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The location, timing, and intermittency of precipitation in California makes
the state integrally reliant on winter season snowpack accumulation to main-
tain its economic and agricultural livelihood. Of particular concern, winter
season snowpack has shown a net decline across the western USA over the
past 50 years resulting in a major uncertainty in water resource management
heading into the next century. Cutting edge tools are available to help nav-
igate and preemptively plan for these uncertainties. This paper uses a next-
generation modeling technique, variable-resolution global climate modeling
within the Community Earth System Model (VR-CESM), at horizontal res-
olutions of 0.125° (14km) and 0.25° (28km). VR-CESM provides means to
include dynamically large-scale atmosphere-ocean drivers, limit model bias,
provide more accurate representations of regional topography, while doing so
in a more computationally efficient manner than conventional general circu-
lation models. This paper validates VR-CESM at climatological and seasonal
timescales for Sierra Nevada snowpack metrics by comparing them to the
DAYMET, CAL-ADAPT, NARR, NCEP, and NLDAS reanalysis datasets, the
MODIS remote sensing dataset, SNOTEL observational dataset, a standard
practice global climate model (CESM) and regional climate model (WRF)
dataset. Overall, considering California’s complex terrain, intermittent pre-
cipitation, and that both of the VR-CESM simulations were only constrained
by prescribed sea surface temperatures and sea ice extent data, a 0.68 centered
Pearson product-moment correlation, negative mean SWE bias of <7 mm,
interquartile range well within the values exhibited in the reanalysis datasets,
and mean DJF SNOWC within 7% of the expected MODIS value, the efficacy

of the VR-CESM framework is apparent.
3
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1. Introduction

California receives half of its total annual precipitation in five to fifteen days of the year, making
its precipitation patterns some of the most intermittent in the USA (Dettinger et al. 2011). Im-
portantly, most of the state’s precipitation falls during the winter months (December to February)
and two-thirds of it precipitates in the northern and mountainous parts of the state (Wise 2012).
The precipitation that falls in the mountainous region largely accumulates as snow (Pandey et al.
1999). Thus, winter snowpack acts as a natural surface reservoir for water that is then released dur-
ing dry portions of the year. Snowpack provides approximately three-fourths of the annual fresh
water supply in the western USA (Palmer 1988; Cayan 1996), and 60% of California’s developed
water supply originates from the snowpack dominated Sierra Nevada (Bales et al. 2011). Along
with the Colorado River, this natural store of water contributes to the maintenance of California’s
economy and its stance as one of the largest agricultural providers in the world (Tanaka et al. 2006;
Hanak and Lund 2012). These water reserves also provide up to 21% of the energy found within
California’s diverse energy portfolio via hydroelectric plants (Stewart 1996). Therefore, the in-
tegrity of California’s economy, and agricultural identity, is largely dependent on ample snowpack
accumulation in the Sierra Nevada.

A major cause of interannual variability in winter precipitation in California, and the
greater western USA, are global teleconnections. Teleconnections are recurrent and persistent
atmosphere-ocean patterns impacting large swaths of latitudinal and longitudinal bands (Wallace
and Gutzler 1981; Glantz et al. 1991). They are important from a water resources perspective
because they determine overall temperature, precipitation, and snowpack trends within California.
Atmosphere-ocean climate interactions have been found to vary annual precipitation by 20-45% in

the western USA (Dettinger et al. 1998), and include the El Nifio Southern Oscillation (ENSO), the
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Pacific Decadal Oscillation (PDO), the Pacific North American Pattern (PNA), the North American
Monsoon, and the Aleutian Low, as well as more short term events known as atmospheric rivers
(ARs) (i.e., equatorially generated whip-like water vapor bands) (Dettinger et al. 1998; Cayan
etal. 1999; Ralph et al. 2004; Dettinger 2011; Wise 2012; Guan et al. 2013; Fang et al. 2014). The
internal variability associated with teleconnections modulate the spatial and temporal variability
of strong precipitation events in the western USA (Wise 2012). Therefore, teleconnection modu-
lation, on both yearly and decadal time frames, has a direct impact on the amount of total seasonal
snowpack deposited in the Sierra Nevada. This modulation is also essential in resolving historical
trends as well as projecting future snowpack tendencies. For example, atmospheric rivers alone
account for around 30-40% of seasonal snowpack accumulation in the Sierra Nevada (Guan et al.
2010). Thus, a representation of global processes, ideally via a global climate model, is necessary
to accurately account for California’s temperature, precipitation, and snowpack trends.

To observe how this crucial natural fresh water reserve is characterized, both spatially and tem-
porally, snowpack metrics such as snow water equivalent (SWE), snow centroid date (SCD), and
the extent of snow cover (SNOWC) have been developed to quantify the patterns of Sierra Nevada
snowpack. SWE is used to determine the total water content for a given snow depth. It can be
quantified by taking a given depth of snow and melting it; the resultant water content represents
the SWE. This is useful since snow densities can fluctuate due to variations in snowfall as well
as melt and ablation events in the snowpack. SCD represents the date of peak snowpack accu-
mulation, which is useful in understanding snowmelt onset. SNOWC characterizes the total areal
coverage of snow over a given region. This is helpful in quantifying shifts in regional to global
albedo as well as the freezing line extent in mountainous environments. Over the historical record,
the Sierra Nevada has shown a mean difference in April 1st SWE of 2.2% (i.e., northern Sierra

decline of 50-75% and southern Sierra accumulation of 30%) (Mote et al. 2005), western USA
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SCD was found to shift 0.7 days earlier per decade (Kapnick and Hall 2012), and total SNOWC
declined by 9% across the Northern Hemisphere (Rupp et al. 2013). The shift in SCD appears to
be eight days earlier per °C of warming in end of winter season (March and April) temperatures.
Additionally, Bales et al. (2006) found that the fraction of storms that occur with surface temper-
atures in the range of -3 °C to 0 °C account for up to 36% of the annual precipitation events in
many parts of the Sierra Nevada, highlighting the sensitivity of snow storms in the Sierra Nevada
to increasing temperatures due to anthropogenic global climate change. Using IPCC AR5 RCP
4.5 and 8.5 scenarios, projected end-of-the-century trends for snowpack highlight that western
USA SWE may decline by 40-70% (Pierce and Cayan 2013), snowfall may decrease by 25-40%
(Pierce and Cayan 2013), more winter storms may tend towards rain rather than snow (Bales et al.
2006), and relatively warmer storms (e.g., atmospheric rivers) may be more frequent and intense
for California (Dettinger 2011). In a review paper by Gimeno et al. (2014), Dettinger et al. (2011)
represented the only western USA specific paper on the future projected trends of ARs. Of note,
the authors expressed that the results in this study were a preliminary step and should be assessed
more from a qualitative sense due to the small sample size of AR events in the CMIP5 archive and
the various assumptions associated with the relatively coarser temporal and spatial extents of the
models in the CMIP5 archive. Therefore, if the aforementioned projected outcomes hold, mean
precipitation is not expected to change dramatically, but interannual variability will likely increase
through modulation in atmospheric river events. Since snowpack is affected by both precipitation
and temperature, it is expected that increased end-of-century temperatures coupled with more in-
tense warmer storms in the western USA will prevent snow accumulation and lead to changes in
runoff timing that could be problematic for water management. Thus, an analysis of causal mech-
anisms of snowpack accumulation and snowmelt timing, with a dynamic inclusion of large-scale

atmosphere-ocean drivers, and an accurate representation of the complex topography of Califor-
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nia is needed to allow water managers to make more informative and preemptive decisions on
Californias water future.

One key approach to address the aforementioned need is via climate models. However, both
global and regional climate models have limitations in their predictive capacities. As demonstrated
by the North American Regional Climate Change Assessment Program (NARCCAP), regional cli-
mate models (RCMs) were shown to produce too dry, too warm, and too little SWE conditions for
the western USA and snow cover duration was found to start too late and end too early (Salz-
mann and Mearns 2012). Model bias was associated with inadequate topography representation,
imperfections in observational data, and differing land surface model components (Salzmann and
Mearns 2012). Similarly, Caldwell (2010) found that RCMs generally overpredict winter precipi-
tation in California, whereas global climate models (GCMs) generally underpredict winter precip-
itation in California. The precipitation bias associated with GCMs was not solely related to model
resolution (as this was standardized before comparison), but rather factors such as subgrid-scale
parameterizations and coarse model topography too (Caldwell 2010). The aforementioned RCM
findings regarding precipitation and SWE appear contradictory to one another, but it should be
noted that California hydroclimatic trends have shown dissimilarities from several of those shown
in other parts of the western USA (Mote et al. 2005; Kapnick and Hall 2012), likely due to a com-
bination of relatively higher topographical elevation in the southern Sierra Nevada (compared to
other western USA mountain ranges), proximity to the Pacific Ocean, and effects from ARs.

This paper aims to analyze the efficacy of variable-resolution modeling using the Community
Earth System Model (VR-CESM) at resolutions of 0.125° (14km) and 0.25° (28km) in repre-
senting Sierra Nevada snowpack, in comparison with observational, reanalysis and dynamically
downscaled model results. Variable-resolution modeling is a novel tool for modeling the climate

system and represents a hybrid of global and regional climate models. We envision that this new
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modeling framework will bring added value to the snowpack modeling community with the bene-
fit of a global solution, accounting for major teleconnections, and regional high-resolution, better
representation of winter storms and orographic forcings. This hypothesis has been corroborated
for temperature and precipitation climatic trends within California in Huang et al. (2015). These
benefits will lead to a better representation of observed summary statistics for winter snowpack
within a GCM framework. Further, several studies have shown that CESM has skill in represent-
ing the major wintertime teleconnections of the western USA including the ENSO (DeFlorio et al.
2013; Wang et al. 2014), the PDO (DeFlorio et al. 2013), and the Pacific-North American (PNA)
pattern (Li and Forest 2014). Teleconnection representation in these studies is expected to carry
over into VR-CESM.

The structure of the remainder of the paper is as follows: Section 2 contains information about
the CESM setup and experimental design, including VR-CESM grid implementation. Section 3
discusses the comparative datasets used to assess model efficacy. Section 4 provides summary
statistic comparisons of seasonal to multidecadal snow trends, including SWE and SNOWC. Fi-

nally, section 5 provides further discussion and the conclusions of this study.

2. CESM Setup and VR-CESM Grid Implementation

CESM Setup

This project utilized version 1.2 of the Community Earth System Model (CESM), a widely used
and community-supported climate model developed by the National Center for Atmospheric Re-
search (NCAR) and the US Department of Energy (DoE). CESM is a fully coupled global climate
model comprised of seven geophysical models that simulate the major components of the Earth

system including the atmosphere, land-surface, land-ice, ocean, ocean-wave, river run-off and sea
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ice, all of which can be coupled dynamically. One of the F-component sets in CESM, FAMIPCS,
is the standard protocol for the Atmospheric Model Intercomparison Project (AMIP) and was
used for each of the CESM simulations in this study (Gates 1992). This component set consists
solely of the atmosphere-land coupled model with prescribed sea-surface temperatures (SSTs) and
sea ice extent. This limited configuration maximizes computational efficiency and inhibits model
bias propagation. This is advantageous for a local server environment (<1000 processors per
simulation), like the one used in this study. Although the oceanic and sea ice systems were not
incorporated dynamically into this study, this component set ensures that interannual climate vari-
ability (mainly via SST anomalies) and global albedo effects from sea ice extent are incorporated
into the simulations. Future research will target the VR-CESM simulation performance with and
without a dynamic ocean model. Thus, for this study, only the atmosphere model (Community At-
mosphere Model (CAM) version 5.3) (Neale et al. 2010) and the land-surface model (Community
Land Model (CLM) version 4.0 with satellite phenology) (Oleson et al. 2010) were utilized.
CAM was run with the Spectral Element (SE) dynamical core with a cubed-sphere grid structure
(Taylor et al. 1997; Dennis et al. 2011). CAM-SE uses a continuous Galerkin spectral finite-
element method for solving the hydrostatic atmospheric primitive equations. CAM-SE provides
several benefits over other CESM dynamical cores including linear scalability with increasing
computer processor counts, machine precision conservation of mass and tracers, elimination of
non-uniform grid spacings due to convergence zones at higher latitudes, and variable-resolution
capabilities (Taylor and Fournier 2010; Dennis et al. 2011; Zarzycki et al. 2014a,b; Zarzycki and
Jablonowski 2014). CAMS physics are broken down into six main categories: shallow convection
(Park and Bretherton 2009), deep convection (Neale et al. 2008), microphysics (Morrison and
Gettelman 2008), macrophysics (Park et al. 2014), radiation (Iacono et al. 2008), and aerosols

(Ghan et al. 2012). Details on each of the physics schemes can be found in Neale et al. (2010).
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CLM subdivides each cell into land types such as glacier, lake, urban, vegetated, and wetland
(Oleson et al. 2010; Lawrence et al. 2011). The vegetated component of the grid cell is further bro-
ken down into various soil types which are then characterized by 16 unique Plant Functional Types
(PFTs), including non-vegetated. CLM4.0 PFTs include five evergreen species and six deciduous
species for temperate, boreal, and tropical climates, three grasses for arctic and non-arctic climates
(with C-3 and C-4 variations) and a few staple cereal crops. PFT cover is derived from the Moder-
ate Resolution Imaging Spectroradiometer (MODIS) satellite data at 0.5° resolution with canopy
heights for each of the PFTs assumed to range from 0.5 meters (crops, grasses, and shrubs) to 35
meters (trees). PFT types and percent cover of PFTs within each vegetated land-unit play a crucial
role in shaping snowpack trends. This is because the interaction between the canopy and snowpack
are PFT specific for biogeochemical, radiative, and hydrological processes such as interception,
throughfall, canopy drip, water removal via transpiration, and optical property interactions based
on leaf angle and specific PFT (Lawrence et al. 2011).

The parameterizations of snowpack within CESM are based primarily on work done by Ander-
son (1976), Jordan (1991), and Yongjiu and Qingcun (1997). These parameterizations characterize
several important state variables for snowpack including the mass of water, mass of ice, snowpack
layer thickness, temperature profile of the snowpack layer, black carbon and mineral deposition,
and snowpack aging and optical properties. The model is discretized using five snow layers with

dynamic compaction, water transfer, and energy transfer.

VR-CESM Grid Implementation

The VR-CESM grids were generated using a freely available software package (SQuadGen)
(Ullrich 2014). To generate the variable-resolution grid files, SQuadGen interpolates a picture

image file, with variations in its gray scale properties, creates a refinement map, and uses spring
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dynamics to smooth the transitional regions between various grid resolutions. VR-CESM 0.25°
(28km resolution) and VR-CESM 0.125° (14km resolution) grids were constructed for both CAM
and CLM (Figure 1). Topographic smoothing was varied between the two VR-CESM 0.25° sim-
ulations (VR-CESM 0.25° (smooth) and VR-CESM 0.25° (rough)) without modifying the grid
structure to assess the sensitivity of topographical influences on VR-CESM simulations. This

study further represents the first time variable-resolution grids were implemented into CLM.

Topographic Representation in the VR-CESM Simulations

Topographical datasets were generated for each variable resolution grid. The topographic
smoothing was varied between the two VR-CESM 0.25° simulations by adjusting the ¢ parameter
from Eqn. (1) in Zarzycki et al. (2015). In the case of the VR-CESM 0.25° (smooth) topog-
raphy, this parameter was equal to 1.33 times that used for generating VR-CESM 0.25° (rough)
case. This resulted in the differences in topographical representation seen in Figs. 2a-b. Care-
ful consideration is required when generating the VR-CESM topographical datasets due to the
fact that CAM-SE uses terrain-following vertical coordinates that exhibit, with excessive terrain
roughness, a tendency towards generation of spurious vertical velocities and numerical artifacts
(Zarzycki et al. 2015). The topographical datasets were derived using bilinear interpolation with
a linear smoothing operator on the 2-minute National Geophysical Data Center (NGDC) Gridded
Global Relief Dataset (ETOPO2v2) (National Geophysical Data Center 2006) coinciding with the
variable-resolution grids surface geopotential and order of the hyperviscosity term. This provides
more (less) topographical structure in the high (low) resolution region of the nest. For example,
maximum Sierra Nevada topographical elevations (see Figure 2) in the 111 km, 28 km, and 14

km resolutions of CESM were 1583.31 meters, 2677.08 meters, and 3147.28 meters, respectively.
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When compared with the ETOPO2v2 NGDC dataset, topographical elevation in the Sierra Nevada

matches more closely as model resolution increases (Figure 2).

3. Reference Datasets and Statistical Methods

Reference Datasets

Observational datasets for snowpack metrics such as snow water equivalent (SWE) and snow
cover (SNOWC) are particularly difficult to develop in mountainous environments. The fractal
nature of snowpack deposits, quick shifts in elevation, angular differences in topography, alpine
vegetation cover, cloud cover, and large footprint radius associated with satellite instrumentation
are key challenges. Additionally, many satellite products span less than a decade, preventing
analysis of climate patterns over decadal timeframes. In situ measurements help alleviate some of
the highlighted issues, yet they are irregularly located, and so may not be representative in regions
of rapidly varying topography. Land surface models have been used to abate the discontinuous
nature of in situ observations, but often contain their own biases. Therefore, to provide a rigorous
assessment, a blend of the aforementioned data types will be used in this assessment.

The datasets that this study used for validation purposes are listed in Table 1. Datasets vary
in snowpack product availability (i.e., SWE and SNOWC), spatial and temporal resolution, map
projection, and temporal range. Therefore, all datasets were standardized to monthly averaged,
seasonally averaged (DJF), and climate averaged (DJF from 1980-2005) temporal resolutions dur-
ing the assessment of the VR-CESM simulations. In order to accomplish this task, utilities from
the NetCDF Operators (NCO), Climate Data Operators (CDO), and the NCAR Command Lan-

guage (NCL) were used.
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The North America Land Data Assimilation System Phase 2 (NLDAS-2) produced 0.125°
datasets by incorporating large quantities of observational and model reanalysis datasets into three
non-atmosphere coupled land-surface models (i.e., Princeton’s implementation of VIC, NOAA’s
Noah, and NASA’s Mosaic) over the continental United States. The three datasets provide SWE
and SNOWC and are extensively analyzed by Xia et al. (2012a,b). For the 2008 California climate
change assessment, four GCM (i.e., CCSM3, CNRM, GFDL, and PCM1) datasets were down-
scaled using Bias Corrected Statistical Downscaling (BCSD) methods along with the VIC model
at a resolution of 0.125°. This dataset, known as CAL-ADAPT, provides SWE values over the en-
tirety of California, with the methodology discussed in Maurer and Hidalgo (2008). The DAYMET
dataset provides SWE estimations based on meteorological stations. The station data is then ex-
trapolated, using a truncated Guassian weighting filter, to create a high resolution gridded output
(Thornton et al. 2014). The Moderate Resolution Imaging Spectroradiometer (MODIS) satellite
remote sensing dataset (MODIS/Terra Snow Cover Monthly 0.05° (5 km), Version 5 (MOD10CM
V005)) provides SNOWC using a snow mapping algorithm with a Normalized Difference Snow
Index (NDSI) (Hall et al. 2006). The NDSI is used to distinguish between snow and other features
(such as cloud cover) by using visible and short-wave near-IR spectral bands. A comprehensive
analysis and validation of the MODIS dataset for a region of the Sierra Nevada was conducted in
Hall and Riggs (2007). The SNOwpack TELemetry (SNOTEL) in situ dataset is comprised of 32
automated observational stations spread throughout the Sierra Nevada mountain range measuring
SWE (Serreze et al. 1999). The areal extent of the SNOTEL stations range from 38.07° to 42.99°
latitude by -120.79° to -119.23° with an average elevation of 2,343 meters. Of the 32 stations,
only 19 were utilized as they spanned the entire 1980-2005 temporal range. The North American
Regional Reanalysis (NARR) dataset provides monthly averaged SNOWC output variables using

a high resolution atmospheric model (Eta Model) forced by a Regional Data Assimilation System

13



265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

(RDAS) (Mesinger et al. 2006). The other reanalysis dataset used (NCEP - CFSV2) is an up-
dated version (2013) of its predecessor (2004) and provided SNOWC data (Saha et al. 2014). The
NCEP dataset provides better representations of 2m surface temperature, Madden-Julian Oscilla-
tion (MJO), and SST forecasts while upgrading overall performance in seasonal to subseasonal
forecasting results, compared to its predecessor, and has been advised for decision makers in the
water management and agricultural sectors (Saha et al. 2014).

A 0.25° (finite volume) and 1° (spectral element) uniform resolution CESM run were used for
comparison to the VR-CESM simulations as well. The 0.25° simulation is described in Wehner
et al. (2014) and the 1° simulation was performed by the research team with the same component
set and dynamical core as the VR-CESM simulations. The final datasets utilized for this assess-
ment were a pair of simulations conducted at UC Davis using the Weather Research and Forecast
(WRF) model, which has been used extensively for regional climate studies. Several common pa-
rameterization combinations (including different cumulus schemes and radiation schemes) were
tested over a one-year simulation period and compared with gridded observations. Those final
options were chosen for climate applications that balance long-term reliability and computational
cost, representing a typical RCM configuration. Subgrid parameterizations include: the Kain-
Fritsch cumulus scheme (Kain 2004), the WSM 6-class graupel microphysics scheme (Hong and
Lim 2006), and the CAM short-wave and long-wave radiation schemes (Collins et al. 2004). The
simulations used a nested domain with a coarse resolution of 27km (WRF-27) and a finer resolu-
tion domain of 9km (WRF-9) situated over the western USA (centered over the Sierra Nevada).
The initial, boundary conditions, and sea surface temperatures were all provided by ERA-Interim
reanalysis data, a widely used and validated dataset for this type of work (Dee et al. 2011). Both

WRF domains provide SWE and SNOWC output variables via the Noah Land Surface Model

14



288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

(Chen and Dudhia 2001) coupled with the Yonsei University (YSU) boundary layer scheme (Hong
et al. 2006).

The Noah and CLM4.0-SP land surface models (LSMs) derive from similar snow model formu-
lations (i.e., Anderson (1976)), yet deviate in several ways too. The Noah LSM pulls primarily
from Yen (1965), whereas CLM4.0-SP draws from Jordan (1991). This creates differences in both
of the snow model’s fundamental equations and parameterizations. Differences include number
of snow layers (Noah LSM has three, whereas CLM4.0-SP has five), snow thermal conductivity
(CLM4.0-SP uses a snow density function and Noah LSM uses a constant), snow cover hyperbolic
functions (CLM4.0-SP utilizes a slightly more complicated formulation) and snowpack-canopy in-
teractions (Oleson et al. 2010; Yang et al. 2011). Of relevance to this paper’s overall conclusions,
snow depths (and thus SWE) estimations in the Noah LSM have been noted to be significantly
overestimated in certain cases due to the assumption that snowpack density, physical character-
istics, and thermal conductivity are constant, therefore neglecting heat transfers via meltwater

movement in the snowpack (Yang et al. 2011).

Statistical Methods

The DJF climatological mean state and seasonal variability in snow products found within the
Sierra Nevada were analyzed. The assessment aimed to understand the efficacy of the new VR-
CESM approach in representing snowpack trends against observation, reanalysis and other widely
used GCMs and RCMs. In order to do this, the datasets were remapped to similar map projections
and resolutions using both the Earth System Modeling Framework (ESMF) capabilities in the
NCAR Command Language (NCL) and TempestRemap (Ullrich and Taylor 2015) software suites.
The observational and reanalysis datasets were further remapped to all possible resolutions used

in the models (i.e., 0.125°, 0.25°, and 1°). The climate averages and seasonal averages were
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computed using a mask of the Sierra Nevada (see Figure 3). This mask was developed by the
EPA’s Ecoregions classification system (Ecoregion Level III - 6.2.12). Summary statistics of the
Sierra Nevada were calculated for each of the datasets for SWE and SNOWC including mean,
standard deviation, lower quartile, median, upper quartile, and maximum.

For most of the datasets assessed, 25 seasons of average DJF values were used. WRF-9 had 22
DIJF seasons. Additionally, MODIS had 12 DJF seasons, many of which fall outside the historical
period (1980-2005 vs 2000-2012), but due to the scope of this paper in analyzing the climatological
and seasonal mean trends (rather than precise seasonal forecasting) this was assumed to be largely

irrelevant.

4. Seasonal and Multidecadal Snow Trends in the Sierra Nevada

Snow Water Equivalent Summary Statistics

A panel plot of the DJF average SWE is shown across datasets for California (Figure 4). Clear
resolution dependence is apparent across all modeling platforms. Each of the datasets highlighted
an overall increasing trend in SWE with an increase in model resolution, likely correlated with
topographical representation (see Figure 2) and resultant orographic forcing on weather fronts
as well as sustained below-freezing temperatures. Of note, the NCEP dataset didn’t characterize
enough SWE for the Sierra Nevada region to be further assessed in greater statistical detail. Each of
the model datasets are compared to the average of the reanalysis datasets at their closest respective
resolution of 0.125°, 0.25°, or 1°. Within the Sierra Nevada masked region, VR-CESM 0.125° and
VR-CESM 0.25° (rough) demonstrated the closest statistical match across all observational and
reanalysis datasets with mean DJF SWE absolute bias values of 6.4 and 2.7 mm, respectively (the

reanalysis dataset average SWE value was 97.4 mm), and median values within 8 to 13 mm (Table
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2). Maximum DJF SWE values were most closely represented by CESM-FV 0.25° and VR-CESM
0.25° (rough), both within 68 mm. It should be noted that an artificial cap on maximum SWE at
1,000 mm is imposed in CLM4.0 which impacted maximum SWE values for all VR-CESM and
UNIFORM CESM simulations. CESM-FV 0.25° and WRF-9 both showed a positive bias in DJF
SWE values for mean and median compared to the reanalysis dataset average. CESM-FV 0.25°
had a positive bias of 1.8 times the mean DJF SWE and 2.4 times the median value for the Sierra
Nevada mask. WRF-9 exhibited a similar response with a positive bias of 2.4 times the mean and
1.4 times the median DJF SWE. The coarser resolution version of VR-CESM and WREF had a
negative bias with VR-CESM 0.25° (smooth) at half the mean for DJF SWE in the Sierra Nevada
and WRF-27 at 74%. CESM-SE 1°, the model resolution used in most IPCC simulations, was
unable to represent both climatological and seasonal DJF SWE trends in the Sierra Nevada with a
maximum DJF SWE value of 41.7 mm (<5% of the reanalysis dataset average maximum value),

with similar tendencies seen in the mean and median values as well.

Seasonal Variability in Snow Water Equivalent

SWE DJF mean seasonal variability is represented via a plot of standard deviation at each grid
point across all datasets (Figure 5). Characterization of interseasonal variability, in comparison to
the reanalysis datasets, was shown to be more difficult for most of the modeling platforms. VR-
CESM simulations were best represented by VR-CESM 0.25° (rough) which exhibited a slight
positive bias of 1% to the reanalysis dataset average (Table 2). VR-CESM 0.125° and VR-CESM
0.25° (smooth) were at 87% and 36% of the standard deviation, respectively. CESM-FV 0.25° had
a large discepency in standard deviation tendency with a positive bias of two times the reanalysis
dataset average of the reanalysis datasets. WRF-9 showed an exceedingly high variability with

6.8 times the standard deviation of the reanalysis dataset average, although this could be partially
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amplified by the fact that DAYMET and CESM SWE values were capped at 1,000 mm. Although
the standard deviation values were highly variable across modeling platforms in comparison to
the reanalysis dataset average, the average seasonal interquartile ranges (IQR) were more closely
aligned (Figure 6). The IQR for VR-CESM 0.125° and VR-CESM 0.25° (rough) were closest to
the reanalysis dataset average with a slightly negative bias of 11 mm and 7.8 mm, respectively.
WRF-9 and CESM-FV 0.25° had a positive bias in IQR, with exceedingly high 75th percentiles,

whereas VR-CESM 0.25° (smooth) and WRF-27 were conservative in their higher quartile marks.

Fattern Correlation and Bias in Snow Water Equivalent

The average DJF centered Pearson product-moment coefficients, or the average statistical sim-
ilarity between two datasets at identical locations for SWE across the 25 seasons (with removal
of the mean), for all of the simulations were computed against each of the remapped reference
datasets for the Sierra Nevada masked region (Table 3). The Pearson product-moment coefficients
are calculated by computing the covariance of the two datasets and dividing by the product of
their standard deviations. Averaging all of the Pearson product-moment coefficients across all
grid-points within the mask is useful in showing the seasonal similarity in SWE trend across the
entire Sierra Nevada. Interestingly, the VR-CESM simulations were almost identical in average
seasonal correlation compared to the reanalysis datasets (at around 0.67 to 0.71) for the Sierra
Nevada. WRF-9, remapped to 0.125° (14km) resolution, showed the highest seasonal correlation
at 0.83. However, this was not unexpected considering the WRF simulations were forced by ERA-
interim data. Both CESM-FV 0.25° and CESM-SE 1° had the lowest correlation with 0.28 and
0.19, respectively.

Additionally, seasonal average bias was computed across model simulations for the Sierra

Nevada (Table 3). VR-CESM 0.25° (rough) had the smallest average seasonal bias to the re-
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analysis dataset average with a slight negative bias of -2.7 mm, with VR-CESM 0.125° the next
closest at -6.4 mm. Although WRF-9 showed best agreement with the NLDAS reanalysis datasets.
The WRF and UNIFORM CESM simulations had similar tendencies to one another with a positive
seasonal bias occurring in the higher resolution simulations and a negative trend in the coarser res-
olution simulations, much the same as Caldwell (2010) indicated for winter precipitation tenden-
cies in California. Figure 7 shows the average climatological difference in snow water equivalent
between model and reanalysis datasets. Bluer (redder) colors represent a more positive (negative)
model bias over the simulation period. In general, higher resolution models tend to overproduce
SWE whereas lower resolution models tend to underproduce SWE. This is likely due to the un-
derrepresentation of topography within the model simulations. Interestingly, in several of the
simulations a positive bias appears on the western slopes of the Sierra Nevada and a negative bias
occurs on the eastern slopes. This may be caused by an oversensitivity to orographically forced
upslope winds that push the model to overproduce snowfall as the storms move from the wind-
ward to leeward side of the Sierra Nevada. In addition, increased topographic height that does not
preserve the fractal peaks and valleys in more detailed representations (see ETOPO2v2 in Figure
2) could artificially enhance orographic uplift. For example, in Figure 7 the orographic uplift bias
was shown in the northern Sierra Nevada for VR-CESM 0.125° and less so in VR-CESM 0.25°
(rough), a potential reason why nominal improvement was seen in snowpack characteristics for

the Sierra Nevada when VR-CESM model resolution was increased.

Climatology of Total Snowpack over the Water Year

The mean daily climatological total SWE (in kg) within the Sierra Nevada was calculated in
order to characterize the total water content of the region provided by snowpack (Figure 8). By

averaging the total SWE each day over all years (1980-2005) and then multiplying by the area of
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the mask (53,102,699,313 m?), the average snowpack mass is shown for the Sierra Nevada across
model and reference datasets. Each of the datasets were grouped according to their comparable
resolution counterparts (i.e., a) 0.125° (14km), b) 0.25° (28km), and c) 1° (111km)) to better
showcase relative magnitudes of Sierra Nevada SWE found within a given climatological day. It
should be noted that DAYMET has biases introduced during the dataset formulation that impacts
its overall ability to characterize mid-season snowpack and thus alters the SCD and timing of
snowmelt. Further, the CAL-ADAPT datasets were not used because daily resolution outputs
were not available (only monthly and annual) and the first hour (00 or 12:00 am) of each day
within the NLDAS datasets were used within the analysis. In general, VR-CESM 0.125° and
VR-CESM 0.25° (rough) appear to most closely match all of the reanalysis datasets in relative
magnitude (Figure 8). A bimodal profile in VR-CESM 0.125° is likely indicative of the artificial
1,000 mm cap in SWE imposed within CLM4.0 to prevent excessive snow accumulation over
Antarctica - future simulations will attempt to alleviate this by removing the cap away from the
polar regions. WRF-9, remapped to 14km, had a high bias associated with total SWE in the Sierra
Nevada, with a SCD value of around 21.4 x 10'? kg (more than twice the value shown in most of
the reanalysis datasets as well as VR-CESM 0.125°). In the 28km datasets, the magnitude of total
SWE is consistent with the 14km results. VR-CESM 0.25° (rough) matched most closely to the
NLDAS VIC 0.25° reanalysis dataset at 8.0 x 10'? kg, with all other datasets falling under that
mark (<6.0 x 10'2 kg). The 111km resolution datasets differed greatly from one another, with
the peak accumulation of CESM-SE 1° values falling much further below the remapped reanalysis
datasets. This further highlights the inability of standard-practice 1° GCM simulations to capture

Sierra Nevada snowpack characteristics, especially with respect to total water content.
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Snowpack Timing and Melting Patterns

Peak timing of western USA snowpack accumulation (or SCD) is traditionally thought to occur
around April 1st (water day 182), although this has shifted due to regional warming trends in the
western USA (Kapnick and Hall 2012; Montoya et al. 2014). Since most of the reanalysis datasets
had discrepancies in representing the total water content and SCD within the Sierra Nevada, nor-
malized values of average climate day SWE are shown in Figure 9 for all datasets in comparison
to 19 SNOTEL stations (Figure 3). These stations were chosen based on daily observation avail-
ability spanning the years 1980-2005. Further, the SNOTEL locations are representative of several
elevations found within the Sierra Nevada, spanning from 1864 m (Spratt Creek) to 2879 m (Vir-
ginia Lakes Ridge). Of note, the SNOTEL stations are clustered in the northern to central Sierra
Nevada, with no stations present in the south. As such, a subregion of the Sierra Nevada was
made to compare model results with observations from SNOTEL stations (see solid black sub-
region in Figure 3). This subregion was created using 12 of the USGS Hydrologic Units in the
Sierra Nevada (Seaber et al. 1987). If a SNOTEL station was located within or near an adjoining
hydrologic unit then the entire unit was kept (within the boundary of the Sierra Nevada Ecore-
gion). Further, since the lowest elevation SNOTEL station was located at 1864 m (Spratt Creek), a
topographical threshold of 1824 m was imposed to create the subregion (this altitude was chosen
to provide a buffer around Spratt Creek). The normalizations were computed by removing the
relative mean from all climatological days within a given dataset and then dividing the resultant
values by the standard deviation. Like the plots for the mean daily climatological sums of SWE,
all datasets are grouped according to resolution, with added comparison to SNOTEL in each plot
(Figure 9). Among models, VR-CESM 0.125° and WRF-9 matched most closely to SNOTEL.

However, both had an early SCD bias. The SCD in VR-CESM 0.125° falls around water year
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day 170 (March 21st), the closest match to SNOTEL across all model datasets. SCD for WRF-9
falls around water year day 160 (March 11th), around two weeks before the expected date. Melt
rate and the date at which the complete melt of SWE occurs differentiated VR-CESM 0.125°
and WRF-9, with WRF-9 more closely matching SNOTEL. The melt rate in VR-CESM 0.125°
was too rapid resulting in a complete melt occuring around 30 days sooner than in the SNOTEL
dataset. DAYMET had a late SCD around day 191 (April 10th), 10 days after SNOTEL. The melt
rate in the DAYMET dataset was much slower than all other datasets. Further, since DAYMET
analyzed each year in isolation, the snowpack was discontinuous at water year day 91 (Thornton
et al. 2014). Snowpack accumulation onset matched fairly well across all datasets, with the onset
date around water year day 36 (November 5th). Within the 28km simulations, most model datasets
seem to match in terms of having an earlier expected SCD clustered on water year day 151 (March
1st), around 30 days sooner than SNOTEL. The remapped version of DAYMET at 0.25° showed
a similar late SCD bias (water year day 191) and showed a more drastic slow down in melt rate.
All 0.25° datasets matched fairly well in snowmelt rate and accumulation onset, matching well
with SNOTEL. Full melt generally occured earlier (water year day 240) across models compared
to SNOTEL (water year day 270). In the 1° datasets, CESM-SE 1° had a physically unreasonable
SCD (water year day 90), snowmelt rate, and accumulation onset date. Interestingly, at the 1°
resolution, the biases in DAYMET are minimized and the SCD, snowmelt rate, date of complete

melt, and accumulation onset date all are well within the range of SNOTEL.

Linear Trends in DJF Seasonal Snowpack

Figure 10 highlights the linear trend in DJF seasonal mean SWE values for the historical period
in the Sierra Nevada SNOTEL subregion. For comparison, the 19 SNOTEL station datasets are

plotted in the upper left panel. The gray lines indicate individual SNOTEL stations with the
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mean SNOTEL station seasonal trend shown in black and the linear trend line in red. Each of
the model and reanalysis datasets are plotted using similar axis bounds, except for WRF-9 which
exhibited larger values of SWE. SNOTEL stations are plotted with a larger axis, representative of
these observations being pointwise measurements in regions of greater snow accumulation. The
general trend across VR-CESM simulations is a slight decrease in DJF seasonal mean SWE. VR-
CESM 0.125° had the largest negative trend at -0.198 mm/year, with VR-CESM 0.25° (smooth) at
-0.093 mm/year and VR-CESM 0.25° (rough) at -0.029 mm/year. Except when compared to CAL-
ADAPT which shows a dramatic increase in SWE and DAYMET which shows a faster decrease
in SWE, the general trend for VR-CESM datasets are slightly more negative than the SNOTEL
and NLDAS reanalysis datasets. This result is corroborated by Mote et al. (2005) who found a
2.2% decline in mean April 1st SWE across the in situ snowpack observational stations within the
Sierra Nevada over the historical record (i.e., 1990-1997 (final period) minus 1945-1950 (initial
period)), with inclusion of snow course data too. Interestingly, the 19 sampled SNOTEL stations
showed a nearly flat trend (0.016 mm/year) in DJF mean seasonal SWE over the study period.
WREF simulations showed differing results, with WRF-9 showing an exceedingly strong positive
trend (0.410 mm/year) in mean seasonal SWE and WRF-27 having a stagnant to slightly positive
trend (0.011 mm/year) matching most closely with SNOTEL. CESM-SE 1° and CESM-FV 0.25°
both had a negative trend in mean seasonal SWE, with magnitudes of -0.259 mm/year and -0.200

mm/year.

Snow Cover (SNOWC) Summary Statistics

Figure 11 represents average climatological DJF SNOWC plotted for all datasets over Califor-
nia. Similar to SWE, an increase in resolution results in a much more heterogeneous representa-

tion of SNOWC properties that is more closely matched to observations, indicated by 12 seasons
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of MODIS (MODIS-5) data. A topographic influence is clearly seen as resolution is increased,
with higher resolution models capturing lower elevation basins that are otherwise smoothed out.
This resolution dependence manifests itself in statistical calculations of average DJF SNOWC
within the Sierra Nevada (Table 4). WRF-9 showed the closest match to mean seasonal SNOWC
with a value only 1.5% lower than the MODIS dataset. VR-CESM 0.25° (rough) and VR-CESM
0.125° were the next closest with a slightly more conservative estimate (7% below MODIS) of
SNOWC. All other datasets, except CESM-FV 0.25° which had a positive bias of around 8%,
had much smaller estimates of mean seasonal SNOWC. CESM-SE 1° provided the largest un-
derestimate among the model datasets with mean seasonal values at a quarter of the comparable
remapped version of MODIS. Interestingly, two of the best available high resolution reanalysis
datasets (NCEP and NARR) seem unable to properly capture the Sierra Nevada SNOWC charac-
teristics in the MODIS dataset, with most of the reanalysis datasets showing a negative bias for
SNOWC. NARR-32 and NCEP-35 had mean SNOWC values at half to two-thirds of the value
indicated by MODIS and NLDAS VIC, NOAH, and MOSAIC were at 84%, 74%, and 47% of
MODIS, respectively. The median values for DJF SNOWC for VR-CESM 0.125° and VR-CESM
0.25° showed a close approximation to those seen in NLDAS VIC. As expected, since SNOWC is

capped at 100%, maximum DJF SNOWC was reached by most modeling platforms.

Seasonal Variability in Snow Cover

Mean seasonal variability (interannual standard deviation of the seasonal mean) in SNOWC is
shown over California (Figure 12). Standard deviation values for each of the simulations are given
in Table 4. As with the mean seasonal SNOWC values, WRF-9 had the best representation of sea-
sonal variability within the Sierra Nevada, with a close approximation to standard deviation values

in the remapped MODIS dataset (although it underestimates standard deviation in the lee of the
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Sierra Nevada). VR-CESM 0.25° (rough) also was able to characterize seasonal variability at a re-
alistic level, with a standard deviation only 14% below MODIS. All other modeling platforms had
a conservative estimate of variability ranging from half to three-fourths of the observed standard
deviation, when comparing to common remapped resolutions. This result is apparent in Figure 13
for each dataset and analyzing the IQRs. All datasets, save for WRF-9 and CESM-FV 0.25°, had a
conservative estimate of SNOWC summary statistics when compared to MODIS. Median values,

along with IQRs, are too low with a noticeable bias in the 75th percentiles.

Pattern Correlation and Bias in Snow Cover

The average seasonal centered Pearson product-moment coefficients and mean climatological
bias for SNOWC are exhibited in Table 5. MODIS was not used in the centered Pearson cal-
culations as it only spanned five years of the historical period (2000-2005). A close match was
seen across both VR-CESM and WRF modeling platforms when compared to the three NLDAS
datasets. Most values fell around 0.74 for the VR-CESM simulations and 0.84 for the WRF simu-
lations. The CESM-FV and CESM-SE had the lowest correlations at 0.53 and 0.15, respectively.
The smallest mean climatological bias in DJF SNOWC between MODIS and the model datasets
was VR-CESM 0.125°, VR-CESM 0.25° (rough) and WRF-27, with negative baises of approxi-
mately 6-7%. CESM-SE 1° produced the worst match across model datasets with a -28.5% bias.
Of note, the NLDAS reanalysis datasets also widely varied in their ability to characterize mean
climatological SNOWC bias when compared to MODIS with consistent negative biases ranging

between -9.2% (NLDAS VIC) to -29.4% (NLDAS MOSAIC).
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5. Discussion and Conclusion

The primary goal of this paper has been to assess the efficacy of VR-CESM in simulating the
mean climatological state and seasonal variability within Sierra Nevada snowpack metrics (i.e.,
SWE, SCD, and SNOWC). It was determined that the efficacy of the VR-CESM framework in
simulating climatological mean and seasonal variability in both SWE and SNOWC was compet-
itive with traditional dynamical downscaling. Overall, considering California’s complex terrain
and intermittent climate, a 0.68 centered correlation (less correlated, yet similar to values seen in
WRF), negative mean SWE bias of <7 mm, and an IQR well within the range of values exhibited
in the best available spatially continuous datasets for SWE, the ability of both VR-CESM 0.25°
(rough) and VR-CESM 0.125° to simulate SWE on both climatological and seasonal scales was
confirmed. Of note, both of the VR-CESM simulations were solely constrained by prescribed
SST and sea ice data, whereas WRF simulations were further constrained at lateral boundaries by
ERA-interim data (in addition to SST and sea ice), yet both showed comparable statistical prop-
erties. This was similarly confirmed for the climatological mean for DJF SNOWC where both
the VR-CESM 0.125° and VR-CESM 0.25° (rough) simulations were within 7% of the expected
mean MODIS value. VR-CESM 0.25° (rough) was able to characterize MODIS’ standard de-
viation well (86% match). WREF-9 had the best representation of SNOWC with a near identical
representation in mean, standard deviation, and IQR, compared to MODIS, but at the cost of un-
reasonably high SWE values. This is likely indicative of the over-exaggeration of topography at
higher resolutions in the model, where the fractal nature of peaks and, importantly, valleys are
misrepresented (compare ETOPO2v2 to model topography in Figure 2) leading to a bias in overall
snowpack characterizations. VR-CESM, as well as WRE, conveyed mixed results in representing

seasonal variability in SWE (average standard deviation value at each grid point), with generally
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conservative estimates across all assessed modeling platforms except WRF-9 and CESM-FV 0.25°
which had much higher estimates. The total water content of snowpack within the Sierra Nevada
was best represented in both VR-CESM 0.125° and VR-CESM 0.25° (rough) when compared to
the remapped NLDAS VIC reference dataset at their respective resolutions. VR-CESM 0.125°
and WRF-9 showcased the best representation, across datasets, of SCD timing, snowmelt rate, and
snowpack accumulation onset, in comparison to SNOTEL. The two datasets differed in the date
at which complete melting of SWE occured with VR-CESM 0.125° occuring too early, whereas
WRF-9 had a slightly late onset. Interestingly, both SWE and SNOWC didn’t show a significant
enhancement in snowpack properties when VR-CESM resolution was moved from 0.25° to 0.125°;
in fact the 0.25° simulation (VR-CESM 0.25° (rough)) was slightly more skillful when considering
all metrics. Topographical roughness was found to play a much more significant role in represent-
ing snowpack properties with VR-CESM 0.25° (rough) seeing a sixteen-fold decrease in average
seasonal SWE bias, threefold increase in SWE seasonal variability, an IQR increase from 48.9 to
64.1, and a considerable increase in the SCD total water content for the Sierra Nevada. This is an
improvement when compared to the average of all of the reanalysis datasets. Furthermore, DJF
temperature characteristics may have played a role in modulating which of the simulations per-
formed most optimally. Figure 14 highlights average climatological DJF 2m surface temperatures
for only the model simulations. Below freezing (< 273 K) temperatures are shown to be main-
tained over greater areas for the climatic period across all higher resolution (< 0.25°) simulations,
likely because of increased topographic elevations in those areas. This temperature maintenance
likely drives winter season snowpack accumulation and sustainment.

The VR-CESM framework provides greatly enhanced representation of snowpack properties
compared to widely used GCMs (i.e., CESM-FV 1° and CESM-FV 0.25°). Simulation of Sierra

Nevada snowpack in the VR-CESM framework is competitive with traditional dynamical down-
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scaling techniques, but has the additional means of providing dynamic interaction with large-scale
atmosphere-ocean drivers and teleconnections that might not otherwise manifest in an RCM con-
strained by boundary conditions. These two points lend them themselves well to using certain
versions of VR-CESMs (namely VR-CESM 0.25° (rough) and VR-CESM 0.125°) in projecting
future climate change scenarios and their resultant impacts on water resources over the western
USA.

The topographical smoothing between the two VR-CESM 0.25° simulations had the most dra-
matic influence on snowpack product tendencies found within the VR-CESM framework, even
when compared to changes resulting from a doubling of model resolution from 0.25° to 0.125°.
As shown in Table 2, mean seasonal SWE for the Sierra Nevada nearly doubled from 50.4 mm
to 95.2 mm between VR-CESM 0.25° (smooth) and VR-CESM 0.25° (rough), with a decrease in
average DJF climate bias in SWE from -52% to -2.3% when compared to the reanalysis dataset
average. This tendency was similar for the lower quartile, median, and higher quartile values. Sim-
ilarily, the seasonal variability, indicated by the standard deviation plots (Figure 5) and standard
deviation values in Table 2, nearly tripled, making the VR-CESM 0.25° (rough) simulation the
closest match to the reanalysis dataset average within all model simulations. Changes in SNOWC
trends were also apparent, although less dramatic than SWE (Table 4). Average seasonal SNOWC
increased by 9% and the IQR increased from 48.9 to 64.1, matching more closely to the MODIS
dataset value of 74.5, with the higher quartile less conservatively biased.

Improved topographical resolution also resulted in better representation of the snow character-
istics of the maritime mountain ranges (e.g., the Cascades and the Coastal Range) (Figure 4).
Maritime mountain ranges have shown some of the greatest snowpack decreases over the histor-
ical record (Serreze et al. (1999); Mote (2003); Mote et al. (2005)) and are in need of the best

available climate change impact analysis due to a greater susceptibility to climate change trends
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(i.e., warmer and potentially more precipitous weather fronts originating from relatively warmer
ocean waters). This is important because conventional GCM simulations are generally performed
at resolutions too coarse to properly resolve the aforementioned topographical forcings and, thus,
may bias evaluations used to guide climate impact studies and climate policy formulation. This
isn’t to say that the VR-CESM framework provides perfect representation of these ranges, but that
it provides a more realistic and computationally effective means to characterize these ranges in a
changing climate. This subject will be the target of further research.

A higher resolution surface dataset for PFT type would have been beneficial for this study, to
capitalize on the higher resolution (<0.5°) VR-CESM grids implemented into CLM, however none
were available at the time of writing. An extensive review of the North American and European
snowpack-canopy interaction literature by Varhola et al. (2010) argued that snowpack accumula-
tion and melting patterns can be significantly altered by changes in forest cover, accounting for
relative variance changes of 57% in snow accumulation and 72% in snow ablation. After dis-
cussion with the CLM development team at NCAR, a two minute PFT dataset for the year 2000
was identified. This dataset will be used in future simulations to assess the effects of canopy
interactions on snowpack metrics within a VR-CESM framework.

Added benefits of the VR-CESM framework, not discussed previously, include the large en-
hancement in computational efficiency. For example, the 0.25°(0.125°) VR-CESM grid had ap-
proximately 8,400 (11,300) elements. When compared to conventional uniform resolution grids at
1.00°, 0.25° or 0.125°, which have 5,400, 86,400, and 345,600 elements respectively, a theoretical
speedup in computation time of 10 to 30 times is expected for the VR-CESM framework, with the
assumption of linear computational scalability highlighted in Dennis et al. (2011) and Zarzycki
et al. (2014a). Therefore, for a relatively similar computational cost of a uniform 1.00° grid, one

can get vastly improved snowpack product characteristics over a limited region of interest, espe-
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cially within the California Sierra Nevada. This is a function of not only resolving smaller scale
meteorological features, but also due to better representations of topography and, in some cases,
land surface properties. Therefore, for only a fraction of the cost of a high resolution uniform
GCM run, the VR-CESM approach can be performed on a local server (<1000 processors), with
20-40 day turnarounds on 25 year simulation periods, and provide model resolutions of 0.25° (28
km) to 0.125° (14 km), which decision makers (especially in the western USA water sector), may
find more useful in regional planning endeavors. The enhanced representation of snowpack and
relative computational efficiency of VR-CESM lends itself well to future investigations of other
SWE dependent regions of the western USA, as well as ensemble-based climate change scenario

analysis.
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TABLE 2. Summary Statistics of Seasonally Averaged Snow Water Equivalent (SWE) in the Sierra Nevada

Model DJF Seasons Mean Standard Deviation Lower Quartile Median U pper Quartile Max Sierra Mask Points
VR-CESM 0.25° (smooth) 25 50.4 80.1 3.10 19.8 60.9 663 2175
VR-CESM 0.25° (rough) 25 95.2 134 5.30 329 132 750 2175
VR-CESM 0.125° 25 91.0 125 7.40 37.6 125 751 8775
WREF-27 25 71.6 102 6.20 29.2 91.0 701 2175
WREF-9 22 233 365 5.60 48.8 314 3090 14058
WRF-9 (REGRID 0.125°) 22 231 349 7.60 63.2 317 2850 7721
CESM-SE 1° 25 3.40 7.50 0.00 0.50 2.40 41.7 150
CESM-FV 0.25° 25 179 188 23.6 111 291 875 2175
DAYMET 25 109 176 1.40 36.9 141 1000 1202620
DAYMET (REGRID 0.125°) 25 107 173 1.60 35.1 140 1000 8678
DAYMET (REGRID 0.25°) 25 102.3 168.4 1.90 32.0 127 1000 2156
DAYMET (REGRID 1°) 25 28.0 36.8 2.00 12.1 39.8 174 149
NLDAS VIC 0.125° 25 72.9 103 2.90 29.1 101 777 8748
NLDAS VIC (REGRID 0.25°) 25 73.8 102 3.10 29.4 105 629 2169
NLDAS VIC (REGRID 1.00°) 25 38.1 713 1.50 7.80 30.8 345 149
NLDAS NOAH 0.125° 25 56.3 84.2 1.50 19.7 75.5 616 8775
NLDAS NOAH (REGRID 0.25°) 25 57.4 84.4 1.70 21.1 759 518 2175
NLDAS NOAH (REGRID 1°) 25 28.7 56.4 0.70 5.60 23.0 321 150
NLDAS MOSAIC 0.125° 25 59.5 98.6 0.60 11.3 76.3 773 8748
NLDAS MOSAIC (REGRID 0.25°) 25 60.5 98.2 0.70 11.6 79.2 647 2171
NLDAS MOSAIC (REGRID 1°) 25 27.1 60.9 0.19 2.40 14.2 325 149
CAL-ADAPT CCSM3 0.125° 25 134 154 9.60 80.7 202 1060 8775
CAL-ADAPT CCSM3 (REGRID 0.25°) 25 136 155 9.90 80.8 206 944 2175
CAL-ADAPT CCSM3 (REGRID 1°) 25 734 88.1 1.20 48.4 107 416 150
CAL-ADAPT CNRM 0.125° 25 125 157 8.10 67.3 185 1210 8773
CAL-ADAPT CNRM (REGRID 0.25°) 25 127 158 8.60 68.5 191 1090 2174
CAL-ADAPT CNRM (REGRID 1°) 25 66.4 88.2 2.40 27.4 89.8 544 149
CAL-ADAPT GFDL 0.125° 25 95.0 121 5.40 49.1 141 959 8775
CAL-ADAPT GFDL (REGRID 0.25°) 25 96.3 122 5.60 493 141 855 2175
CAL-ADAPT GFDL (REGRID 1°) 25 47.0 65.2 1.90 26.0 67.6 448 150
CAL-ADAPT PCM1 0.125° 25 129 151 14.2 75.2 186 926 8775
CAL-ADAPT PCM1 (REGRID 0.25°) 25 131 153 154 75.8 188 861 2175
CAL-ADAPT PCM1 (REGRID 1°) 25 73.8 90.5 6.60 454 99.1 426 150
Reanalysis Dataset Average 0.125° N/A 974 134 5.50 459 138 915 N/A
Reanalysis Dataset Average 0.25° N/A 97.9 134 5.90 46.1 139 818 N/A
SNOTEL 25 237 186 103 195 308 1220 19 stations
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TABLE 4. Summary Statistics of Seasonally Averaged Snow Cover (SNOWC) in the Sierra Nevada

Model DJF Seasons Mean Standard Deviation Lower Quartile Median Upper Quartile Max Sierra Mask Points
VR-CESM 0.25° (smooth) 25 40.0 30.1 13.6 36.5 62.5 100 2175
VR-CESM 0.25° (rough) 25 48.9 335 17.5 46.7 81.6 100 2175
VR-CESM 0.125° 25 48.7 30.3 22.0 47.8 74.1 100 2175
WREF-27 25 429 30.1 15.3 40.0 67.2 98.0 2175
WREF-9 22 55.0 37.3 16.3 58.6 96.7 98.0 14058
WRF-9 (REGRID 0.125°) 22 54.3 35.6 19.1 56.3 92.3 98.0 7721
CESM-SE 1° 25 9.10 12.3 0.60 4.40 11.9 60.3 150
CESM-FV 0.25° 25 62.8 322 36.6 69.9 92.3 100.0 2175
NCEP-35 25 37.1 25.5 15.3 33.7 56.5 96.6 1350
NARR-32 25 22.5 27.5 0.60 9.60 375 100 1175
MODIS-5 12 56.7 36.6 18.0 65.0 93.0 100 25932
MODIS-5 (REGRID 0.125°%) 12 55.8 35.8 18.5 62.8 90.7 100 4188
MODIS-5 (REGRID 0.25°) 12 55.0 36.0 16.3 61.4 90.8 100 1032
MODIS-5 (REGRID 1°) 12 37.6 33.1 3.80 34.0 69.1 95.7 60
NLDAS VIC 0.125 25 46.6 33.0 15.0 459 75.9 100 8742
NLDAS VIC 0.25 25 46.8 333 14.9 45.1 78.4 100 2166
NLDAS VIC 1.00 25 32 25.4 11.6 26.6 45.8 87.5 149
NLDAS NOAH 0.125 25 415 33.8 7.60 375 71.6 100 8720
NLDAS NOAH 0.25 25 42.1 343 8.30 38.4 73.4 100 2164
NLDAS NOAH 1.00 25 259 254 4.10 18.3 40.7 85.0 149
NLDAS MOSAIC 0.125 25 26.4 29.6 1.40 13.1 454 98.8 8722
NLDAS MOSAIC 0.25 25 26.8 30.1 1.40 13.1 47.6 98.2 2163
NLDAS MOSAIC 1.00 25 12.8 18.8 0.30 4.20 14.4 66.7 149
Reanalysis Dataset Average 0.125° N/A 42.6 33.1 10.6 39.8 70.9 99.7 N/A
Reanalysis Dataset Average 0.25° N/A 42.7 33.5 10.2 39.5 72.6 99.6 N/A
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Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

The two variable-resolution global climate model grids (0.25° (28km), left and 0.125°
(14km), right) used for this study. Both grids are developed on a cubed-sphere with a 1.00°
quasi-uniform resolution (111km). The dashed lines highlight the model transition region
and the solid lines indicate the higher resolution regions.

Topographical representation of the Sierra Nevada mountain range and surrounding regions
across model datasets. Topography from variable-resolution CESM is displayed in order
of increasing grid resolution from (a) to (c). The standard CESM and WRF simulations
are displayed in order of increasing resolution from (d) to (g). The ETOPO2V2 dataset,
representing 2-minute (2 km) gridded topographic relief is depicted in (h).

The EPA’s Ecoregion Level III (6.2.12) shapefile mask used for summary statistic calcula-
tions of the Sierra Nevada mountain range (dashed black outline). SNOTEL station locations
(blue triangles) are overlaid onto the ETOPO2v2 topography. The solid black outline is used
to indicate the subregion used to compare model and reanalysis data to SNOTEL stations.

Average climatological DJF snow water equivalent (SWE) across model and observational
datasets over California. .

Average DJF variability (interannual standard deviation of the seasonal mean) of snow water
equivalent (SWE) across model and observational datasets over California.

Boxplots of seasonal (DJF) Sierra Nevada snow water equivalent (SWE) across modeling
platforms and observational datasets. The boxes represent the 25th and 75th percentile val-
ues within the Sierra Nevada masked region, with the median value indicated in between.
The minimum and maximum range is depicted by vertically dashed lines. Regridding of re-
analysis datasets to 0.25° (or 0.125° for DAYMET) had no noticeable effect on the statistics
and so are not shown.

Average difference in DJF SWE between model and reanalysis datasets over California.
Rows indicate model output and columns represent gridded or reanalysis datasets. Blue (red)
indicates a model positive (negative) difference in SWE compared to the given reanalysis
dataset.

Average water year day totals for SWE within the Sierra Nevada SNOTEL subregion. Plots
are sorted according to the resolution of the models - namely, (a) 0.125° (14km), (b) 0.25°
(28km), and (c) 1° (111km). The Sierra Nevada SNOTEL station datast (19 locations)
is plotted in black within each diagram. The horizontal axis represents Water Year Day
(beginning October 1st through September 31st).

Normalized average SWE within the Sierra Nevada SNOTEL subregion. Plots are sorted
according to the resolution of the models - namely, (a) 0.125° (14km), (b) 0.25° (28km),
and (c) 1° (111km). The Sierra Nevada SNOTEL station dataset (19 locations) is plotted
in black within each diagram. The horizontal axis represents Water Year Day (beginning
October 1st through September 31st).

Linear trend in average seasonal DJF SWE within the Sierra Nevada SNOTEL compari-
son subregion across model, observational, and reanalysis datasets over the historical period
(DJF season 1980 to 2005). The SNOTEL dataset, plot (a), incorporates 19 SNOTEL sta-
tions spread throughout the Sierra Nevada that contained 25 DIJF seasons of observations.
Gray lines indicate individual SNOTEL station with the average seasonal DJF SWE value
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Fig. 11.

Fig. 12.

Fig. 13.

Fig. 14.

represented by the black line. Standardized regression coefficient is shown in the upper left
corner of each plot.

Average climatological DJF snow cover (SNOWC) across model, observational, and reanal-
ysis datasets over California. The MODIS dataset spans the years 2000-2012.

Average DJF variability (interannual standard deviation of the seasonal mean) of snow cover
(SNOWC) across model, observational, and reanalysis datasets over California. The MODIS
dataset spans the years 2000-2012.

Boxplots of seasonal (DJF) Sierra Nevada snow cover (SNOWC) across modeling platforms
and observational datasets. The boxes represent the 25th and 75th percentile values within
the Sierra Nevada masked region, with the median value indicated in between. The mini-
mum and maximum range is depicted by vertically dashed lines. Regridding of reanalysis
datasets to 0.25° (or 0.125° for MODIS) had no noticeable effect on the statistics and so are
not shown. The MODIS dataset spans the years 2000-2012.

Average climatological DJF 2m surface temperature across model datasets over California.
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F1G. 1. The two variable-resolution global climate model grids (0.25° (28km), left and 0.125° (14km), right)
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used for this study. Both grids are developed on a cubed-sphere with a 1.00° quasi-uniform resolution (111km).
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The dashed lines highlight the model transition region and the solid lines indicate the higher resolution regions.
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F1G. 2. Topographical representation of the Sierra Nevada mountain range and surrounding regions across

model datasets. Topography from variable-resolution CESM is displayed in order of increasing grid resolution

from (a) to (c). The standard CESM and WRF simulations are displayed in order of increasing resolution from

(d) to (g). The ETOPO2V?2 dataset, representing 2-minute (2 km) gridded topographic relief is depicted in (h).
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120W

o1 F1G. 3. The EPA’s Ecoregion Level III (6.2.12) shapefile mask used for summary statistic calculations of the
o5 Sierra Nevada mountain range (dashed black outline). SNOTEL station locations (blue triangles) are overlaid
ots  onto the ETOPO2v2 topography. The solid black outline is used to indicate the subregion used to compare

o7 model and reanalysis data to SNOTEL stations.
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018 F1G. 4. Average climatological DJF snow water equivalent (SWE) across model and observational datasets

oo over California.
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920 FI1G. 5. Average DJF variability (interannual standard deviation of the seasonal mean) of snow water equiva-

e1 lent (SWE) across model and observational datasets over California.
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F1G. 6. Boxplots of seasonal (DJF) Sierra Nevada snow water equivalent (SWE) across modeling platforms
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vertically dashed lines. Regridding of reanalysis datasets to 0.25° (or 0.125° for DAYMET) had no noticeable

effect on the statistics and so are not shown.
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027 FI1G. 7. Average difference in DJF SWE between model and reanalysis datasets over California. Rows indi-
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FIG. 8. Average water year day totals for SWE within the Sierra Nevada SNOTEL subregion. Plots are sorted
according to the resolution of the models - namely, (a) 0.125° (14km), (b) 0.25° (28km), and (c) 1° (111km).
The Sierra Nevada SNOTEL station datast (19 locations) is plotted in black within each diagram. The horizontal

axis represents Water Year Day (beginning October 1st through September 31st).
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034 FI1G. 9. Normalized average SWE within the Sierra Nevada SNOTEL subregion. Plots are sorted according
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«ws  Nevada SNOTEL station dataset (19 locations) is plotted in black within each diagram. The horizontal axis
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56



938

939

940

941

942

943

1400
1200
1000
800
600
400
200

Snow Water Equivalent (mm)

700
600
500
400
300
200
100

Snow Water Equivalent (mm)

700
600
500
400
300
200
100

Snow Water Equivalent (mm)

700
600
500
400
300
200
100

0

Snow Water Equivalent (mm)

1980 1985 1990 1995 2000 2005

SNOTEL

Ia) Standardized Coefficient = 0.0160693

[) Standardized Coefficient = 0.0107258

A

A
VUT N

NLDAS VIC 0.125°

I n I I

i) Standardized Coefficient = 0.103356

A

AVALAY,
CAL-’ADAP’T CC‘SM3 (').1250

[m) Standardized Coefficient = 0.591966 |

700
600
500
400
300
200

100 4

1400
1200
1000
800
600
400
200

700
600
500
400
300
200
100

700
600
500
400
300
200
100

0

VR-CESM 0.25° (s)

[b) Standardized Coefficient = -0.0933204

NLDAS NOAH 0.125°

I n I 2

[i) Standardized Cosfficient = 0.0855508]

A \/\)/\V/\V/\ -y

CAL-ADAPT CNRM 0.125°

1980 1985 1990 1995 2000 2005

700
600
500
400
300
200
100

700
600
500
400
300
200
100

700
600
500
400
300
200
100

700
600
500
400
300
200
100

0

1980 1985 1990 1995 2000 2005

VR-CESM 0.25° (1)

VR-CESM 0.125°

[©) Standardized Coeficient = -0.0293619

A/\A Ao
W

[ Standardized Coefficient = -0.198474]

i

CESM-SE 1°

CESM-FV 0.25°

[9) Standardized Coefficient = -0.258615

[h) Standardized Coefficient = -0.199932]

i

NLDAS MOSAIC 0.125°

700

DAYMET 0.125°

[k Standardized Coefficient = 0.115418]

AV,

600
500
400
300
200
100

[ Standardized Coeficient = -0.335123]

Al

CAL-ADAPT GFDL 0.125°

il

CAL-ADAPT PCM1 0.125°

[0) Standardized Coefficient = 0.721947]

700
600
500
400
300
200
100

[P) Standardized Coeficient = 0.740595 ]

B

0

1980 1985 1990 1995 2000 2005

FIG. 10. Linear trend in average seasonal DJF SWE within the Sierra Nevada SNOTEL comparison subregion

across model, observational, and reanalysis datasets over the historical period (DJF season 1980 to 2005). The

SNOTEL dataset, plot (a), incorporates 19 SNOTEL stations spread throughout the Sierra Nevada that contained

25 DIJF seasons of observations. Gray lines indicate individual SNOTEL station with the average seasonal DJF

SWE value represented by the black line. Standardized regression coefficient is shown in the upper left corner

of each plot.
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o4 FIG. 11. Average climatological DJF snow cover (SNOWC) across model, observational, and reanalysis

ws datasets over California. The MODIS dataset spans the years 2000-2012.
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o6 F1G. 12. Average DIJF variability (interannual standard deviation of the seasonal mean) of snow cover

wr (SNOWC) across model, observational, and reanalysis datasets over California. The MODIS dataset spans

ws  the years 2000-2012.
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F1G. 13. Boxplots of seasonal (DJF) Sierra Nevada snow cover (SNOWC) across modeling platforms and
observational datasets. The boxes represent the 25th and 75th percentile values within the Sierra Nevada masked
region, with the median value indicated in between. The minimum and maximum range is depicted by vertically
dashed lines. Regridding of reanalysis datasets to 0.25° (or 0.125° for MODIS) had no noticeable effect on the

statistics and so are not shown. The MODIS dataset spans the years 2000-2012.
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F1G. 14. Average climatological DJF 2m surface temperature across model datasets over California.

61



