (2008) the potential temperature is instead

perturbed. This leads to an initial maximum potential

temperature perturbation of 216.632 K when assuming

a surface pressure of p0 5 1000 hPa and hydrostatic

background conditions. The domain is defined as (x, z)

2 [0, 25 600] 3 [0, 6400] m with t 2 [0, 900] s. The center

of the bubble is positioned at (xc, zc) 5 (0, 3000) m with

radius (xr, zr) 5 (4000, 2000) m. The boundary condi-

tions at all four boundaries are no flux. By defining the

domain in this manner, we take advantage of the prob-

lem’s symmetry by simulating only half of the problem

domain.

The results of our model with the Strang carryover

and ARS(2, 3, 3) schemes are plotted at t 5 900 s in Fig. 4

for the three-point vertical stencil and in Fig. 5 for the five-

point vertical stencil. Four resolutions DX 5 DZ are shown.

As with the rising thermal bubble, we observe a very slight

improvement from using the ARS(2, 3, 3) scheme, which is

more prominent at lower resolutions. Also, we observe

a significant improvement at lower resolutions when using

the five-point vertical stencil with both time-stepping

schemes. The appearance of three well-defined Kelvin–

Helmholtz rotors is not obvious until 50-m resolution with

the three-point vertical stencil but is clear at 100-m reso-

lution with the five-point vertical stencil. Both methods

otherwise perform well with grid refinement.

A spatial convergence study has been performed to test

the convergence properties of each of the schemes. The

results are shown in Fig. 6 for the three-point vertical

stencil and in Fig. 7 for the five-point vertical stencil. Here,

we define the L2 error analogous to Straka et al. (1993),

L2(q) 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NxNz

�
N

x

i51
�
N

z

k51
[qi,k 2 q

(ref)
i,k ]2

vuuut , (104)

where Nx and Nz are the number of grid points in the

horizontal and vertical directions, respectively. Here,

q
(ref)
i,k denotes a reference solution that is obtained from

running this test case with the fully explicit scheme at

FIG. 6. Spatial convergence plots showing the L2 difference in the density perturbation, horizontal velocity, vertical

velocity, and potential temperature perturbation as a function of resolution and three-point vertical stencil and using

the three-point vertical stencil. The solid line denotes the fully explicit scheme with RK3 time step, whereas the dashed

line and dotted–dashed line correspond to the Strang carryover and ARS(2, 3, 3) schemes, respectively. The time step at

200 m is 0.5 s and is otherwise proportional to the grid spacing so as to maintain a constant CFL number. The gray lines

denote perfect (top) first- and (bottom) second-order scaling rates as a function of grid spacing.
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a resolution of 12.5 m. The variable q corresponds to each

of fr9, u, w, u9g.
We observe significantly different convergence be-

havior results for each of the four choices q. In fact, the

fully explicit method, Strang carryover method, and

ARS(2, 3, 3) method all seem to behave similarly when

purely considering the perturbation in the potential tem-

perature. Because the potential temperature perturba-

tion is not a prognostic variable, its L2 errors are a

function of errors in both the density perturbation and

the potential temperature density perturbation. In com-

puting (104), these errors approximately cancel and so

lead to very similar behavior among all time-stepping

schemes. However, for each of the variables r9, u, and w

and for (ru)9 (not shown) the observed errors are signifi-

cantly different between the Strang carryover and ARS(2,

3, 3) schemes. Although the Strang carryover scheme

generally performs more poorly with the three-point ver-

tical stencil, its spatial convergence rate roughly matches

that of the other schemes. However, with the five-point

vertical stencil (Fig. 5), we observe that the Strang carry-

over scheme seems to converge at least one order of accu-

racy more slowly than the other two schemes. The ARS(2,

3, 3) scheme closely mirrors the fully explicit scheme, sug-

gesting better overall performance of this method.

The results from performing a temporal convergence

analysis on this problem are given in Fig. 8. In this case,

we set DX 5 DZ 5 100 m 5 constant and adjust the time

step size Dt to observe the rate of temporal conver-

gence for each of the methods. The error norms are

obtained by computing the L2 norm (104) with a ref-

erence solution obtained by running the test case with

DX 5 DZ 5 100 m and Dt 5 1.5625 3 1022 s. For the

density perturbation, horizontal velocity, and vertical

velocity, we observe second-order convergence in Dt

for the Strang carryover scheme and near-third-order

convergence in Dt for the ARS(2, 3, 3) scheme. The

potential temperature perturbation again shows dif-

ferent behavior because of cancelation in the compu-

tation of the L2 errors but nonetheless yields improved

errors under the ARS(2, 3, 3) scheme.

c. Schär mountain

The 2D (x2z) Schär et al. (2002) mountain wave test

is characterized by a large hydrostatic wave with deep

vertical propagation, which is overlaid by smaller-scale

nonhydrostatic waves, which decay rapidly with height.

These gravity waves are triggered by a wavelet-like

mountain chain. It has been pointed out by Klemp et al.

(2003) that a consistent treatment of metric terms is

FIG. 7. As in Fig. 6, but for the five-point vertical stencil.
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necessary to avoid triggering spurious waves that arise

in this problem at coarse grid resolutions. As a conse-

quence, this test has become standard in the mesoscale

modeling community. The initial hydrostatic state of

the atmosphere consists of a constant mean flow of

u 5 10 m s21 in a uniformly stratified atmosphere with

constant Brunt–Väisälä frequency of N 5 0.01 s21. The

pressure and temperature at z 5 0 are p0 5 1000 hPa

and T0 5 280 K, respectively. The domain is defined as

(x, Z) 2 [225, 25] 3 [0, 21] km with t 2 [0, 10] h. The

mountain profile is defined by

hT(x) 5 hc exp

�
2

x

ac

� 	
2
�

cos2 px

l


 �
, (105)

with parameters hc 5 250 m, l 5 4000 m, and ac 5

5000 m. A plot of the mountain profile is shown in Fig. 9,

where the axes have been magnified to show the do-

main (x, z) 2 [210 000, 10 000] 3 [0, 4000] m. No-flux

boundary conditions are used along the bottom surface,

whereas nonreflecting boundary conditions are used

along the top and lateral outflow boundary. The sponge

extends upward from a height of 12 000 m and at the lateral

outflow boundary with 10 000-m thickness. The back-

ground state qb is defined by the hydrostatic background

and constant mean flow. No explicit viscosity is used, and

the Coriolis forcing is set to zero.

This test case is run at DX 5 250 m and DZ 5 210 m

using the Strang carryover scheme and five-point vertical

stencil. The observed horizontal and vertical wind speeds

after 10 h are plotted in Fig. 10. The fields are smooth and

agree well with published results in Klemp et al. (2003)

and Giraldo and Restelli (2008). In particular, we do not

FIG. 8. Temporal convergence plots showing the L2 error in the density perturbation, horizontal velocity, vertical

velocity, and potential temperature perturbation as a function of time step Dt for a fixed grid spacing of DX 5 100 m.

The solid line and dashed line correspond to the Strang carryover and ARS(2, 3, 3) schemes, respectively. The gray

lines denote perfect (top) first- and (bottom) second-order scaling rates as a function of time step.

FIG. 9. The Schär mountain profile with DX 5 DZ 5 500 m and

magnified such that (x, z) 2 [210 000, 10 000] 3 [0, 4000] m.
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observe any artifacts from the inhomogeneous terms

described by Klemp et al. (2003), which would introduce

spurious noise at coarse grid resolutions. As expected for

steady-state solutions, the ARS(2, 3, 3) scheme produces

qualitatively similar results.

d. Flow over an isolated mountain

The 2D (x, z) mountain wave test suite of Dudhia

(1993) considers a variety of flow regimes in the pres-

ence of a smooth single-peaked mountain with constant

inflow and outflow boundary conditions. The background

consists of an atmospheric profile with constant Brunt–

Väisälä frequency N 5 0.01 s21 and nonzero Coriolis

parameter f 5 1024 s21. The pressure and temperature

at z 5 0 are p0 5 1000 hPa and T0 5 300 K, respectively.

Topography is added in the form of a witch of Agnesi

mountain,

h(x) 5
hc

1 1
x 2 xc

ac

� 	2
, (106)

where the maximum height is hc 5 400 m, the center

position is xc 5 0 m, and the mountain half-width ac is

varied. A constant mean flow u 5 10 m s21 is then im-

posed in all flow regimes. The initial profile is assumed

to be in hydrostatic and geostrophic balance and incor-

porates a meridional pressure gradient to exactly balance

the Coriolis forcing due to the mean flow. The flow is

evolved until tu/a
c
5 21:6.

The simulation domain is taken to be (x, Z) 2 [214ac,

14ac] 3 [0, 21 000] m, and the time step is chosen to be

Dt 5 0:006ac/u, which requires 3600 time steps at all

resolutions with DX 5 ac/5 and DZ 5 420 m. Non-

reflecting boundary conditions are applied at the upper

boundary above 16 km and at the outflow boundary with

thickness 2 km. The background state is given by the

hydrostatic background with prescribed mean flow. No

explicit viscosity is used.

The results of these simulations using the Strang

carryover time-stepping scheme are plotted in Fig. 11

for four choices of ac: ac 5 1 km (Fig. 11a), ac 5 10 km

(Fig. 11b), ac 5 100 km (Fig. 11c), and ac 5 1000 km

(Fig. 11d). We observe agreement with the results of

Dudhia (1993) in all four flow regimes, suggesting our

model is correctly capturing the dynamics of these re-

gimes. Further, our model appears stable even with

a vertical CFL number of nearly 500 as in Fig. 11d. The

total computation time is also observed to be roughly

equivalent in all cases.

e. Steady-state geostrophically balanced flow in
a channel

Our last test addresses a large-scale 3D flow field,

to evaluate the full 3D response of the channel model

(see also section 5f). The flow field for steady-state

FIG. 10. Steady-state flow over the Schär mountain after 10 h with DX 5 250-m- and DZ 5 210-m resolution,

5-point vertical stencil, and Strang carryover scheme. The simulation is run to t 5 10 h with a time step of Dt 5 0.6 s.

(a) The horizontal velocity has contour values between 8 m s21 and 12 m s21 with a contour interval of 0.2 m s21

with emphasis on the 10 m s21 contour. (b) The vertical velocity has contour values between 22 and 2 m s21 with

a contour interval of 0.05 m s21 with emphasis on the 0 m s21 contour. In (a), values less than 10 m s21 are shaded. In

(b), negative values are shaded.
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geostrophically balanced flow in a channel is based on

a new test case defined by C. Jablonowski et al. (2011,

unpublished manuscript). The domain is a channel of

dimensions Lx 3 Ly 3 Lz with periodic boundaries in the

x direction and no-flux conditions at all other interfaces.

In this case, we choose Lx 5 40 000 km, Ly 5 6000 km,

and Lz 5 30 km. No viscosity or sponge layers have been

applied. The initial flow is comprised of a zonally sym-

metric midlatitudinal jet, defined in terms of vertical

pressure-based h coordinates (see the appendix) as

u(x, y, h) 5 2u0 sin2 py

Ly

 !
lnh exp

"
2

lnh

b

� 	2
#

, (107)

so that the wind is zero at the surface and along the y

boundary. The vertical half-width is set to b 5 2, and u0

is chosen to be 35 m s21. The meridional wind velocity

y and vertical wind velocity w are both set to zero. We

take the surface pressure to be constant with ps 5 p0 5

105 Pa. This formulation can be on either an f plane or

a b plane, which have Coriolis parameters

FIG. 11. Plots of vertical velocity for the Dudhia (1993) mountain test case with background flow speed u 5

10 m s21 and mountain half-width ac given by (a) 1, (b) 10, (c) 100, and (d) 1000 km. Grid spacing is taken to be DX

5 ac/5 and DZ 5 420 m, leading to a maximum aspect ratio in (d) of DX/DZ 5 476. The simulation is run up to t 5

21.6ac/u with a fixed time step of Dt 5 0:006ac/u. Contour lines are (a) from 22.1 to 1.2 m s21 in intervals of

0.3 m s21, (b) from 242 to 42 cm s21 in intervals of 7 cm s21, (c) from 3.6 to 2.4 cm s21 in intervals of 0.4 cm s21,

and (d) from 20.24 to 0.24 cm s21 in units of 0.03 cm s21. Negative values are indicated by shaded regions.
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f 5 f0, and b 5 f0 1 b0(y 2 y0), (108)

respectively, where f0 5 2V sinu0 and b0 5 2a21V cosu at

latitude u0 5 458N. Here, the radius of the earth is a 5

6371.229 3 103 m, its angular velocity is V 5 7.292 3

1025 s21, and y0 5 Ly/2 is the center point of the domain

in the y direction. The background geopotential field is

again defined in terms of h coordinates is

F(x, y, h) 5 hF(h)i1 F9(x, y,) lnh exp

"
2

lnh

b

� 	2
#

,

(109)

with the horizontal-mean geopotential

hF(h)i5
T0g

G
(1 2 hR

d
G/g) (110)

and variation

F9(x, y) 5
u0

2

(
( f0 2 b0y0)

"
y 2

Ly

2
2

Ly

2p
sin

2py

Ly

 !#

1
b0

2

"
y2 2

Lyy

p
sin

2py

Ly

 !

2
L2

y

2p2
cos

2py

Ly

 !
2

L2
y

3

L2
y

2p2

#)
. (111)

The reference temperature is T0 5 288 K and the lapse

rate is chosen to be G 5 0.005 K m21. The corresponding

temperature distribution is given by

T(x, y, h) 5 hT(h)i1 F9(x, y)

Rd

�
2

b2
(lnh)2

2 1

�
exp

�
2

lnh

b

�
,

(112)

with horizontal-mean temperature

hT(h)i 5 T0hR
d
G/g. (113)

This test considers the steady-state problem where the

solution is the initial state. Hence, error measures are

calculated in the height field via the usual global error

norms,

L1(q) 5
I[jq 2 qT j]

I[jqT j]
, (114)

L2(q) 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I[(q 2 qT)2]

I[q2
T ]

vuut , and (115)

L
‘

(q) 5
maxjq 2 qT j

maxjqT j
, (116)

where qT is the field at the initial time and I denotes an

approximation to the global integral, which is given by

I[x] 5 �
allcellsk

qkVk, (117)

with Vk denoting the volume of element k.

Error norms are given in Table 3 for an f-plane ap-

proximation and Table 4 for the b-plane approximation.

The simulations are run with a variable horizontal reso-

lution of 400, 200, 100, and 50 km and a uniform vertical

resolution of 1 km (30 equally spaced vertical levels) for

one day. The time step at 400-km resolution is 960 s and

otherwise scales with resolution. We observe convergence

TABLE 3. Relative errors in the vertical momentum field rv and

potential temperature density field ru for the geostrophically bal-

anced flow in a channel test with an f-plane approximation and

Strang carryover time-stepping scheme. Errors are represented in

scientific notation using the form a (b) for mantissa a and exponent

b, under base 10. A convergence study is performed by varying the

horizontal resolution. The computed order of accuracy is obtained

from a least squares fit through the data.

Z momentum field rv

Horizontal resolution L1 error L2 error L‘ error

400 km 1.821 (28) 5.932 (28) 4.248 (27)

200 km 1.819 (29) 6.054 (29) 5.131 (28)

100 km 1.238 (210) 4.124 (210) 3.483 (210)

50 km 7.916 (212) 2.637 (211) 2.381 (210)

Order 3.738 3.728 3.628

Potential temperature density field ru

Horizontal resolution L1 error L2 error L‘ error

400 km 4.114 (26) 1.213 (25) 6.682 (25)

200 km 2.039 (27) 5.840 (27) 3.052 (26)

100 km 1.245 (28) 3.474 (28) 1.725 (27)

50 km 7.798 (210) 2.173 (29) 1.113 (28)

Order 4.113 4.141 4.180

TABLE 4. As in Table 3, but for the b-plane approximation.

Z momentum field rw

Horizontal resolution L1 error L2 error L‘ error

400 km 1.489 (28) 4.763 (28) 4.473 (27)

200 km 1.799 (29) 5.024 (29) 3.496 (28)

100 km 1.356 (210) 3.851 (210) 2.953 (29)

50 km 9.125 (212) 2.659 (211) 2.054 (210)

Order 3.575 3.613 3.683

Potential temperature density field ru

Horizontal resolution L1 error L2 error L‘ error

400 km 1.339 (25) 3.912 (25) 2.156 (24)

200 km 8.803 (27) 2.601 (26) 1.570 (25)

100 km 5.525 (28) 1.642 (27) 1.015 (26)

50 km 3.456 (29) 1.029 (28) 6.367 (28)

Order 3.975 3.966 3.913
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that is slightly less than fourth order for the vertical mo-

mentum field and slightly better than fourth order for the

potential temperature field. Because hydrostatic balance

is guaranteed by the background splitting technique de-

scribed in section 2, errors are only accumulated because

of an imbalance in the geostrophically balanced compo-

nents, and hence increasing the number of vertical levels

does not have a significant impact on the error norms.

Discrepancies in these errors at each vertical level trigger

the slight imbalances in the vertical velocity. Because this

is a steady-state test case, the errors in this analysis are

dominated by errors in the spatial reconstruction, and so

similar error norms are observed with both the crude and

ARS(2, 3, 3) time-stepping schemes.

f. Baroclinic instability in a channel

This test case uses the same geostrophically balanced

background as in section 5e. However, we additionally

introduce a confined perturbation in the zonal wind field

of the form

u9(x, y, h) 5 up exp

(
2

"
(x 2 xc)2

1 (y 2 yc)2

L2
p

#)
, (118)

with radius Lp 5 600 km, maximum amplitude up 5

1 m s21, and center point (xc, yc) 5 (2000 km, 2500 km).

This perturbation is superimposed on the zonal wind

field (107) so that the total zonal wind field reads

unew(x, y, h) 5 u(x, y, h) 1 u9(x, y, h). (119)

The setup resembles the baroclinic wave experiments

on the sphere suggested by Jablonowski and Williamson

(2006). The unbalanced perturbation acts as a trigger for

baroclinic waves that grow explosively over a 10–12-day

simulation period. Such a flow is characteristic for the

midlatitudes. The channel test thereby assesses how well

the finite-volume scheme simulates large-scale flow

fields with large aspect ratios. All simulations are run

with the ARS(2, 3, 3) scheme and utilize a 100-km

horizontal grid spacing with 30 equally spaced vertical

levels and a model top at 30 km. The Strang carryover

scheme yields results that are qualitatively similar at

this resolution. Again, no explicit viscosity or sponge

layer is used. The time step is Dt 5 240 s. Timing results

for this test case are given in Table 5 and demonstrate

the benefits of using the RKR methods over a purely

explicit approach for this problem.

Snapshots of the simulation for the f-plane approxi-

mation at day 12 are plotted in Fig. 12. The figure depicts

the horizontal cross sections of the pressure, tempera-

ture, and relative vorticity at 500 m. This vertical posi-

tion corresponds to the height of the lowermost model

level. We observe that the baroclinic wave has almost

broken, which takes place around day 13.5. The flow has

formed distinct low and high pressure systems that are

associated with sharp temperature fronts and sharp

gradients in the relative vorticity field.

The corresponding simulation results on the b plane

are plotted in Fig. 13. Here, we show the identical fields,

but now at day 10 before wave breaking events set in

(around day 11). The presence of the planetary vorticity

gradient has sped up the evolution of the baroclinic

wave. Again, the low and high pressure systems are

connected to sharp frontal zones in the temperature and

vorticity fields that resemble realistic flow conditions.

It is interesting to note that the b-plane simulation leads

to a more confined flow field that has not spread to the

northern and southern edges of the domain by day 10.

These differences between the f-plane and b-plane

simulations will be discussed in greater detail in

C. Jablonowski et al. (2011, unpublished manuscript)

alongside a comparison to other nonhydrostatic channel

models. The main focus of this test is to demonstrate that

the RKR schemes reliably simulate the evolution of

atmospheric flow fields that are relevant for the large

(midlatitudinal) portion of global atmospheric general

circulation models. To verify correctness of our results,

this test has also been run using the model of Norman et al.

(2011) and qualitatively similar results were observed.

6. Conclusions

In this paper, we have presented a new approach for

discretizing the nonhydrostatic Euler equations in Car-

tesian geometry using high-order finite-volume methods

and a horizontal–vertical splitting strategy based on

Runge–Kutta–Rosenbrock (RKR) time integration

schemes. For atmospheric problems where the vertical

grid spacing is usually much smaller than the horizontal,

this strategy allows us to simulate the full Euler equa-

tions while only constraining the time step by the hori-

zontal grid spacing. We have presented time-stepping

schemes based on a crude strategy, a scheme that uses

TABLE 5. Timing results from the baroclinic instability in a

channel on an 80 3 12 3 30 grid (DX 5 500 km, DZ 5 1 km) and

three-point vertical stencil. Timing is normalized to the fastest con-

figuration, which uses the Strang carryover scheme and analytic

Jacobian. On a recent MacBook Pro with 2.2-GHz Intel Core i7

chip and two processors, this parallel configuration required

6.8 s day21.

Scheme Time step (Dt) Normalized Time

Explicit RK3 3.0 s 214.777

Strang carryover 1200.0 s 1.000

ARS(2, 3, 3) 1200.0 s 1.569
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a Strang splitting and carryover strategy, and a higher-

order scheme based on an approach attributed to

Ascher et al. (1997). These time-stepping schemes have

been implemented in a mesoscale atmospheric model

that utilizes a high-order finite-volume-based approach.

The crude time-stepping scheme is shown to be highly

diffusive for thermal bubble experiments and shows

no benefit over the Strang carryover scheme, which re-

quires the same number of explicit and implicit steps per

time step. The ARS(2, 3, 3) scheme shows a mild im-

provement over the Strang carryover approach but re-

quires two implicit steps per time step. However, the

higher-order accuracy in time this scheme affords may be

desirable. Further, we compared a three-point and a five-

point vertical reconstruction stencil within the model and

observed significantly better results with the five-point

stencil, but with a slight computational overhead.

Numerical results have shown our approach to be ac-

curate, stable, and applicable to a range of atmospheric

flows and horizontal–vertical aspect ratios. By using a

fourth-order reconstruction strategy in the horizontal,

we observe clear fourth-order convergence for flows

with a small vertical velocity. Horizontal–vertical aspect

ratios up to 500:1 have been tested under our scheme

and verified to be stable up to a horizontal CFL number

of 1.0.

FIG. 12. Simulation results from the baroclinic instability in a channel computed at day 12 using

the ARS(2, 3, 3) scheme with the f-plane approximation. The simulation is run at a horizontal

resolution of 100 km and a vertical resolution of 1 km with a time step of 240 s. Contour lines are

as indicated on each plot. The 942-hPa line is enhanced in the pressure plot. The zero line in the

relative vorticity plot is enhanced, and negative values are plotted using dashed lines.
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The results in this paper suggest that our horizontal–

vertical dimension splitting strategy is a promising

option for any high-order finite-volume or discontinu-

ous Galerkin-based method. This model has already

been extended to a full global nonhydrostatic dynamical

core on a cubed-sphere grid utilizing high-order finite-

volume methods in Ullrich and Jablonowski (2012,

manuscript submitted to J. Comput. Phys.).
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APPENDIX

Converting between h and z Coordinates

The initial conditions required for the geostrophically

balanced flow (section 5e) and baroclinic instability test

cases (section 5f) are given in terms of pressure-based

FIG. 13. As in Fig. 12, but for the b-plane approximation at day 10. The 943-hPa line is

enhanced in the pressure plot. The zero line in the relative vorticity plot is enhanced, and

negative values are plotted using dashed lines.
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vertical coordinates with h 5 p/p0 with p0 5 1000 hPa. To

convert these coordinates to height-based z coordinates,

we must implicitly solve a nonlinear equation relating h

and z. Here, we choose to use the iterative Newton–

Raphson strategy, which is given by

hn11 5 hn 2

�
›F

›h
(x, y, hn)

�21

F(x, y, hn), (A1)

where n 5 0, 1, 2, . . . is the iteration count. Here, the

functions F and ›F/›h are determined by

F(x, y, hn) 5 2gz 1 F(x, y, hn) and (A2)

›F

›h
(x, y, hn) 5 2

Rd

hn
T(x, y, hn). (A3)

Here, F and T are given by (109) and (112), respec-

tively. The starting value of h0 5 1027 is used for all

Newton iterations, corresponding to a model top of

about 100 km. If a higher model top is required, the

value of h0 needs to be decreased. Convergence is deemed

to have occurred if jhn11 2 hnj# 10214 and usually takes

about 10 iterations in most cases.

To compute pressure p, density r, and potential tem-

perature u as a function of position (x, y, z), we first solve

for h(x, y, z) via the iterative technique and then apply

p(x, y, h) 5 h(x, y, z)p0, (A4)

r(x, y, h) 5
p(x, y, h)

RdT(x, y, h)
, and (A5)

u(x, y, h) 5 T(x, y, h)

�
p0

p(x, y, h)

�R
d
/c

p

. (A6)
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