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This paper examines high-order unstaggered symmetric and upwind finite-volume discret-
izations of the advection equation in the presence of an abrupt discontinuity in grid reso-
lution. An approach for characterizing the initial amplitude of a parasitic mode as well as
its decay rate away from a grid resolution discontinuity is presented. Using a combination
of numerical analysis and empirical studies it is shown that spurious parasitic modes,
which are artificially generated by the resolution discontinuity, are mostly undamped by
symmetric finite-volume schemes but are quickly removed by upwind and semi-Lagrang-
ian integrated mass (SLIM) schemes. Slope/curvature limiting is insufficient to completely
remove these modes, especially at low forcing frequencies where the incident wave can act
as a carrier of the parasitic mode. Increasing the order of accuracy of the reconstruction at
the grid interface is effective at removing noise from the lowest-frequency incident modes,
but insufficient at high frequencies. It is shown that this analysis can be extended to the 1D
linear shallow-water equations via Riemann invariants.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The atmosphere and ocean are two facets of a vast nonlinear system that works on a broad range of interacting scales.
Models are an invaluable tool for enhancing our understanding of this system, but the enormity of the problem-spanning
the entirety of the Earth’s surface-is at the edge of our present computational power. In order to meet growing demand
for fine-scale simulations, the next generation of atmospheric models will likely need to rely on adaptive mesh refinement
(AMR) in order to properly capture features of interest. A dynamically adaptive model, for instance, would be capable of hur-
ricane tracking and modeling on a global scale, and would enhance our knowledge of mountain waves and extreme weather
events. However, the benefits of adaptively refined grids do not come without a fair share of problems. Perhaps the most
significant of these problems, in the context of geophysical modeling, is related to the mathematical handling of wave phe-
nomena at coarse–fine grid boundaries. Except for a handful of numerical methods, most schemes allow wave groups to be
spuriously reflected at grid resolution interfaces (see, for example, [37]). This type of wave reflection is attributed to sudden
changes in the numerical structure of the system, analogous to changes in the physical characteristics of the system.

As shown by Vichnevetsky [37] and later by Vichnevetsky and Turner [38], the significance of wave reflection increases
substantially when the grid resolution is varied abruptly. As a consequence, many approaches (see, for example, [9,11,30])
instead rely on a smooth variation of the grid between coarse and fine regions. However, abruptly-varying grids generally
perform better on parallel architectures when dynamic refinement is desired; in this case, dynamic grid refinement in a com-
pact region can be performed without having to reconstruct the grid over a wide regional or global scale (which is necessary
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if smooth variation of the grid is required). Although these block-adaptive grids have been long used for astrophysical, aero-
space and other computational fluid dynamics problems (see, for example, [1,2]), they were only first applied to geophysical
limited area models by Skamarock et al. [29] and Skamarock and Klemp [28]. More recently, these methods have been ap-
plied in spherical geometry by Jablonowski et al. [16,17]. Hence, our approach in this paper is to consider only grids with
abrupt variation in resolution.

To a close approximation, the atmosphere and ocean are in a state of geostrophic and hydrostatic balance. For geophysical
flows, departures from geostrophy are approximately linear. The Mach number of these flows is generally much less than
one, and shock waves are not present. It is here where linear numerical discretizations are the most relevant, since slope
limiters are generally not required to ensure positivity of the thermodynamic variables. Long-term simulations of geo-
strophic flows also require perhaps the most stringent conservation constraints since a slow escape of air from the atmo-
sphere on the order of the scheme’s truncation error can lead to substantial atmospheric loss over time.

Although many previous papers have discussed the issue of wave reflection due to a discontinuity in grid resolution, these
works have not focused on the issue of wave reflection in dissipative finite-volume methods. In this case, energy is not con-
served over time, and so it is uncertain whether previous results, which have been derived in the case of zero energy dissi-
pation, will still hold. Hence, it is our objective in this paper to use mathematical analysis and numerical experimentation to
determine which unstaggered dissipative finite-volume methods are best suited for geophysical modeling in the presence of
a refined grid.

Before proceeding, we briefly discuss the wave reflection properties of other approaches. Frank and Reich [12] demon-
strated that the Box scheme is free of spurious reflections, but this scheme does not easily generalize to multiple dimensions
and is implicit in a periodic domain. Further, purely upwind schemes, such as the first-order Godunov scheme, the discon-
tinuous Galerkin (DG) scheme and spectral-volume methods, all of which do not use downstream information, are free from
spurious wave reflection when applied to the advection equation. Nonetheless, these methods still suffer from nonlinear
wave reflection when applied to the 1D shallow-water equations, for instance.

The foundation for our analysis will be the 1D advection equation, which describes the motion of a tracer field q(x, t) in the
presence of an underlying velocity field u. In its simplest form, this equation reads
@q
@t
þ u

@q
@x
¼ 0: ð1Þ
For simplicity, much of our analysis will be for the case that u = const > 0.
This paper is organized as follows. First, we present a framework for the set of finite-volume methods we will consider in

Section 2, and give some of their numerical properties. The results of a set of wave-reflection experiments are then given in
Section 3. In Section 4 we introduce the shallow-water equations and linearized shallow-water equations, and show their
connection to the advection equation. Lastly, our conclusions are presented in Section 5. Note that throughout this paper
we will be making use of dimensionless length and time units.
2. Numerical discretizations

Numerous methods have been devised for the construction of finite-volume schemes, and all have their benefits and dis-
advantages. The method-of-lines approach is perhaps the most popular for constructing high-order finite-volume methods
that are applicable to general systems of equations. Under this framework, a spatial sub-grid-scale reconstruction is com-
bined with a numerical flux function to provide a discretization of the spatial component of the differential equation, which
is then combined with a timestepping scheme that guarantees stability and accuracy when integrating forward in time.
Timestepping schemes vary substantially in their properties, but must be chosen so that the eigenvalues of the spatial oper-
ator fit within the stability region of the timestepping scheme. We consider three types of finite-volume methods con-
structed under this framework:

� Symmetric finite-volume. If we assume continuity of our solution between elements we can directly reconstruct the value
of the underlying field at edge-points. An interior reconstruction, which is necessary for evaluating source terms, is then
obtained from the edge-values and value of the cell-averaged scalar field. Once the initial approximation is made, mono-
tonicity constraints can be applied, which may cause the field to again become discontinuous at edges and hence require
the solution of a Riemann problem. This approach does not rely more strongly on upwind-biased information, and so
leads to a spatial discretization which is symmetric about the element being updated. The simplest symmetric finite-vol-
ume method is the so called central-in-space discretization, which has been thoroughly studied in the context of grid
reflection (see, for example, [32,37,38]). It is obtained by assuming the value of the scalar field at each edge is simply
the average of the values of neighbouring elements.
� Upwind finite-volume. The Monotone Upstream-centered Schemes for Conservation Laws (MUSCL) formalism of van Leer

[36] provides a mechanism for computing a sub-grid-scale reconstruction via a local reconstruction obtained from adja-
cent cell-averaged values. When evaluated at edge points, these reconstructions can then act as left and right states that
are then used to solve a Riemann problem. Slope limiters can also be applied in the reconstruction step to enforce mono-
tonicity and limit spurious oscillations. This approach leads to the upwind family of finite-volume schemes, so-named
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because they rely more heavily on information propagated in the direction of the fluid motion. Unstaggered high-order
upwind finite volume schemes have been recently shown to be viable for shallow-water models on the sphere by Ullrich
et al. [33].
� Semi-Lagrangian integrated-mass (SLIM) finite-volume methods. A popular method that has been widely adopted for dis-

cretizations of the advection equation is the so-called semi-Lagrangian (SL) approach. This method comes in two fla-
vors–namely, forward SL and backward SL. In the forward SL approach, the velocity field is used to deform the grid,
which is then remapped back to the original cell positions. In the backward approach, the velocity field is first evolved
to time n + 1. The evolved velocity field is then used to ‘‘devolve’’ the grid cells at time n + 1 into a deformed grid that
represents the locations of these cells at time n. Finally, the original grid information is remapped onto the deformed grid,
giving new cell averages. These two approaches are identical for the 1D advection equation with u = const. Semi-Lagrang-
ian methods are a physically motivated treatment of the advection equation, and have effectively no timestep limit (but
accuracy degrades substantially for large timesteps and non-constant flow fields). Nonetheless, there is some difficulty in
adapting this method to general hyperbolic systems. An analysis of SLIM schemes can be found in Laprise and Plante [19].
Examples of this approach include Fromm’s scheme [13], the advective form of the piecewise-parabolic method
presented by Colella and Woodward [8] and, in higher dimensions, the recently introduced CSLAM transport scheme
of Lauritzen et al. [20].

2.1. Diffusion, phase velocity and group velocity

An excellent tool for describing the properties of numerical discretizations is wave-mode analysis, which forms the back-
bone of our study of spurious wave reflection. In particular, this approach has been successfully applied by Trefethen [32]
and Grotjahn and O’Brien [14] in the analysis of numerical methods for hyperbolic equations.

In general, any linear partial differential equation with constant coefficients supports wave-like solutions of the form
qðx; tÞ ¼ q̂ expðiðkx�xtÞÞ; ð2Þ
where q(x, t) denotes the state variable in physical space, q̂ is the corresponding amplitude, k is the wave number and x is the
frequency. If we substitute this solution into (1) we obtain a dispersion relation of the form
xðkÞ ¼ uk: ð3Þ
These modes propagate with speed
cpðkÞ ¼
xðkÞ

k
; ð4Þ
which is known as the phase speed. The evolution of a wave packet however, is determined by the group speed, defined via
cgðkÞ ¼
@x
@k

: ð5Þ
It is well-known (see, for example, Brillouin [4]) that the group speed is the speed at which energy propagates in a system, as
well as the speed associated with a traveling wave packet. In the case of the advection equation, these velocities are equiv-
alent and given by cp = cg = u.

Linear discretizations of (1) similarly support wave modes of the form (2) but only allow us to roughly approximate the
correct dispersion relation (3). When analyzing these numerical methods we will assume an uniform spatial grid, defined at
discrete points via
xj ¼ jDx; and tn ¼ nDt; ð6Þ
where Dx and Dt are the element width and timestep, respectively, and j and n are spatial and temporal indices. Hence,
wave-like solutions (2) take the form
qn
j ¼ q̂ expðiðkjDx�xnDtÞÞ; ð7Þ
where kDx is the normalized wave number, whose real component takes on values in the range [0,p]. On substituting this
expression into a discrete numerical scheme, we obtain the numerical dispersion relation, which describes the relationship
between x and k and usually incorporates the dimensionless Courant–Friedrichs–Lewy (CFL) number
K ¼ uDt
Dx

: ð8Þ
The numerical dispersion relation is a powerful tool for describing the properties of a numerical method:

� For two time-level schemes, such as forward Euler, backward Euler, Crank–Nicolson and all Runge–Kutta schemes, every
value of k is associated with a single value x. For three time-level schemes, such as the Leapfrog scheme, every value of k
is associated with two values of x.
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� The imaginary component of x(k) describes the growth rate of the mode k. Von Neumann stability [6] is obtained by
guaranteeing that Im (x) 6 0 for all real wave numbers. Stable numerical schemes which satisfy ImðxðkÞÞ < 0 for some
k are known as diffusive (or dissipative). Note that the advection equation is naturally non-diffusive, so any non-zero dif-
fusivity leads to diffusive error. The amplification factor after one timestep is then defined as
ADt ¼ expðImðxðkÞÞDtÞ: ð9Þ

However, ADt is not desirable for describing the diffusivity of a scheme over a range of CFL numbers, since schemes with
smaller timestep Dt must be applied multiple times to advance to the same time as schemes with larger Dt. Hence, one
can alternatively describe diffusivity in terms of the normalized amplification factor A, defined for a fixed wavenumber k by

A ¼ expðImðxðkÞÞTÞ; ð10Þ

where T is some fixed time. In the following analysis we choose T = 1 for simplicity.
� In general, a numerical dispersion relation will yield a frequency whose real component is nonlinearly dependent on k. In

this case, the scheme will be dispersive, indicating that different wave numbers will travel at different phase speeds. The
advection equation is non-dispersive, since x and k are linearly related, however, numerical discretizations generally
introduce dispersive error in the form of a nonlinear dispersion relation. The dispersive characteristics of a numerical
method can be effectively described in terms of the phase velocity and group velocity, which are obtained from the
numerical dispersion relation, when combined with (4) and (5). Since a numerical method can also be dissipative, we sub-
stitute ReðxÞ for x in these relationships, which yields the numerical phase velocity and group velocity.

Note that group velocity analysis only applies directly for nondiffusive schemes, since diffusivity introduces a wavenum-
ber-dependent attenuation of different wave modes. As a consequence, wave packets can lose their distinctive shape over
time as certain wave modes are diffused from the simulation. However, the results of group velocity analysis will still hold
approximately as long as the wave packet is composed of waves with similar diffusion rates.

2.2. Linear discretizations

In this paper we focus our attention on high-order linear discretizations. Namely, we are interested in spatial semi-dis-
cretizations of the advection Eq. (1) that take the form
@qj

@t
¼
Xr

m¼�‘
cmqjþm; ð11Þ
where the coefficients cm are purely a function of the grid spacing Dx, timestep Dt and advection speed u (possibly via the
CFL number). Here ‘and r denote the number of leftward-elements and rightward-elements in the semi-discrete stencil. For
simplicity, in this paper we only analyze methods with r 6 ‘ = 2, which leads to a stencil with at most five elements. Con-
servation is guaranteed by utilizing the finite-volume framework, which requires that all of the schemes can be written
in the form
@qj

@t
¼ �

F�jþ1=2ð. . . ; qj�1; qj; qjþ1; . . .Þ � F�j�1=2ð. . . ; qj�1; qj; qjþ1; . . .Þ
Dx

ð12Þ
for a numerical flux function F�jþ1=2. The numerical flux functions are defined at cell edges, which are denoted by half-indices.
When combined with an appropriate two-time-level explicit timestepping operator, the spatial semi-discretization (11)

then leads to a complete discretization of the advection equation that we can write as
qnþ1
j ¼

Xr�s
m¼�‘�s

Cmqn
jþm; ð13Þ
where the Cm are again purely functions of the grid spacing, timestep and advection speed. Here s denotes the number of
stages used by the timestepping operator (for multistage schemes, such as the Runge–Kutta methods).

To determine the numerical dispersion relation for the scheme (13), we simply substitute (7) and solve for x, obtaining
ReðxÞ ¼ � 1
Dt

arctan
Pr�s

m¼�‘�sCm sinðkmDxÞPr�s
m¼�‘�sCm cosðkmDxÞ

� �
: ð14Þ
Solutions to this equation are not unique, and the choice of an appropriate branch cut for the arctan function can lead to
some confusion. Herein we will take the branch cut that gives x(0) = 0 and otherwise is a continuous function of k.

2.3. The 2Dx mode problem

Symmetric finite-volume (semi-) discretizations of the advection equation satisfy the property cm = �c�m, which usually
arises from the application of a centered differencing operator within each element. They are characterized by low diffusivity
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and consistent behaviour regardless of CFL number, but suffer from the so-called 2Dx mode problem; namely, under such a
semi-discretization both the constant field qj = const. and the 2Dx mode qj = (�1)j satisfy
C
FL

 n
um

be
r

Fig. 1.
[0,1.26
@qj

@t
¼ 0; ð15Þ
implying that both modes are invariant in time. Thus, under a symmetric finite-volume method, the constant mode and 2Dx
mode are indistinguishable, regardless of the size of the stencil and choice of temporal discretization. As a consequence, this
mode will feature both zero diffusion and zero phase velocity when simulating the advection equation, and so any nonlinear
effects or source terms which contribute energy to this scale will not be dissipated. The result is ‘‘checkerboarding’’ of the
state variables under this operator (see, for example, [26]).

Upwind finite-volume (semi-) discretizations are always upwind biased, satisfying r < ‘. This criterion implies that more
information is drawn from the upwind direction as the flow evolves. In general, these methods do not suffer from the 2Dx
mode problem, but may possess high-frequency wave modes which are weakly damped, usually at specific CFL numbers.

2.4. The gas dynamics form of the piecewise-parabolic method (PPM)

The gas dynamics form of the piecewise-parabolic method (PPM) of Colella and Woodward [8] (Chapter 3) is a high-order
symmetric discretization that, for a locally smooth field q, estimates the field at edge points via the central reconstruction
qjþ1=2 ¼
�qj�1 þ 7qj þ 7qjþ1 � qjþ2

12
þ OðDx4Þ: ð16Þ
Because the field is assumed continuous at edge points (with no limiter applied), the numerical flux can be computed di-
rectly without applying a Riemann solver,
F�jþ1=2 ¼ u � qjþ1=2: ð17Þ
This choice leads to the semi-discretization
@qj

@t
¼ � K

Dt
1

12
qj�2 �

8
12

qj�1 þ
8

12
qjþ1 �

1
12

qjþ2

� �
; ð18Þ
where the RHS of (18) is exactly the fourth-order symmetric approximation to @q/@x centered at element j. The eigenvalues
of this spatial operator are purely imaginary, and so must be paired with at least a three-stage third-order Runge–Kutta
(RK3) timestep. Doing so, we obtain a scheme that is stable up to K 6 1.26.

We plot the normalized amplification factor, group velocity and phase velocity associated with this scheme in Fig. 1. Ob-
serve, in particular, that this scheme supports waves with negative group velocity, leading to a maximum negative group
velocity of �5/3 at kDx = p. The range of dimensionless wavenumbers kDx 2 [p/2,p] corresponds to the waves with wave-
length between 4Dx and 2Dx. Most waves in this range travel with negative group speeds and so are not truthfully repre-
sented by the numerical scheme. Note that the phase velocity also drops to zero at kDx = p, whereas at this wavenumber the
amplification factor is exactly 1 regardless of CFL number. As mentioned previously, this implies that the 2Dx mode is an
undamped ‘‘standing wave’’ that is retained by the numerical method.
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2.5. A second-order upwind (FV2) scheme

A linear sub-grid-scale reconstruction was adopted by van Leer [34,36] for shock-hydrodynamics problems, where the
derivative was obtained via a nonlinear limiting procedure. Without a strict monotonicity constraint, we can instead forego
the limiting procedure and hence obtain a linear second-order-accurate upwind scheme. A sub-grid-scale reconstruction of
the form
C
FL

 n
um

be
r

Fig. 2.
CFL ran
negativ
~qjðxÞ ¼ qj þ ðx� xjÞDqj; ð19Þ
is computed in each cell, where D qj denotes the numerical approximation to the first derivative, obtained from the central-
difference formula
Dqj ¼
qjþ1 � qj�1

2Dx
: ð20Þ
Since this reconstruction is discontinuous at cell edges we must use a Riemann flux operator, taken simply to be the upwind flux
F�jþ1=2 ¼ u~qj xj þ
Dx
2

� �
: ð21Þ
After simplifying, the evolution equation reads
@qj

@t
¼ � K

Dt
1
4

qj�2 �
5
4

qj�1 þ
3
4

qj þ
1
4

qjþ1

� �
; ð22Þ
This scheme is unstable under a forward Euler timestep, but stable for Runge–Kutta operators of at least second order. Mak-
ing use of the two-stage second-order Runge–Kutta scheme (RK2), we obtain a discretization that is stable for K 6 1.

We plot the normalized amplification factor, group velocity and phase velocity associated with this scheme in Fig. 2. In
particular, observe that for this scheme wave modes which are propagated with negative group velocities are also modes
which experience strong diffusion. This result was previously obtained by Karni [18], who observed that even in the limit
of vanishing CFL number wave groups were not permitted to propagate backwards in upwind schemes. A singularity can
also be observed in the group velocity and phase velocity plots, corresponding to the point where the amplification factor
is identically zero. The solid line that extends to the right of the singularity in the phase velocity plot is a discontinuity in
the branch cut when evaluating the frequency x from (14). Comparing this scheme against PPM in Fig. 1, we observe that
the FV2 scheme possesses a much more complicated structure and introduces stronger diffusion at high wavenumbers. As
with PPM, the 2Dx mode is a standing mode with non-zero group velocity; however, unlike in PPM, this mode is strongly
damped at all but the largest of the stable CFL numbers. In the nonlinear case this analysis suggests bounding the CFL num-
ber by 0.9 so as to prevent artificial enhancement of this mode against the background field.

2.6. A third-order upwind (FV3p3) scheme

Extending on the ideas of van Leer [34,35], we make use of a sub-grid-scale reconstruction of the form
~qjðxÞ ¼ qj þ ðx� xjÞDqj þ ðx� xjÞ2 �
Dx2

12

� �
1
2

D2qj

� �
; ð23Þ
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where xj is the centerpoint of element j and D qj and D2qj denote numerical approximations to the first and second deriva-
tives of the field q in element j, obtained from
C
FL

 n
um

be
r

Dqj ¼
qjþ1 � qj�1

2Dx
; and D2qj ¼

qjþ1 � 2qj þ qj�1

Dx2 : ð24Þ
As with the FV2 scheme, we compute edge fluxes via the upwind flux (21), leading to the evolution equation
@qj

@t
¼ � K

Dt
1
6

qj�2 � qj�1 þ
1
2

qj þ
1
3

qjþ1

� �
: ð25Þ
This scheme is unstable under both the forward Euler method and RK2 timestep since the eigenvalues of the spatial operator
closely shadow the imaginary axis near the origin. Hence, we will combine this spatial stencil with the third-order Runge–
Kutta (RK3) scheme, leading to a scheme that is stable up to K 6 1.63.

We plot the normalized amplification factor, group velocity and phase velocity associated with this scheme in Fig. 3. As
with the FV2 scheme (see Fig. 2), the behaviour is complicated for wavenumbers in the range [p/2,p], featuring two singu-
larities due to the presence of a zero amplification factor. Again we observe a similar branch cut discontinuity in the phase
velocity plot. Interestingly, the group velocity is positive for virtually all wavenumbers at K P 1.32. Also, the 2Dx mode al-
ways experiences significant diffusion under this scheme, whereas the 3Dx mode (kDx = 2p/3) is relatively undamped at
high CFL numbers. Diffusion in this method is comparable to the FV2 scheme, with slightly stronger diffusion at CFL numbers
greater than about 0.6.
2.7. A third-order semi-Lagrangian integrated-mass (SLIM3p3) scheme

The third-order semi-Lagrangian scheme we will analyze is based on the discontinuous piecewise-parabolic reconstruc-
tion of Laprise and Plante [19]. In this case we again make use of a reconstruction of the form (23) and (24), except now we
apply the SLIM methodology to compute fluxes by integrating upstream from each cell edge. For CFL numbers in the range
0 6 K 6 1 the numerical flux function then takes the form
F�jþ1=2 ¼
1
Dt

Z xjþDx=2

xjþDx=2�uDt

~qðx0Þdx0 ¼ u
6
ðK2 � 1Þqj�1 � ðK þ 1Þð2K � 5Þqj þ ðK � 1ÞðK � 2Þqjþ1

h i
: ð26Þ
The integrated transport scheme then takes the form
@qj

@t
¼ � K

Dt
�1

6
ðK2 � 1Þqj�2 þ

1
2
ðK þ 1ÞðK � 2Þqj�1 �

1
2
ðK2 � 2K � 1Þqj þ

1
6
ðK � 1ÞðK � 2Þqjþ1

� �
: ð27Þ
As stated earlier, SLIM methods can be extended to have an arbitrarily large CFL number if the integration is applied only to
elements that overlap the Lagrangian control volume (see, for example, Lauritzen et al. [20]).
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Unlike (18), (22) and (25), the SLIM framework leads to an evolution equation that is nonlinear in K. This scheme is stable
if combined with a forward Euler timestep and further is exact for K = 1. Unlike the previous schemes, we do not recom-
mended combining this scheme with a Runge–Kutta timestep since the resulting scheme is highly diffusive.

We plot the normalized amplification factor, group velocity and phase velocity associated with this scheme in Fig. 4. The
remapping step in the SLIM framework is responsible for the diffusivity of the scheme, and leads to an amplification factor of
zero at k = p and K ¼ 1

2 (with a corresponding singularity in the group velocity). As with the upwind finite-volume schemes,
waves in the region of negative group velocity also experience strong diffusion. Notably, diffusion in this scheme is weaker
than for the corresponding upwind schemes.

3. Wave reflection

In this section we tackle the problem of spurious wave reflection due to a grid resolution discontinuity. In Section 3.1, we
introduce our test environment for spurious wave reflection. We analyze the decay rate of spurious modes in Section 3.2 and
the initial amplitude of a reflected wave in Section 3.3. We present several reflected wave tests using a symmetric FV scheme
in Section 3.4 with and without a slope limiter. A similar analysis is performed for upwind finite-volume schemes in Sec-
tion 3.5 and for SLIM finite-volume schemes in Section 3.6.

Spurious wave reflection in the advection equation can be attributed to an artificial transfer of energy from forward-prop-
agating physical modes into spurious backward-propagating parasitic modes. When a forward-propagating wave packet hits
a resolution discontinuity, frequency must be conserved across the interface, but errors are accumulated at all wave numbers
with the supported frequency. Certain modes are then propagated backwards relative to the flow. This type of wave reflec-
tion can occur even when a scheme does not possess wave modes with negative group velocity, and depends largely on the
amount of downstream information that is used in the evolution equations; it is a linear effect, and so tends to be the dom-
inant source of error even among nonlinear differential equations.

3.1. Wavemaker driven grid reflection

Wave-like solutions are not, in general, eigenfunctions of the discrete update equations on a grid with a resolution dis-
continuity. However, if we neglect boundary conditions, they are eigenfunctions of the update equations on each uniformly
spaced grid.

In order to analyze wave reflection at grid resolution discontinuities, we follow the approach proposed by Trefethen [32].
Under this simplified model, the advection equation is simulated over a domain x = [0,1] with a grid resolution discontinuity
introduced at x = 1/2. In the regions x = [0,1/2] and x = [1/2,1] we make use of discrete grid spacing Dxf (on the fine grid) and
Dxc (on the coarse grid), respectively, with Dxf < Dxc. The resolution ratio R P 1 at the discontinuity is then defined as
R ¼ Dxc

Dxf
: ð28Þ
At time t = 0, we begin forcing the left boundary with real frequency x and amplitude A. As a consequence, we observe a
wave of the form
qðx; tÞ ¼ A expðiðkx�xtÞÞ ð29Þ
with complex wavenumber k(x) satisfying Im (k) P 0 (under sufficient stability conditions).



Fig. 5. We maintain the illusion of resolution regularity by averaging from the fine grid to coarse grid ghost elements. To obtain the cell-averaged values on
the fine grid, we first construct a sub-grid-scale reconstruction on the coarse grid and then integrate it to obtain the cell-averages on the fine grid. The
dotted (overlapping) regions contain the so-called ghost cells.
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When running simulations, the resolution discontinuity is treated much like any other boundary on a uniform resolution
domain (see Fig. 5). On both the fine and coarse grid the boundary conditions at this point must be obtained from the over-
lapping grid panel. As a consequence, we are able to maintain the illusion of grid resolution uniformity during the simulation,
as long as the boundary conditions are correctly applied.

In order to obtain element-averages for the coarse grid ghost elements that are consistent with the fine grid, we simply
average from the fine grid elements. To obtain element-averages on the fine grid from the coarse grid, we first build a sub-
grid-scale reconstruction of the form (23) using the element-averaged values from the fine grid and known coarse grid ele-
ment-averages. Piecewise-linear and piecewise-constant reconstructions can alternatively be obtained by setting one or
both of D qj or D2qj to zero. Then for each fine-grid ghost cell we average over the corresponding reconstruction. This process
easily generalizes to higher-dimensions, and does not require any additional special treatment of elements near the resolu-
tion discontinuity.

3.2. Decay of parasitic modes

The decay rate of the reflected wave modes can be determined directly from the discretization. Once the initial pertur-
bations from kick-starting the system have died down the frequency x becomes invariant. Hence, both the ‘‘true wave’’
and ‘‘parasitic wave’’ must oscillate at frequency x. To determine all complex wavenumbers k with natural frequency x,
we assume wavelike solutions of the form (29). If we define b = exp(i kDx), unstaggered FV schemes of the form (13) can
be reduced to a polynomial of the form
ðexpð�ixDtÞ � 1Þb‘ ¼
Xr�s

m¼�‘�s
Cmbmþ‘: ð30Þ
Hence, this polynomial will have r � s + ‘ � s roots that represent all wavenumbers that oscillate at frequency x. In particular,
if we assume sufficient stability conditions, roots with Im (k) P 0 will be decaying modes that are propagated forward by our
scheme, whereas roots that satisfy Im (k) < 0 will be growing modes that are propagated backwards (these are the so-called
‘‘parasitic modes’’). In fact, the smaller in magnitude (or closer to zero) we observe for Im (k), the longer the resulting ‘‘tail’’ is
from the point of generation. Hence, we define the dominant parasitic mode for an FV scheme to be the mode k(x) that sat-
isfies (30) with ImðkÞ < 0 such that for any other parasitic mode k0 we have ImðkÞ > Imðk0Þ. The spatial decay rate of the dom-
inant parasitic mode is then defined as �ImðkDxÞ. A large positive decay rate leads to a sharp drop-off of the parasitic mode,
whereas a small positive decay rate leads to an elongated tail. A decay rate of zero corresponds to a parasitic mode which
does not decay away from the resolution discontinuity.

We plot the dominant parasitic mode for various choices of frequency x in Fig. 6. In general, the complexity of the poly-
nomial (30) prevents us from obtaining any general results in all but the simplest of cases, but we can nonetheless make
some observations based on these four schemes:

� In all cases the decay rate appears to be smallest at x = 0, which is associated with a constant forcing. The decay rate then
increases monotonically as x increases.
� At x = 0 the decay rate can be derived analytically if we observe that, for the schemes we have analyzed, the dominant

parasitic mode is the same if we use the coefficients cm (see (11)) in place of Cm in (30). In fact, for the two upwind
schemes and the SLIM scheme with a forward Euler timestep, the degree of the polynomial (30) is only three. If we further
observe that for any consistent scheme b = 1 (the constant mode) must be a root of (30), then the remaining roots are
b ¼
�ðc0 þ c1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc0 þ c1Þ2 � 4c1ðc�1 þ c0 þ c1Þ

q
2c1

: ð31Þ

Using this formula, we can calculate that the x = 0 decay rate of the dominant parasitic mode is 1:44 � logð�2þ
ffiffiffi
5
p
Þ for

the FV2 scheme, 0:99 � logðð�5þ
ffiffiffiffiffiffi
33
p
Þ=2Þ for the FV3p3 scheme and
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b ¼ ð2K2 � 3K � 5Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�15K2 þ 18K þ 33

p
2ðK2 � 3K þ 2Þ

ð32Þ

for the SLIM3p3 scheme. In the limit as K ? 1, the SLIM3p3 scheme does not have any parasitic modes, and so the decay
rate tends to infinity. In the limit as K ? 0, the SLIM3p3 scheme converges to a decay rate of logðð5þ

ffiffiffiffiffiffi
33
p
Þ=4Þ. Observe

that since the coefficients cm are linear in K for the symmetric and upwind FV schemes, all dependence on K divides out of
(31).
� For the schemes that use pointwise edge values to calculate edge fluxes (namely, PPM, FV2 and FV3p3), the decay rate

decreases monotonically with increasing CFL number at all frequencies x > 0. At x = 0, we observe that the decay rate
is independent of CFL number.

The number of elements affected by the parasitic mode before it is damped below a fixed threshold is independent of the
grid spacing. For a decay rate of 1.44, as with the FV2 scheme, a perturbation at the grid resolution interface of magnitude 1
will require approximately 8 elements to be damped to 10�5. For a decay rate of 0.99, as with the FV3p3 scheme, the same
perturbation will require 12 elements to decay to 10�5.
3.3. Amplitude of the parasitic mode at the discontinuity

In addition to knowing the decay rate of a given parasitic mode, it is important to also understand its initial amplitude at a
grid resolution discontinuity. To study the amplitude of the parasitic mode, we carried out a sequence of simulations using
the PPM scheme at forcing frequencies that were sufficiently low to prevent the parasitic mode from decaying significantly
(see Fig. 6). The amplitude of the parasitic mode was calculated empirically by differencing the unrefined and refined grid
simulations near the grid resolution discontinuity. This result was then normalized by the amplitude of the incident wave at
the discontinuity (since, especially at high wave-numbers, substantial decay of the incident mode was observed).

The empirically calculated ratio of the amplitude of the parasitic mode to the amplitude of the incident wave is depicted
in Fig. 7 for various simulations with resolution ratios R = 2, 4 and 8. For waves that are well-resolved on both grids, the ini-
tial amplitude of the parasitic mode at the discontinuity is largely due to the discrepancy between the ‘‘true’’ solution on the
fine grid and the solution in the overlapping grid elements obtained from remapping the coarse grid solution. Improving the
order of accuracy in the remapping stage (using a piecewise linear or piecewise parabolic reconstruction, for instance, in-
stead of a piecewise constant reconstruction) will reduce the initial amplitude of the perturbation. For wavenumbers which
are poorly resolved or unresolved on the coarse grid, the reconstruction will not carry any information about the ‘‘true’’ wave
and so the discrepancy between the incident wave and the representation on the coarse grid will be essentially maximal. In
this case, improving the formal accuracy of the remapping procedure will not improve the outcome, since the element aver-
ages of the reconstruction on the coarse grid still do not contain any information about these waves.

As observed previously in the literature (see, for example, [37]), wave reflection can be dramatically reduced by smoothly
adjusting the grid spacing, rather than through abrupt changes in resolution. Intuitively, this result follows since the sub-
grid-scale reconstruction on adjacent grid cells closely matches up under a smoothly varying element width. This result
is also consistent with the observations of Trefethen [32], who noted that forcing at the outflow boundary produced parasitic
modes of the same amplitude as the prescribed forcing.
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For comparison, we have devised a simple model for predicting the parasitic amplitude. Our goal is to demonstrate that
the discrepancy between the solution on the uniform-resolution grid and the solution on the refined grid is the dominant
influence in determining the amplitude of the parasitic mode for well-resolved incident waves. Given incident wave solution
of the form (29), we can define a moving average operator via
qðx; R;Dxf Þ ¼
1

RDxf

Z xþRDxf

x
qðxÞdx: ð33Þ
If a wave is well-resolved on the fine grid, it will propagate without modification, and so the element average on the fine grid
qf will be given by
qf ¼ qðx; 1;Dxf Þ ¼
expðiðkx�xtÞÞ

kDxf
ðexpðikDxf Þ � 1Þ: ð34Þ
If the wave is well-resolved on the coarse grid as well, the corresponding element average of the first element on the coarse
grid qc will be
qc ¼ qðx; R;Dxf Þ ¼
expðiðkx�xtÞÞ

RkDxf
ðexpðiRkDxf Þ � 1Þ: ð35Þ
For a piecewise-constant reconstruction at the discontinuity, the discrepancy between the true and approximate solution
(copied directly from the coarse grid) is then given by
D ¼ qf � qc: ð36Þ
This approach can be easily extended to higher-order reconstructions (such as we have done with the piecewise-parabolic
reconstruction in Fig. 7), but for sake of brevity we have not included the corresponding formula here.

Waves that are not well-resolved on both grids will deviate from the ideal propagation model described above. As fre-
quency is increased, we observe that these wave modes will lead to greater reflection than the ideal model at almost the
same frequency for both reconstruction schemes. In fact, if we compare this point of departure with the group velocity plots
given in Fig. 1, we observe it is approximately correlated with regions where the group velocity tends away from u = 1. Thus,
for waves in this moderate-frequency regime, it seems that the numerical method is not able to effectively propagate the
energy of the wave away from the discontinuity, implying an increase in the amplitude of the parasitic mode. At high-fre-
quencies the normalized amplitude of the parasitic mode flattens (especially dramatic for the piecewise constant reconstruc-
tion), suggesting some maximal efficiency of the reflection process has been achieved. Beyond a forcing frequency of
xDt = 5p/16 our empirical analysis method is no longer valid due to the rapid decay rate of the incident mode and apparent
decay of the parasitic mode away from the resolution discontinuity.

3.4. Wave reflection by symmetric FV schemes

As observed in Fig. 6, PPM does not significantly damp reflected oscillations at any frequency. This result is apparent in
any of the wave-driver simulations using undamped PPM (see Fig. 8). Here we clearly observe a very strong, undamped
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high-frequency wave that travels away from the grid resolution interface. The reflected wave has a normalized wavenumber
kDx � p and so travels at a group velocity of �5/3 (see Fig. 1). As a consequence, the parasitic mode has almost reached the
left boundary by the time the rightgoing wave has only traversed half of the coarse domain.

In agreement with the results in Section 3.3 we see that increasing the order of accuracy of the remapping process at the
resolution discontinuity does not significantly affect the qualitative properties of the parasitic wave, and only has an effect
on the amplitude of the parasitic wave at smaller wavenumbers (see Fig. 9).

One might wonder if combining this symmetric scheme with a slope/curvature limiter would be sufficient to remove spu-
rious parasitic waves. If we apply the limiting procedure described in [8] we can no longer guarantee continuity at cell edges,
and so must utilize a Riemann flux where discontinuities occur. In this case we adopt an upwind flux operator analogous to
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−1

−0.5

0

0.5

1
(a) Wave−driver (ω = 20.0, CFL = 0.80, R = 4)

0 0.1 0.2 0.3 0.4

−0.05

0

0.05

(b) Difference

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−1

−0.5

0

0.5

1
(a) Wave−driver (ω = 100.0, CFL = 0.80, R = 4)

0 0.1 0.2 0.3 0.4
−0.5

0

0.5

(b) Difference

Fig. 9. As Fig. 8 except with piecewise parabolic reconstruction at the resolution discontinuity.
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Fig. 10. As Fig. 9 except with slope/curvature limiter. Note that we have plotted the difference on a logarithmic scale.
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(21). Simulations were again carried out using a unlimited piecewise parabolic reconstruction at the resolution discontinuity
and are plotted in Fig. 10. The oscillations have been suppressed substantially in this case, but have not been removed com-
pletely. In fact, in the small wavenumber case (x = 20.0) we clearly see that the parasitic mode is persistent at about 10�3 of
the magnitude of the initial wave. Here we observe the spurious mode is able to ‘‘hide’’ in the low-frequency incident wave,
creating a subtle staircasing effect. Here the incident wave also plays the role of a carrier wave for the parasitic mode, since
the parasitic mode would be removed almost immediately by the limiting procedure if no incident wave was present. On the
other hand, the parasitic mode decays away when x = 100.0. These results suggest that this choice of limiter is responsible
for some damping of the spurious reflected mode, but is unable to remove it entirely in the presence of a low-frequency car-
rier wave. Nonetheless limiting is effective at high frequencies where the incident wave does not make an effective carrier.

3.5. Wave reflection by upwind FV schemes

Unlike the symmetric FV schemes, upwind FV schemes strongly damp high-frequency modes. We plot the results of four
simulations using the FV2 and FV3p3 schemes with driving frequencies x = 20.0 and x = 100.0 in Figs. 11 and 12. We ob-
serve that the parasitic mode is present with the same initial amplitude as with PPM, but is quickly damped out. In all cases
the decay rate of the parasitic mode agrees well with the theory derived in Section 3.2.

3.6. Wave reflection by SLIM FV schemes

SLIM FV schemes behave similarly to upwind FV schemes, except the decay rate tends to exhibit a more interesting struc-
ture. We plot the results of two simulations using the SLIM3p3 schemes with driving frequencies x = 20.0 and x = 100.0 in
Fig. 13. Again, our predictions for the decay rates from Section 3.2 agree well with the simulations.

4. The 1D shallow-water equations and linearized 1D shallow-water equations

In this section we briefly turn our attention to the 1D shallow-water equations and demonstrate how the previous results
for the advection equation can be generalized to this case. Unfortunately, our analysis of the 1D shallow-water equations
does not generalize to higher dimensions, as would be relevant for geophysical flows, except for wave modes that encounter
a grid resolution discontinuity at a right angle. In the case of a higher-dimensional flow, one must also take into consider-
ation wave refraction, which results in the splitting of incident waves into reflected and transmitted components when the
wave packet hits a grid resolution discontinuity at an oblique angle. Some analysis of wave refraction was tackled by Cathers
amd Bates [5], but the complexity of this problem has largely prevented further study. Nonetheless, we believe that there is
value in understanding how our results on pure wave reflection can be generalized to the 1D shallow-water equations.

Traditionally, geophysical flows have been modeled using staggered grids (i.e. with mass and momentum variables stored
at different points), since many unstaggered finite-difference approaches admit both spurious 2Dx modes and, for certain
ranges of wavenumber k, lead to group velocities that have the wrong sign relative to the flow field. Such properties are
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Fig. 11. As Fig. 8 except for the FV2 scheme taken at time t = 1.0. The decay rate predicted in Section 3.2 is shown as a dashed line in (b). Note the shorter
horizontal range in (b).
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Fig. 12. As Fig. 11 except for the FV3p3 scheme.
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absent in certain staggered discretizations. Previously, these problems with unstaggered schemes have been pointed out by
Fox-Rabinovitz [10] and Randall [26]. These results have led to a widespread adoption of staggered grids in geophysical flow
models that make use of both finite-difference or finite-volume discretizations (see [3,21,25,27,31]). For example, C-grid dis-
cretizations have desirable inertio-gravity wave dispersion characteristics. Unfortunately, not all of the attractive properties
of staggered schemes on uniform grids carry over to refined grids with a resolution discontinuity. As observed by Chin and
Hedstrom [7] and more recently by Frank and Reich [12], although staggered grids do not admit spurious backwards-prop-
agating high-frequency modes, coupling of left- and right-going wave solutions leads to the generation of spurious physical
modes at the point of grid refinement (see also Appendix A). As argued by Harris and Durran [15], filters are generally re-
quired to maintain accuracy near refinement boundaries. Unstaggered schemes are potentially more desirable in this case,
since upwind variants of unstaggered schemes implicitly filter spurious reflections.
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Fig. 13. As Fig. 11 except for the SLIM3p3 scheme.
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To begin, we consider the 1D shallow-water equations in conservative form:
@h
@t
¼ � @m

@x
; ð37Þ

@m
@t
¼ � @

@x
m2

h
þ 1

2
gh2

� �
; ð38Þ
where h is the total height, m = h u is the momentum and g is the gravitational constant. If we consider only linearized wave
motions on a constant background height field H,
h ¼ H þ h0; and m ¼ m0; ð39Þ
(where the prime denotes the deviations from the background fields) then the 1D shallow-water equations reduce to the
linearized 1D shallow-water equations,
@h0

@t
¼ � @m0

@x
; ð40Þ

@m0

@t
¼ �gH

@h0

@x
: ð41Þ
The linearized 1D shallow-water equations support wave-like solutions of the form
qðx; tÞ ¼ q̂ expðiðkx�xtÞÞ; ð42Þ
where q = [h,m] is the state vector with amplitudes q̂ ¼ ½ĥ; m̂�. On substituting this relation into (40) and (41), we obtain
�ix ik

gHik �ix

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

M

ĥ
m̂

" #
¼ 0: ð43Þ
Hence, in order for wave solutions to exist, we must have det (M) = 0, which implies a dispersion relation of the form
x ¼ �k
ffiffiffiffiffiffi
gH

p
; ð44Þ
corresponding to a rightgoing mode (x > 0) and a leftgoing mode (x < 0), for each positive wave number. The quantity
ffiffiffiffiffiffi
gH

p
is the shallow-water gravity wave speed.
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4.1. Riemann invariants

The full 1D shallow-water equations admit two Riemann invariants, denoted L and R, of the form
L ¼ m
h
� 2

ffiffiffiffiffiffi
gh

p
; and R ¼ m

h
þ 2

ffiffiffiffiffiffi
gh

p
: ð45Þ
These are propagated according to
@L

@t
þ m

h
�

ffiffiffiffiffiffi
gh

p� 	 @L
@x
¼ 0;

@R

@t
þ m

h
þ

ffiffiffiffiffiffi
gh

p� 	 @R
@x
¼ 0 ð46Þ
with only weak coupling between these modes due to the nonlinear wave speed (the parenthesized terms in (46)). Observe
that for subcritical flow m=h <

ffiffiffiffiffiffi
gh

p
, these modes are propagated leftward and rightward, respectively.

The linearized 1D shallow-water equations admit a leftgoing Riemann invariant L0 and a rightgoing Riemann invariant R0,
defined in terms of h0 and m0 as
L0 ¼ m0ffiffiffiffiffiffi
gH

p � h0; and R0 ¼ m0ffiffiffiffiffiffi
gH

p þ h0: ð47Þ
The evolution of these quantities is then described by
@L0

@t
�

ffiffiffiffiffiffi
gH

p @L0

@x
¼ 0;

@R0

@t
þ

ffiffiffiffiffiffi
gH

p @R0

@x
¼ 0; ð48Þ
which is exactly the leftgoing and rightgoing advection equation with wave speed
ffiffiffiffiffiffi
gH

p
.

Thus, for the subcritical shallow-water equations or linearized shallow-water equations we only obtain a well-posed sys-
tem of equations if we specify the rightgoing Riemann invariant R at the left boundary and the leftgoing Riemann invariant L
at the right boundary.

The main problem in generalizing the results for the 1D shallow-water equations to higher dimensions arises largely with
the Riemann invariants, which are not well defined for higher-dimensional systems.

4.2. Numerical discretizations

The numerical discretizations introduced in Section 2 can be easily formulated for the linearized 1D shallow-water equa-
tions. The SLIM scheme can also be generalized to the linearized 1D shallow-water equations by operating on Riemann
invariants, but adapting this scheme to the full non-linear shallow-water equations is not immediately obvious. For this rea-
son, in this section we will concentrate our efforts on the symmetric and upwind finite-volume schemes.

The gas-dynamics form of the PPM scheme (see Section 2.4) for the 1D linearized shallow-water equations takes on the
semi-discretization
@hj

@t
¼ � mj�2 � 8mj�1 þ 8mjþ1 �mjþ2

12Dx

� �
; ð49Þ

@mj

@t
¼ �gH

hj�2 � 8hj�1 þ 8hjþ1 � hjþ2

12Dx

� �
: ð50Þ
The familiar centered-difference operators are apparent on the right-hand-side of this formulation.
The upwind FV2 scheme (see Section 2.5), on the other hand, takes on the semi-discretization
@hj

@t
¼ � mj�2 � 6mj�1 þ 6mjþ1 �mjþ2

8Dx

� �
þ Dx3

ffiffiffiffiffiffi
gH

p
8

�hj�2 þ 4hj�1 � 6hj þ 4hjþ1 � hjþ2

Dx4

� �
; ð51Þ

@mj

@t
¼ �gH

hj�2 � 6hj�1 þ 6hjþ1 � hjþ2

8Dx

� �
þ Dx3

ffiffiffiffiffiffi
gH

p
8

�mj�2 þ 4mj�1 � 6mj þ 4mjþ1 �mjþ2

Dx4

� �
: ð52Þ
We observe that this method combines an O(Dx3) approximation to the advective term (first term on the RHS) with a dif-
fusion term proportional to the fourth-derivative of the field (second term on the RHS). This combination of advective
and diffusive terms is typical for upwind-type methods.

Finally, the upwind FV3p3 scheme (see Section 2.6) has semi-discretization
@hj

@t
¼ � mj�2 � 8mj�1 þ 8mjþ1 �mjþ2

12Dx

� �
þ Dx3

ffiffiffiffiffiffi
gH

p
12

�hj�2 þ 4hj�1 � 6hj þ 4hjþ1 � hjþ2

Dx4

� �
; ð53Þ

@mj

@t
¼ �gH

hj�2 � 8hj�1 þ 8hjþ1 � hjþ2

12Dx

� �
þ Dx3

ffiffiffiffiffiffi
gH

p
12

�mj�2 þ 4mj�1 � 6mj þ 4mjþ1 �mjþ2

Dx4

� �
: ð54Þ
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Here we observe that (53) is identical to (51), except with the O(Dx3) approximation to the first-derivative term replaced by
a more accurate O(Dx4) approximation on the same stencil and with a slightly weaker diffusion term. Further, comparing
with (49), we observe that this scheme has an identical advective component, and only differs in the addition of a diffusive
term.

4.3. Leftgoing and rightgoing mode separation

As we see in Eqs. (49)–(54), unstaggered linear finite-volume schemes lead to semi-discretizations of the linearized shal-
low-water equations that take the form
@hj

@t
¼ �

Xr

a¼�‘
camjþa

 !
þ
Xr

a¼�‘
dahjþa; ð55Þ

@mj

@t
¼ �gH

Xr

a¼�‘
cahjþa

 !
þ
Xr

a¼�‘
damjþa; ð56Þ
where the coefficients ca and da are constant in h and m, but are a function of the grid spacing Dx and wave speed
ffiffiffiffiffiffi
gH

p
(and

should not be confused with the coefficients of the advection Eq. (11)). Here ‘ and r again denote the number of leftward-
elements and rightward-elements in the stencil. Hence, under a linear timestepping operator, the discretizations (55) and
(56) lead to an evolution equation for the leftgoing Riemann invariant L0j given by
@L0j
@t
¼

ffiffiffiffiffiffi
gH

p Xr

a¼�‘
caL

0
jþa

 !
þ
Xr

a¼�‘
daL

0
jþa: ð57Þ
Similarly, the evolution equation for the rightgoing Riemann invariant R0j is given by
@R0j
@t
¼ �

ffiffiffiffiffiffi
gH

p Xr

a¼�‘
caR

0
jþa

 !
þ
Xr

a¼�‘
daR

0
jþa: ð58Þ
First, observe that as long as the discretization of the temporal derivative is linear with respect to the spatial derivative (such
as from an Eulerian or Runge–Kutta timestepping scheme) these equations have decoupled from one another. Second, ob-
serve that these equations are simply the discretization of the advection equation associated with the same discrete spatial
operator as in (55). This result implies that our analysis of the advection equation in Section 3.1 should also apply to the 1D
linearized shallow-water equations, and hence our analysis should accurately describe the dominant forcing mechanism for
parasitic waves in the full 1D shallow-water equations.

4.4. Wave reflection due to coupling of Riemann invariants

Unlike the advection equation, the shallow-water system can generate spurious waves at a grid resolution discontinuity
by artificially transferring energy between Riemann invariants. The 1D shallow-water equations, and their linear counter-
parts admit both leftgoing and rightgoing Riemann invariants for the case of subcritical flow. A grid resolution discontinuity
can trigger an interaction between these modes which results in a spurious transfer of energy between one or more Riemann
invariants. On the unstaggered grid, wave reflection of this type does not arise in discretizations of the 1D linearized shallow-
water equations, but does arise in the nonlinear shallow-water equations due to the aforementioned weak coupling of
Riemann invariants (see Section 4.1).

The amplitude of these spurious physical modes is strongly dependent on the degree of nonlinearity present in the
system, which can be characterized via the shallow-water Froude number,
Fr ¼ u0ffiffiffiffiffiffi
gh

p ; ð59Þ
where u0 denotes the perturbation from some mean velocity. Systems with larger Froude number have a greater tendency to
lead to abruptly varying flows (such as breaking waves) that are more strongly reflected. In general, repeated simulations
have shown that the amplitude of a spurious physical mode generated by interaction of Riemann invariants will increase
on coarser grids (larger Dx) and increasing resolution ratio R. For a flow with a Froude number of 0.1, we have observed that
sharp gradients can readily lead to accumulated errors in the ‘‘backwards’’ propagating Riemann invariant on the order of 1%.

5. Conclusions

In this paper we have considered symmetric, upwind and semi-Lagrangian integrated mass (SLIM) numerical discretiza-
tions of the 1D advection equation in the presence of an abrupt discontinuity in grid resolution. We have presented ap-
proaches for characterizing the initial amplitude of a parasitic mode as well as its decay rate away from a grid resolution
discontinuity. An analysis of the diffusion and group velocity of the upwind and SLIM schemes has revealed that upwind
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schemes largely remove any spurious modes that would normally be carried ‘‘backwards’’ relative to the flow. Unstaggered
symmetric schemes, on the other hand, do not damp the parasitic modes, which must be dealt with through some alternative
mechanism. We have also examined symmetric schemes which have been combined with a typical slope/curvature limiter,
but found that although this strategy is effective at removing oscillations in the high-frequency regime, the parasitic mode is
retained for relative low-frequencies. Tests using high-order accurate reconstructions at the grid resolution discontinuity
have shown that although increasing the order of accuracy of the reconstruction is effective for low-frequency modes, at
high-frequencies parasitic modes are again retained.

The 1D shallow-water equations were also considered briefly. Although staggered discretizations have typically been
used in the context of geophysical flows, it has been argued that these schemes are unsuitable in the presence of an abrupt
resolution discontinuity, since they trigger spurious physical modes which are difficult to remove (additional details are pre-
sented in Appendix A and Frank and Reich [12]). In the 1D case, the unstaggered schemes we have considered have the ben-
efit of decoupling leftgoing and rightgoing Riemann invariants, and so our analysis of the advection equation can be applied
directly.

Clearly, spurious wave reflection due to an abrupt grid resolution discontinuity is a significant problem that can result in
severe degradation of the performance of any numerical method. Hence, some mechanism must be present in order to re-
move contamination by these modes. For symmetric schemes this mechanism likely should come in the form of an explicit
diffusion term, which is naturally present in upwind schemes. With this additional diffusion term, upwind schemes perform
very well at damping out reflected oscillations for the linear equations. Nonetheless, proper care must be taken for the treat-
ment of nonlinear effects which can also lead to the generation of spurious physical modes.
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Appendix A. A brief note on staggered FV schemes for the linear shallow-water equations

Strict conservation of momentum is sometimes unnecessary and external forcing from source terms-especially in the
context of geophysical flows-often prevents exact conservation. Hence, it has become common practice (see, for instance,
[22,24]) to combine a finite-volume scheme for the mass variable (in this case h) with a finite-difference scheme for the
momentum component. Further, due to the resulting beneficial numerical properties (see, for example, [26]), velocity points
are typically placed along edges of the height volumes. This combination leads us to a family of staggered grid schemes based
on the finite-volume framework.

The most basic staggered FV scheme is the so-called second-order central-in-space (CiS) scheme. Under this scheme, the
height and momentum evolution equations satisfy the semi-discretization
@hj

@t
¼ � mjþ1=2 �mj�1=2

Dxj

� �
; ðA:1Þ

@mjþ1=2

@t
¼ �gH

hjþ1 � hj

Dxjþ1=2

� �
: ðA:2Þ
As with the symmetric FV scheme, the eigenvalues of this semi-discretization are purely imaginary, and so must be paired
with at least a third-order Runge–Kutta timestepping operator. If we do so, we obtain a scheme which is stable up to a CFL
number of approximately 0.866.

The grid resolution discontinuity is more problematic for staggered schemes, since the momentum is stored pointwise at
the grid discontinuity. In order to maintain high-order accuracy consistent with the CiS scheme, we require a O(Dx2) recon-
struction for @h/@x that cannot be obtained by simply using neighboring element-averages of h. For a discontinuity with res-
olution ratio R P 1, left-grid width Dxf and right-grid width Dxc = RDxf, we find that the momentum satifies
@mNþ1=2

@t
¼ �gH

R
Dxcð2þ RÞð1þ RÞ ð1� R2ÞhN�1 � ð7� R2ÞhN þ 6hNþ1

h i
þ OðDx2

c Þ; ðA:3Þ
where index N + 1/2 corresponds to the position of the resolution discontinuity.
The main problem with using a staggered scheme in combination with an abrupt grid resolution discontinuity can be ob-

served directly from numerical experiments. We plot two such experiments in Fig. A.14. Unlike with unstaggered schemes,
the staggered finite-volume discretizations do not have decoupled Riemann invariants, and so allow energy to be transferred
between leftgoing and rightgoing waves. This interaction is strongly dependent on the choice of boundary reconstruction
and timestep scheme, since these two factors determine which wavenumbers are available at a given frequency. At high-fre-
quencies the scheme is unable to transfer energy into the forward-propagating mode on the coarse grid (since the wave can-
not be resolved in this region) and so must transfer this energy into a backward-propagating mode. As a result, we observe
that at high-frequencies most of the energy of the incident wave translates into a backwards-propagating mode.
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Fig. A.14. A wavemaker-driven simulation with the second-order CiS scheme with Dxf = 1/128, resolution ratio R = 4 and CFL = 0.6. The forcing frequency is
x = 20.0 (top) and x = 100.0 (bottom). The simulation results at t = 0.8 are plotted in (a) and the parasitic mode (obtained from differencing the
homogeneous resolution and refined resolution simulations) is plotted in (b). The abscissa represents the x coordinate and the ordinate shows the
amplitude of h (both dimensionless).
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Observe that in Fig. A.14 (top) the parasitic mode does not appear to have the same wavelength as the incident wave. In
fact, the accuracy of the reconstruction at the grid refinement boundary significantly reduces the reflection error, and so the
error associated with the wave front initially hitting the grid refinement boundary appears enhanced. It takes roughly until
t = 2.0 before the wavelength of the reflected wave settles to that of the incident wave. A similar numerical experiment using
a reconstruction analogous to (A.2) at the discontinuity (note that such a reconstruction is first-order at this point) nearly
immediately produces a parasitic mode with wavelength equal to the incident wave.

Coupling of wave modes in the staggered scheme described in this section suggests that the reflected mode is almost
indistinguishable from an incident physical mode. As a consequence, filters that remove high-frequency Fourier modes near
the resolution discontinuity will not be able to detect these waves.

From these observations we conclude that staggered schemes that are constructed similar to the one described above are
unsuitable for application on grids that have an abrupt grid resolution discontinuity. A thorough analysis of staggered
schemes on a refined grid has been given by Long [23].
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