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Abstract
As atmospheric models are pushed towards non-hydrostatic resolutions, there is a growing need
for new numerical discretizations that are accurate, robust and effective at these scales. In
this paper we describe a new arbitrary-order staggered nodal finite-element method (SNFEM)
vertical discretization motivated by flux reconstruction methods. The SNFEM formulation gen-
eralizes traditional second-order vertical discretizations, including Lorenz and Charney-Phillips
discretizations, to arbitrary order-of-accuracy while preserving desirable properties such as en-
ergy conservation. Preliminary results are presented from applying this method to an idealized
global baroclinic instability.
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1 Introduction

In typical general circulation models, the Earth’s atmosphere is discretized at a horizontal
resolution of approximately 25 − 110 km and a vertical resolution ranging from 100 m in the
lowest model levels to 3− 4 km near the model top. For fully explicit temporal discretizations,
the maximum time-step allowed by these models is restricted the Courant-Friedrichs-Lewy
(CFL) condition, which relates the time-step to the spatial resolution via the maximum wave
speed. However, the relatively fine grid spacing in the vertical then leads to a substantial
restriction on the maximum allowed global time-step size. To overcome this difficulty, the
hydrostatic approximation has traditionally been used to enforce instantaneous balance between
the vertical pressure gradient force and gravity and so remove vertically propagating sound
waves from the system. However, this approximation ignores horizontal transport of vertical
velocity and so is no longer valid for horizontal grid resolutions below approximately 10 km.

With horizontal resolutions quickly approaching this limit, the next generation of modeling
systems will need to adopt the Naviér-Stokes equations in their unapproximated form. Models
using these equations (as opposed to the hydrostatic primitive equations) are typically referred
to as non-hydrostatic models. To avoid the bound on the CFL condition due to vertical res-
olution, work is ongoing on the use of an explicit temporal discretization in the horizontal in
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conjunction with an implicit temporal discretization in the vertical (a technique known as Hori-
zontally Explicit Vertically Implicit, HEVI). To retain high-order accuracy, these discretizations
are usually coupled via an Implicit-Explicit Runge-Kutta (IMEX-RK) method [3, 29, 30].

Staggered methods are a class of discretizations where scalar (density, pressure and tracer
density) and velocity degrees of freedom are stored at different spatial locations [1]. These
methods have long been used for both horizontal discretizations in atmospheric models [14, 20,
24] and vertical discretizations [2, 5]. These methods further have excellent dispersive properties
and do not support stationary (zero phase speed) 2∆x modes [15, 25, 27], which are notorious
for polluting atmospheric models. Alongside the rise of finite element methods for atmospheric
modeling, there has been a renewed interest in pursuing staggering for finite element methods
[4, 6, 21] analogous to the mixed-finite element methods employed for elliptic problems [16].

This paper explores a discretization we refer to as staggered nodal finite element meth-
ods (SNFEMs), which are a class of arbitrary order-of-accuracy methods that extend tradi-
tional nodal finite element methods (NFEMs) by storing scalar and velocity degrees of freedom
at differential spatial locations. In particular, this paper focuses on the use of SNFEM for
discretization of the model’s vertical coordinate. The development of a high-order SNFEM ver-
tical coordinate has the potential to improve simulation quality and reduce pressure gradient
errors. To assess this method, we have implemented several SNFEM discretizations within the
Tempest framework [28] and are performing an ongoing intercomparison of this formulation
with other schemes.

2 The non-hydrostatic equations of fluid motion

Global atmospheric models have traditionally employed the hydrostatic approximation, which
assumes that the vertical atmosphere is perpetually in a state of balance between pressure
gradient and buoyancy forces. However, this approximation breaks down when the horizontal
resolution is finer than roughly 10 km. With high-resolution atmospheric modeling in mind, we
will employ the unapproximated non-hydrostatic equations [9]. These equations, with shallow-
atmosphere approximation enforced, can be written in an arbitrary coordinate frame (α, β, ξ)
as follows:

∂uα

∂t
+ ui∇iuα + θgαi∇iΠ + f(k× u)α = 0, (1)

∂uβ

∂t
+ ui∇iuβ + θgβi∇iΠ + f(k× u)β = 0, (2)

∂θ

∂t
+ uα

∂θ

∂α
+ uβ

∂θ

∂β
= −uξ ∂θ

∂ξ
, (3)

∂w

∂t
+ uα∇αw + uβ∇βw + uξ∇ξw = −θ

(
∂r

∂ξ

)−1
∂Π

∂ξ
− gc, (4)

∂ρ

∂t
+

1

J

∂

∂α
(Jρuα) +

1

J

∂

∂β
(Jρuβ) = − 1

J

∂

∂ξ
(Jρuξ), (5)

where summation is implied over i ∈ {α, β, ξ} and the coordinate velocity uξ is given by

uξ(w, uα, uβ) =

(
∂r

∂ξ

)−1 [
w −

(
∂r

∂α

)
uα −

(
∂r

∂β

)
uβ
]
. (6)
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Here α and β are arbitrary horizontal coordinates with basis vectors gα and gβ , ξ ∈ [0, 1]
is a vertical coordinate with basis vector gξ (which is perpendicular to surfaces of constant
ξ), r = r(α, β, ξ) is the radius in physical coordinates with radial unit vector k, gij denotes
the contravariant metric, J =

√
det gij is the metric Jacobian, gc is gravity, f is the Coriolis

parameter, ρ is the density, u = uαgα + uβgβ + uξgξ is the vector velocity, θ is the potential
temperature and Π is the Exner pressure. Einstein summation notation (implied summation)
is used for repeated indices. These equations make use of the covariant derivative ∇i, which
can be expanded as

gji∇iΠ = gjα
(
∂Π

∂α

)
+ gjβ

(
∂Π

∂β

)
+ gjξ

(
∂Π

∂ξ

)
, (7)

ui∇iuj = uα
(
∂uj

∂α

)
+ uβ

(
∂uj

∂β

)
+ uξ

(
∂uj

∂ξ

)
+ Γjiku

iuk, (8)

ui∇iw = uα
(
∂w

∂α

)
+ uβ

(
∂w

∂β

)
+ uξ

(
∂w

∂ξ

)
, (9)

where Γjik denotes the Christoffel symbols of the second kind associated with the coordinate
transform (again with summation over repeated indices i and k implied). Further, the Coriolis
term can be written as

(k× u)α = gαβεβrαu
α + gααεαrβu

β = J
[
gαβuα − gααuβ

]
, (10)

(k× u)β = gββεβrαu
α + gβαεαrβu

β = J
[
gββuα − gβαuβ

]
. (11)

The non-hydrostatic equations are closed via the equation of state

Π(ρ, θ) = cp

(
p0
p

)Rd/cp

= cp

(
Rdρθ

p0

)Rd/cv

(12)

where Rd is the ideal gas constant for dry air, p0 is a reference pressure and cp and cv denote
the specific heat capacity of dry air at constant pressure and constant volume. Observe that
(1)-(4) are given in a non-conservative form; this formulation is generally desirable over the
conservative formulation (where momentum and ρθ are prognostic variables) since this form
can more readily conserve quantities relevant to atmospheric motion, such as total energy,
angular momentum and potential enstrophy, and (depending on the discretization) can lead to
a more accurate treatment of wave-like motions [25].

Note that the equations above use w as a prognostic variable in place of uξ. This choice
has the advantage of avoiding several complicated metric terms which arise in the evolution
equation of uξ, at the cost of introducing an additional diagnostic equation for the coordinate
velocity (6). Imperfect balance of these additional geometric terms has been observed to cause
the generation of a spurious wave mode, analogous to the observation of [13].

The equations (1)-(4) do not specify a coordinate system and so can be used for either
Cartesian or spherical geometry, only depending on the specification of the three geometric
quantities: the metric Jacobian J , the contravariant metric gij and the Christoffel symbols of
the second kind Γijk.

To account for topography, terrain-following σ-coordinates are imposed by defining the
radius r = r(α, β, ξ) so that r(α, β, 0) is coincident with the surface. For simplicity, we will
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employ Gal-Chen and Somerville coordinates [8], which arise from the choice

r(α, β, ξ) = ξ [ztop − zs(α, β)] + a+ zs(α, β), (13)

where a is the radius of the Earth, ztop denotes the model height and zs(α, β) denotes the
surface elevation.

3 Discretization

The computational domain consists of nl model levels and nl + 1 model interfaces, which are
staggered in the vertical direction. Throughout this manuscript we will use subscript n to
denote variables stored on model levels and subscript i to denote variables stored on interfaces.
Although the exact placement of levels and interfaces is at the discretion of the model developer,
we choose to divide the vertical into nve vertical nodal finite elements with nvp levels per
element. Levels are placed at Gaussian quadrature nodes and interfaces at Gauss-Lobatto
quadrature nodes.

The placement of prognostic variables follows [25, 23, 26], who argue that there is only one
possible arrangement that maintains optimal wave propagation properties, avoids computa-
tional modes and allows for mass to be readily conserved. Specifically, under this formulation,
variables ρ, u and v are stored on model levels and w and θ are stored on model interfaces.

For simplicity, we employ the Strang-Carryover IMEX-RK scheme for the temporal dis-
cretization [29]. The vertical implicit solver has been implemented with three solution methods:
an iterative GMRES-type solver, a generalized matrix solver based on the DGESV solver from
LAPACK, and a diagonal matrix solver based on the DGBSV solver from LAPACK.

3.1 Vertical Discretization

Discrete evolution equations for the vertically staggered variables are constructed using an
approach similar to flux reconstruction [11, 28]. Under this formulation, an interpolating poly-
nomial over nodal values is first constructed within an element. Values and derivatives of the
polynomial are then evaluated where necessary, augmented (when a discontinuity exists in the
reconstruction at element edges) by the robust derivative operator [28]. A depiction of the
vertical differentiation procedure is given in Figure 1. Continuity is enforced via direct stiffness
summation [18].

Quantitatively, this discretization requires the construction of interpolation operators Ini and
Iin which represent interpolation from nodes to interfaces and interfaces to nodes, respectively.
We also require differentiation operators from interfaces to interfaces (Dii), from interfaces to
levels (Din), levels to levels (Dnn) and levels to interfaces (Dni ). The first two operators (Dii and
Din) are defined simply by differentiating the interpolating polynomials from model interfaces,
and averaging at element boundaries. This is effectively a weak differentiation operation since
the interpolating polynomials of the interface variables is C0.

However, differentiation from levels to levels (Dnn) and levels to interfaces (Dni ) requires addi-
tional augmentation since the interpolating polynomials over levels are discontinuous at element
edges. To proceed, a robust differentiation operator is constructed. Define Z = [ξj,0, ξj,nvp−1]
as the closed interval representing a single vertical element, with boundary ∂Z. Let f : ξ → R
be the interpolating polynomial on levels, which is defined and continuous on Z ∪∂Z. Further,
let f̃ : ξ → R, representing the values of the interpolating polynomial on levels in adjacent
elements, be defined on ∂Z. If continuity were enforced then one would expect that f and f̃
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Figure 1: A depiction of the differentiation procedure linking variables stored at continuous (red)
and discontinuous (purple) nodes. (a) For interpolation/differentiation of continuous variables
needed at discontinuous nodes the continuous polynomial interpolant is simply evaluated /
differentiated at each node. (b) For interpolants derivatives of discontinuous variables needed
at continuous nodes, the robust differentiation procedure is used.

must satisfy f̃(α, β) = f(α, β) on ∂Z, but in this case no such criteria is enforced. Following
[11], robust differentiation in the ξ direction is defined via

Dξf(ξj,i) =
∂f

∂ξ

∣∣∣∣
ξ=ξj,i

+
dgR
dξ

(ξj,i)(f (nvp−1,j) − f(nvp−1,j)) +
dgL
dξ

(ξj,i)(f (0,j) − f(0,j)), (14)

where the overline denotes the co-located average of f and f̃ ,

f (j,nvp−1) =
f(ξj,nvp−1) + f̃(ξj,nvp−1)

2
, f (0) =

f(ξj,0) + f̃(ξj,0)

2
. (15)

Here gL and gR are the local flux correction functions, which are chosen to satisfy

gL(ξj,0) = 1, gL(ξj,nvp−1) = 0, gR(ξj,0) = 0, gR(ξj,nvp−1) = 1, (16)

and otherwise are chosen to approximate zero throughout [α0, αnvp−1]. Options for gL and gR
include g1 (Radau polynomials), which will lead to the discontinuous Galerkin method, and g2,
which will lead to the mass-lumped discontinuous Galerkin method. For the remainder of this
text we will adopt the mass-lumped functions g2, as described in [11]. These correction functions
are exactly zero at Gauss-Lobatto nodes within an element, and so lead to a simplification of
the correction terms when evaluated at model interfaces.

A description of the numerical implementation of this method now follows. Here we use
boldface to represent variables stored in a column. Algorithmically, Exner pressure is first
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computed on model levels via

Πn ≈ cp
(
Rdρn
p0

)Rd/cv (
Iinθi

)Rd/cv
, (17)

and mass flux is computed on model interfaces via

F i ≈ Jk+1/2 (Ini ρn)uξk+1/2. (18)

At the top and bottom interface Fi must be set to zero in order to enforce mass conservation.
The right-hand-side terms of (1)-(5) are then discretized as follows:

−uξ ∂θ
∂ξ

∣∣∣∣
i

≈ −uξiD
i
iθi, (19)

−θ
(
∂r

∂ξ

)−1
∂Π

∂ξ
− gc

∣∣∣∣∣
i

≈ −θi
(
∂r

∂ξ

)−1

Dni Πn − gc, (20)

− 1

J

∂F

∂ξ

∣∣∣∣
n

≈ 1

Jk
DinF i. (21)

At the top and bottom interface, (19) and (20) are set to zero.

Vertical advection of velocity is handled in an analogous manner. First uξ is computed on
model levels,

uξn ≈
(
∂r

∂ξ

)−1

n

[
Iinwi −

(
∂r

∂α

)
n

uαn −
(
∂r

∂β

)
n

uβn

]
, (22)

and on model interfaces,

uξi ≈
(
∂r

∂ξ

)−1

k+1/2

[
wi −

(
∂r

∂α

)
k+1/2

Ini uαn −
(
∂r

∂β

)
i

Ini uβn

]
. (23)

Note that the advected terms in this formulation are susceptible to stationary 2∆x modes,
regardless of the order of accuracy of the underlying discretization [27]. Consequently, the
development of an effective scheme for upwinding in the vertical within the SNFEM framework
is desirable and an area of ongoing work.

3.2 Horizontal Discretization

Spherical shells are discretized in the horizontal using an equiangular cubed-sphere grid [19, 17],
which consists of six Cartesian patches arranged along the faces of a inflated cube [28]. On
the equiangular cubed-sphere grid, coordinates are given as (α, β, p), with central angles α, β ∈
[−π4 ,

π
4 ] and panel index p ∈ {1, 2, 3, 4, 5, 6}. By convention, we choose panels 1–4 to be along

the equator and panels 5 and 6 to be centered on the northern and southern pole, respectively.
With uniform grid spacing, each panel consists of a square array of ne×ne elements with global
polynomial order np. The horizontal discretization otherwise follows the continuous spectral
element formulation [28], analogous to earlier efforts with spectral elements [10, 7, 22, 9].
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4 Validation: Baroclinic Instability

The baroclinic instability test of [12] is an important test case for hydrostatic dynamical cores.
Although it does not describe a non-hydrostatic phenomena, it represents a first mechanism to
validate global atmospheric model performance; in particular, we would expect that a correct
and validated non-hydrostatic model should produce results analogous to those of a hydrostatic
model (for which many reference solutions are available). The background field is chosen to
qualitatively resemble the real atmosphere. A small exponential-type perturbation is then
added which triggers the generation of an instability. Initialization of this test case in height
coordinates follows an iterative procedure [12].

The temperature T is computed in terms of the density and potential temperature using
(12) and the ideal gas law,

T (ρ, θ) =
p0
ρRd

(
Rdρθ

p0

)cp/cv
Three simulations were conducted on a small computing cluster with a fixed horizontal grid

resolution of ne = 30 and np = 4 (corresponding to 48, 602 degrees of freedom per variable per
model level or 110 km equatorial resolution), nl = 30 and a 30 km model cap. The time step was
fixed at ∆t = 240 s. For each simulation the vertical polynomial order is varied by choosing
nvp = {1, 3, 30} keeping the total number of degrees of freedom constant. Computational
performance did not vary significantly between simulations, with the high-order nvp = 30 case
associated with approximately a 10% slowdown compared with the nvp = 1 case. Models
typically use a stretched vertical coordinate in order to improve vertical resolution near the
surface, where the strongest vertical gradients in the baroclinic instability are present. However,
in this case we purposefully use uniformly spaced elements, leading to under-resolution of the
vertical in order to emphasize the effect of vertical order-of-accuracy on the development of the
instability.

Surface temperature and surface pressure from these simulations are depicted in Figure 2
over the region of instability. The vertical coordinate with centered differences (1 level per
element) produces a baroclinic instability with the correct structure but relatively weak cen-
tral pressure. Increasing the number of levels per element leads to a similar structure, but a
greatly improved central pressure. This formulation is further extended to one finite element
in the vertical direction, corresponding to 30 levels per element. In this limit we observe that
the resulting wave is visually similar to other empirically derived solutions for the baroclinic
instability [12].

5 Conclusions

We have described a new method for discretization of the vertical coordinate for atmospheric
models based on staggered nodal finite element methods and validated the method using the
baroclinic instability state of [12]. The SNFEM formulation herein generalizes traditional
second-order vertical discretizations, including Lorenz and Charney-Phillips discretizations, to
arbitrary order-of-accuracy while preserving desirable properties such as energy conservation.
Improvements in the vertical order of accuracy have been shown to lead to clear improvement
in the horizontal structure of the instability at fixed horizontal resolution.
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Figure 2: Snapshots from the baroclinic wave test case at day 9 simulated on a ne30 grid with
30 vertical levels and 30 kilometer model cap. The time step is chosen to be ∆t = 240 s.
Surface temperature and pressure are plotted in the left and right columns, respectively. The
rows represent (from top to bottom) 1, 3 and 30 levels per element.
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