

1 **Characterizing Sierra Nevada Snowpack Using Variable-Resolution CESM**

2 Alan M. Rhoades*, Xingying Huang, and Paul A. Ullrich

3 *University of California, Davis, Davis, California*

4 Colin M. Zarzycki

5 *National Center for Atmospheric Research, Boulder, Colorado*

6 *Corresponding author address: Alan M. Rhoades, University of California, Davis, Department of

7 Land, Air, and Water Resources (LAWR), Davis, CA 95616

8 E-mail: amrhoades@ucdavis.edu

ABSTRACT

9 The location, timing, and intermittency of precipitation in California makes
10 the state integrally reliant on winter season snowpack accumulation to main-
11 tain its economic and agricultural livelihood. Of particular concern, winter
12 season snowpack has shown a net decline across the western USA over the
13 past 50 years resulting in a major uncertainty in water resource management
14 heading into the next century. Cutting edge tools are available to help nav-
15 igate and preemptively plan for these uncertainties. This paper uses a next-
16 generation modeling technique, variable-resolution global climate modeling
17 within the Community Earth System Model (VR-CESM), at horizontal res-
18 olutions of 0.125° (14km) and 0.25° (28km). VR-CESM provides means to
19 include dynamically large-scale atmosphere-ocean drivers, limit model bias,
20 provide more accurate representations of regional topography, while doing so
21 in a more computationally efficient manner than conventional general circu-
22 lation models. This paper validates VR-CESM at climatological and seasonal
23 timescales for Sierra Nevada snowpack metrics by comparing them to the
24 DAYMET, CAL-ADAPT, NARR, NCEP, and NLDAS reanalysis datasets, the
25 MODIS remote sensing dataset, SNOTEL observational dataset, a standard
26 practice global climate model (CESM) and regional climate model (WRF)
27 dataset. Overall, considering California's complex terrain, intermittent pre-
28 cipitation, and that both of the VR-CESM simulations were only constrained
29 by prescribed sea surface temperatures and sea ice extent data, a 0.68 centered
30 Pearson product-moment correlation, negative mean SWE bias of <7 mm,
31 interquartile range well within the values exhibited in the reanalysis datasets,
32 and mean DJF SNOWC within 7% of the expected MODIS value, the efficacy
33 of the VR-CESM framework is apparent.

³⁴ **1. Introduction**

³⁵ California receives half of its total annual precipitation in five to fifteen days of the year, making
³⁶ its precipitation patterns some of the most intermittent in the USA (Dettinger et al. 2011). Im-
³⁷ portantly, most of the state's precipitation falls during the winter months (December to February)
³⁸ and two-thirds of it precipitates in the northern and mountainous parts of the state (Wise 2012).
³⁹ The precipitation that falls in the mountainous region largely accumulates as snow (Pandey et al.
⁴⁰ 1999). Thus, winter snowpack acts as a natural surface reservoir for water that is then released dur-
⁴¹ ing dry portions of the year. Snowpack provides approximately three-fourths of the annual fresh
⁴² water supply in the western USA (Palmer 1988; Cayan 1996), and 60% of California's developed
⁴³ water supply originates from the snowpack dominated Sierra Nevada (Bales et al. 2011). Along
⁴⁴ with the Colorado River, this natural store of water contributes to the maintenance of California's
⁴⁵ economy and its stance as one of the largest agricultural providers in the world (Tanaka et al. 2006;
⁴⁶ Hanak and Lund 2012). These water reserves also provide up to 21% of the energy found within
⁴⁷ California's diverse energy portfolio via hydroelectric plants (Stewart 1996). Therefore, the in-
⁴⁸ tegrity of California's economy, and agricultural identity, is largely dependent on ample snowpack
⁴⁹ accumulation in the Sierra Nevada.

⁵⁰ A major cause of interannual variability in winter precipitation in California, and the
⁵¹ greater western USA, are global teleconnections. Teleconnections are recurrent and persistent
⁵² atmosphere-ocean patterns impacting large swaths of latitudinal and longitudinal bands (Wallace
⁵³ and Gutzler 1981; Glantz et al. 1991). They are important from a water resources perspective
⁵⁴ because they determine overall temperature, precipitation, and snowpack trends within California.
⁵⁵ Atmosphere-ocean climate interactions have been found to vary annual precipitation by 20-45% in
⁵⁶ the western USA (Dettinger et al. 1998), and include the El Niño Southern Oscillation (ENSO), the

57 Pacific Decadal Oscillation (PDO), the Pacific North American Pattern (PNA), the North American
58 Monsoon, and the Aleutian Low, as well as more short term events known as atmospheric rivers
59 (ARs) (i.e., equatorially generated whip-like water vapor bands) (Dettinger et al. 1998; Cayan
60 et al. 1999; Ralph et al. 2004; Dettinger 2011; Wise 2012; Guan et al. 2013; Fang et al. 2014). The
61 internal variability associated with teleconnections modulate the spatial and temporal variability
62 of strong precipitation events in the western USA (Wise 2012). Therefore, teleconnection modu-
63 lation, on both yearly and decadal time frames, has a direct impact on the amount of total seasonal
64 snowpack deposited in the Sierra Nevada. This modulation is also essential in resolving historical
65 trends as well as projecting future snowpack tendencies. For example, atmospheric rivers alone
66 account for around 30-40% of seasonal snowpack accumulation in the Sierra Nevada (Guan et al.
67 2010). Thus, a representation of global processes, ideally via a global climate model, is necessary
68 to accurately account for California's temperature, precipitation, and snowpack trends.

69 To observe how this crucial natural fresh water reserve is characterized, both spatially and tem-
70 porally, snowpack metrics such as snow water equivalent (SWE), snow centroid date (SCD), and
71 the extent of snow cover (SNOWC) have been developed to quantify the patterns of Sierra Nevada
72 snowpack. SWE is used to determine the total water content for a given snow depth. It can be
73 quantified by taking a given depth of snow and melting it; the resultant water content represents
74 the SWE. This is useful since snow densities can fluctuate due to variations in snowfall as well
75 as melt and ablation events in the snowpack. SCD represents the date of peak snowpack accu-
76 mulation, which is useful in understanding snowmelt onset. SNOWC characterizes the total areal
77 coverage of snow over a given region. This is helpful in quantifying shifts in regional to global
78 albedo as well as the freezing line extent in mountainous environments. Over the historical record,
79 the Sierra Nevada has shown a mean difference in April 1st SWE of 2.2% (i.e., northern Sierra
80 decline of 50-75% and southern Sierra accumulation of 30%) (Mote et al. 2005), western USA

81 SCD was found to shift 0.7 days earlier per decade (Kapnick and Hall 2012), and total SNOWC
82 declined by 9% across the Northern Hemisphere (Rupp et al. 2013). The shift in SCD appears to
83 be eight days earlier per °C of warming in end of winter season (March and April) temperatures.
84 Additionally, Bales et al. (2006) found that the fraction of storms that occur with surface temper-
85 atures in the range of -3 °C to 0 °C account for up to 36% of the annual precipitation events in
86 many parts of the Sierra Nevada, highlighting the sensitivity of snow storms in the Sierra Nevada
87 to increasing temperatures due to anthropogenic global climate change. Using IPCC AR5 RCP
88 4.5 and 8.5 scenarios, projected end-of-the-century trends for snowpack highlight that western
89 USA SWE may decline by 40-70% (Pierce and Cayan 2013), snowfall may decrease by 25-40%
90 (Pierce and Cayan 2013), more winter storms may tend towards rain rather than snow (Bales et al.
91 2006), and relatively warmer storms (e.g., atmospheric rivers) may be more frequent and intense
92 for California (Dettinger 2011). In a review paper by Gimeno et al. (2014), Dettinger et al. (2011)
93 represented the only western USA specific paper on the future projected trends of ARs. Of note,
94 the authors expressed that the results in this study were a preliminary step and should be assessed
95 more from a qualitative sense due to the small sample size of AR events in the CMIP5 archive and
96 the various assumptions associated with the relatively coarser temporal and spatial extents of the
97 models in the CMIP5 archive. Therefore, if the aforementioned projected outcomes hold, mean
98 precipitation is not expected to change dramatically, but interannual variability will likely increase
99 through modulation in atmospheric river events. Since snowpack is affected by both precipitation
100 and temperature, it is expected that increased end-of-century temperatures coupled with more in-
101 tense warmer storms in the western USA will prevent snow accumulation and lead to changes in
102 runoff timing that could be problematic for water management. Thus, an analysis of causal mech-
103 anisms of snowpack accumulation and snowmelt timing, with a dynamic inclusion of large-scale
104 atmosphere-ocean drivers, and an accurate representation of the complex topography of Califor-

105 nia is needed to allow water managers to make more informative and preemptive decisions on
106 California's water future.

107 One key approach to address the aforementioned need is via climate models. However, both
108 global and regional climate models have limitations in their predictive capacities. As demonstrated
109 by the North American Regional Climate Change Assessment Program (NARCCAP), regional cli-
110 mate models (RCMs) were shown to produce too dry, too warm, and too little SWE conditions for
111 the western USA and snow cover duration was found to start too late and end too early (Salz-
112 man and Mearns 2012). Model bias was associated with inadequate topography representation,
113 imperfections in observational data, and differing land surface model components (Salzmann and
114 Mearns 2012). Similarly, Caldwell (2010) found that RCMs generally overpredict winter precipi-
115 tation in California, whereas global climate models (GCMs) generally underpredict winter precipi-
116 tation in California. The precipitation bias associated with GCMs was not solely related to model
117 resolution (as this was standardized before comparison), but rather factors such as subgrid-scale
118 parameterizations and coarse model topography too (Caldwell 2010). The aforementioned RCM
119 findings regarding precipitation and SWE appear contradictory to one another, but it should be
120 noted that California hydroclimatic trends have shown dissimilarities from several of those shown
121 in other parts of the western USA (Mote et al. 2005; Kapnick and Hall 2012), likely due to a com-
122 bination of relatively higher topographical elevation in the southern Sierra Nevada (compared to
123 other western USA mountain ranges), proximity to the Pacific Ocean, and effects from ARs.

124 This paper aims to analyze the efficacy of variable-resolution modeling using the Community
125 Earth System Model (VR-CESM) at resolutions of 0.125° (14km) and 0.25° (28km) in repre-
126 senting Sierra Nevada snowpack, in comparison with observational, reanalysis and dynamically
127 downscaled model results. Variable-resolution modeling is a novel tool for modeling the climate
128 system and represents a hybrid of global and regional climate models. We envision that this new

129 modeling framework will bring added value to the snowpack modeling community with the bene-
130 fit of a global solution, accounting for major teleconnections, and regional high-resolution, better
131 representation of winter storms and orographic forcings. This hypothesis has been corroborated
132 for temperature and precipitation climatic trends within California in Huang et al. (2015). These
133 benefits will lead to a better representation of observed summary statistics for winter snowpack
134 within a GCM framework. Further, several studies have shown that CESM has skill in represent-
135 ing the major wintertime teleconnections of the western USA including the ENSO (DeFlorio et al.
136 2013; Wang et al. 2014), the PDO (DeFlorio et al. 2013), and the Pacific-North American (PNA)
137 pattern (Li and Forest 2014). Teleconnection representation in these studies is expected to carry
138 over into VR-CESM.

139 The structure of the remainder of the paper is as follows: Section 2 contains information about
140 the CESM setup and experimental design, including VR-CESM grid implementation. Section 3
141 discusses the comparative datasets used to assess model efficacy. Section 4 provides summary
142 statistic comparisons of seasonal to multidecadal snow trends, including SWE and SNOWC. Fi-
143 nally, section 5 provides further discussion and the conclusions of this study.

144 **2. CESM Setup and VR-CESM Grid Implementation**

145 *CESM Setup*

146 This project utilized version 1.2 of the Community Earth System Model (CESM), a widely used
147 and community-supported climate model developed by the National Center for Atmospheric Re-
148 search (NCAR) and the US Department of Energy (DoE). CESM is a fully coupled global climate
149 model comprised of seven geophysical models that simulate the major components of the Earth
150 system including the atmosphere, land-surface, land-ice, ocean, ocean-wave, river run-off and sea

ice, all of which can be coupled dynamically. One of the F-component sets in CESM, FAMIP5, is the standard protocol for the Atmospheric Model Intercomparison Project (AMIP) and was used for each of the CESM simulations in this study (Gates 1992). This component set consists solely of the atmosphere-land coupled model with prescribed sea-surface temperatures (SSTs) and sea ice extent. This limited configuration maximizes computational efficiency and inhibits model bias propagation. This is advantageous for a local server environment (<1000 processors per simulation), like the one used in this study. Although the oceanic and sea ice systems were not incorporated dynamically into this study, this component set ensures that interannual climate variability (mainly via SST anomalies) and global albedo effects from sea ice extent are incorporated into the simulations. Future research will target the VR-CESM simulation performance with and without a dynamic ocean model. Thus, for this study, only the atmosphere model (Community Atmosphere Model (CAM) version 5.3) (Neale et al. 2010) and the land-surface model (Community Land Model (CLM) version 4.0 with satellite phenology) (Oleson et al. 2010) were utilized.

CAM was run with the Spectral Element (SE) dynamical core with a cubed-sphere grid structure (Taylor et al. 1997; Dennis et al. 2011). CAM-SE uses a continuous Galerkin spectral finite-element method for solving the hydrostatic atmospheric primitive equations. CAM-SE provides several benefits over other CESM dynamical cores including linear scalability with increasing computer processor counts, machine precision conservation of mass and tracers, elimination of non-uniform grid spacings due to convergence zones at higher latitudes, and variable-resolution capabilities (Taylor and Fournier 2010; Dennis et al. 2011; Zarzycki et al. 2014a,b; Zarzycki and Jablonowski 2014). CAM5 physics are broken down into six main categories: shallow convection (Park and Bretherton 2009), deep convection (Neale et al. 2008), microphysics (Morrison and Gettelman 2008), macrophysics (Park et al. 2014), radiation (Iacono et al. 2008), and aerosols (Ghan et al. 2012). Details on each of the physics schemes can be found in Neale et al. (2010).

175 CLM subdivides each cell into land types such as glacier, lake, urban, vegetated, and wetland
176 (Oleson et al. 2010; Lawrence et al. 2011). The vegetated component of the grid cell is further bro-
177 ken down into various soil types which are then characterized by 16 unique Plant Functional Types
178 (PFTs), including non-vegetated. CLM4.0 PFTs include five evergreen species and six deciduous
179 species for temperate, boreal, and tropical climates, three grasses for arctic and non-arctic climates
180 (with C-3 and C-4 variations) and a few staple cereal crops. PFT cover is derived from the Moder-
181 ate Resolution Imaging Spectroradiometer (MODIS) satellite data at 0.5° resolution with canopy
182 heights for each of the PFTs assumed to range from 0.5 meters (crops, grasses, and shrubs) to 35
183 meters (trees). PFT types and percent cover of PFTs within each vegetated land-unit play a crucial
184 role in shaping snowpack trends. This is because the interaction between the canopy and snowpack
185 are PFT specific for biogeochemical, radiative, and hydrological processes such as interception,
186 throughfall, canopy drip, water removal via transpiration, and optical property interactions based
187 on leaf angle and specific PFT (Lawrence et al. 2011).

188 The parameterizations of snowpack within CESM are based primarily on work done by Ander-
189 son (1976), Jordan (1991), and Yongjiu and Qingcun (1997). These parameterizations characterize
190 several important state variables for snowpack including the mass of water, mass of ice, snowpack
191 layer thickness, temperature profile of the snowpack layer, black carbon and mineral deposition,
192 and snowpack aging and optical properties. The model is discretized using five snow layers with
193 dynamic compaction, water transfer, and energy transfer.

194 *VR-CESM Grid Implementation*

195 The VR-CESM grids were generated using a freely available software package (SQuadGen)
196 (Ullrich 2014). To generate the variable-resolution grid files, SQuadGen interpolates a picture
197 image file, with variations in its gray scale properties, creates a refinement map, and uses spring

198 dynamics to smooth the transitional regions between various grid resolutions. VR-CESM 0.25°
199 (28km resolution) and VR-CESM 0.125° (14km resolution) grids were constructed for both CAM
200 and CLM (Figure 1). Topographic smoothing was varied between the two VR-CESM 0.25° sim-
201 ulations (VR-CESM 0.25° (smooth) and VR-CESM 0.25° (rough)) without modifying the grid
202 structure to assess the sensitivity of topographical influences on VR-CESM simulations. This
203 study further represents the first time variable-resolution grids were implemented into CLM.

204 *Topographic Representation in the VR-CESM Simulations*

205 Topographical datasets were generated for each variable resolution grid. The topographic
206 smoothing was varied between the two VR-CESM 0.25° simulations by adjusting the c parameter
207 from Eqn. (1) in Zarzycki et al. (2015). In the case of the VR-CESM 0.25° (smooth) topog-
208 raphy, this parameter was equal to 1.33 times that used for generating VR-CESM 0.25° (rough)
209 case. This resulted in the differences in topographical representation seen in Figs. 2a-b. Care-
210 ful consideration is required when generating the VR-CESM topographical datasets due to the
211 fact that CAM-SE uses terrain-following vertical coordinates that exhibit, with excessive terrain
212 roughness, a tendency towards generation of spurious vertical velocities and numerical artifacts
213 (Zarzycki et al. 2015). The topographical datasets were derived using bilinear interpolation with
214 a linear smoothing operator on the 2-minute National Geophysical Data Center (NGDC) Gridded
215 Global Relief Dataset (ETOPO2v2) (National Geophysical Data Center 2006) coinciding with the
216 variable-resolution grids surface geopotential and order of the hyperviscosity term. This provides
217 more (less) topographical structure in the high (low) resolution region of the nest. For example,
218 maximum Sierra Nevada topographical elevations (see Figure 2) in the 111 km, 28 km, and 14
219 km resolutions of CESM were 1583.31 meters, 2677.08 meters, and 3147.28 meters, respectively.

220 When compared with the ETOPO2v2 NGDC dataset, topographical elevation in the Sierra Nevada
221 matches more closely as model resolution increases (Figure 2).

222 **3. Reference Datasets and Statistical Methods**

223 *Reference Datasets*

224 Observational datasets for snowpack metrics such as snow water equivalent (SWE) and snow
225 cover (SNOWC) are particularly difficult to develop in mountainous environments. The fractal
226 nature of snowpack deposits, quick shifts in elevation, angular differences in topography, alpine
227 vegetation cover, cloud cover, and large footprint radius associated with satellite instrumentation
228 are key challenges. Additionally, many satellite products span less than a decade, preventing
229 analysis of climate patterns over decadal timeframes. In situ measurements help alleviate some of
230 the highlighted issues, yet they are irregularly located, and so may not be representative in regions
231 of rapidly varying topography. Land surface models have been used to abate the discontinuous
232 nature of in situ observations, but often contain their own biases. Therefore, to provide a rigorous
233 assessment, a blend of the aforementioned data types will be used in this assessment.

234 The datasets that this study used for validation purposes are listed in Table 1. Datasets vary
235 in snowpack product availability (i.e., SWE and SNOWC), spatial and temporal resolution, map
236 projection, and temporal range. Therefore, all datasets were standardized to monthly averaged,
237 seasonally averaged (DJF), and climate averaged (DJF from 1980-2005) temporal resolutions dur-
238 ing the assessment of the VR-CESM simulations. In order to accomplish this task, utilities from
239 the NetCDF Operators (NCO), Climate Data Operators (CDO), and the NCAR Command Lan-
240 guage (NCL) were used.

241 The North America Land Data Assimilation System Phase 2 (NLDAS-2) produced 0.125°
242 datasets by incorporating large quantities of observational and model reanalysis datasets into three
243 non-atmosphere coupled land-surface models (i.e., Princeton's implementation of VIC, NOAA's
244 Noah, and NASA's Mosaic) over the continental United States. The three datasets provide SWE
245 and SNOWC and are extensively analyzed by Xia et al. (2012a,b). For the 2008 California climate
246 change assessment, four GCM (i.e., CCSM3, CNRM, GFDL, and PCM1) datasets were down-
247 scaled using Bias Corrected Statistical Downscaling (BCSD) methods along with the VIC model
248 at a resolution of 0.125° . This dataset, known as CAL-ADAPT, provides SWE values over the en-
249 tirety of California, with the methodology discussed in Maurer and Hidalgo (2008). The DAYMET
250 dataset provides SWE estimations based on meteorological stations. The station data is then ex-
251 trapolated, using a truncated Gaussian weighting filter, to create a high resolution gridded output
252 (Thornton et al. 2014). The Moderate Resolution Imaging Spectroradiometer (MODIS) satellite
253 remote sensing dataset (MODIS/Terra Snow Cover Monthly 0.05° (5 km), Version 5 (MOD10CM
254 V005)) provides SNOWC using a snow mapping algorithm with a Normalized Difference Snow
255 Index (NDSI) (Hall et al. 2006). The NDSI is used to distinguish between snow and other features
256 (such as cloud cover) by using visible and short-wave near-IR spectral bands. A comprehensive
257 analysis and validation of the MODIS dataset for a region of the Sierra Nevada was conducted in
258 Hall and Riggs (2007). The SNOWpack TELEmetry (SNOWPACK) in situ dataset is comprised of 32
259 automated observational stations spread throughout the Sierra Nevada mountain range measuring
260 SWE (Serreze et al. 1999). The areal extent of the SNOWPACK stations range from 38.07° to 42.99°
261 latitude by -120.79° to -119.23° with an average elevation of 2,343 meters. Of the 32 stations,
262 only 19 were utilized as they spanned the entire 1980-2005 temporal range. The North American
263 Regional Reanalysis (NARR) dataset provides monthly averaged SNOWC output variables using
264 a high resolution atmospheric model (Eta Model) forced by a Regional Data Assimilation System

265 (RDAS) (Mesinger et al. 2006). The other reanalysis dataset used (NCEP - CFSV2) is an up-
266 dated version (2013) of its predecessor (2004) and provided SNOWC data (Saha et al. 2014). The
267 NCEP dataset provides better representations of 2m surface temperature, Madden-Julian Oscilla-
268 tion (MJO), and SST forecasts while upgrading overall performance in seasonal to subseasonal
269 forecasting results, compared to its predecessor, and has been advised for decision makers in the
270 water management and agricultural sectors (Saha et al. 2014).

271 A 0.25° (finite volume) and 1° (spectral element) uniform resolution CESM run were used for
272 comparison to the VR-CESM simulations as well. The 0.25° simulation is described in Wehner
273 et al. (2014) and the 1° simulation was performed by the research team with the same component
274 set and dynamical core as the VR-CESM simulations. The final datasets utilized for this assess-
275 ment were a pair of simulations conducted at UC Davis using the Weather Research and Forecast
276 (WRF) model, which has been used extensively for regional climate studies. Several common pa-
277 rameterization combinations (including different cumulus schemes and radiation schemes) were
278 tested over a one-year simulation period and compared with gridded observations. Those final
279 options were chosen for climate applications that balance long-term reliability and computational
280 cost, representing a typical RCM configuration. Subgrid parameterizations include: the Kain-
281 Fritsch cumulus scheme (Kain 2004), the WSM 6-class graupel microphysics scheme (Hong and
282 Lim 2006), and the CAM short-wave and long-wave radiation schemes (Collins et al. 2004). The
283 simulations used a nested domain with a coarse resolution of 27km (WRF-27) and a finer resolu-
284 tion domain of 9km (WRF-9) situated over the western USA (centered over the Sierra Nevada).
285 The initial, boundary conditions, and sea surface temperatures were all provided by ERA-Interim
286 reanalysis data, a widely used and validated dataset for this type of work (Dee et al. 2011). Both
287 WRF domains provide SWE and SNOWC output variables via the Noah Land Surface Model

288 (Chen and Dudhia 2001) coupled with the Yonsei University (YSU) boundary layer scheme (Hong
289 et al. 2006).

290 The Noah and CLM4.0-SP land surface models (LSMs) derive from similar snow model formu-
291 lations (i.e., Anderson (1976)), yet deviate in several ways too. The Noah LSM pulls primarily
292 from Yen (1965), whereas CLM4.0-SP draws from Jordan (1991). This creates differences in both
293 of the snow model's fundamental equations and parameterizations. Differences include number
294 of snow layers (Noah LSM has three, whereas CLM4.0-SP has five), snow thermal conductivity
295 (CLM4.0-SP uses a snow density function and Noah LSM uses a constant), snow cover hyperbolic
296 functions (CLM4.0-SP utilizes a slightly more complicated formulation) and snowpack-canopy in-
297 teractions (Oleson et al. 2010; Yang et al. 2011). Of relevance to this paper's overall conclusions,
298 snow depths (and thus SWE) estimations in the Noah LSM have been noted to be significantly
299 overestimated in certain cases due to the assumption that snowpack density, physical character-
300 istics, and thermal conductivity are constant, therefore neglecting heat transfers via meltwater
301 movement in the snowpack (Yang et al. 2011).

302 *Statistical Methods*

303 The DJF climatological mean state and seasonal variability in snow products found within the
304 Sierra Nevada were analyzed. The assessment aimed to understand the efficacy of the new VR-
305 CESM approach in representing snowpack trends against observation, reanalysis and other widely
306 used GCMs and RCMs. In order to do this, the datasets were remapped to similar map projections
307 and resolutions using both the Earth System Modeling Framework (ESMF) capabilities in the
308 NCAR Command Language (NCL) and TempestRemap (Ullrich and Taylor 2015) software suites.
309 The observational and reanalysis datasets were further remapped to all possible resolutions used
310 in the models (i.e., 0.125° , 0.25° , and 1°). The climate averages and seasonal averages were

311 computed using a mask of the Sierra Nevada (see Figure 3). This mask was developed by the
312 EPA's Ecoregions classification system (Ecoregion Level III - 6.2.12). Summary statistics of the
313 Sierra Nevada were calculated for each of the datasets for SWE and SNOWC including mean,
314 standard deviation, lower quartile, median, upper quartile, and maximum.

315 For most of the datasets assessed, 25 seasons of average DJF values were used. WRF-9 had 22
316 DJF seasons. Additionally, MODIS had 12 DJF seasons, many of which fall outside the historical
317 period (1980-2005 vs 2000-2012), but due to the scope of this paper in analyzing the climatological
318 and seasonal mean trends (rather than precise seasonal forecasting) this was assumed to be largely
319 irrelevant.

320 **4. Seasonal and Multidecadal Snow Trends in the Sierra Nevada**

321 *Snow Water Equivalent Summary Statistics*

322 A panel plot of the DJF average SWE is shown across datasets for California (Figure 4). Clear
323 resolution dependence is apparent across all modeling platforms. Each of the datasets highlighted
324 an overall increasing trend in SWE with an increase in model resolution, likely correlated with
325 topographical representation (see Figure 2) and resultant orographic forcing on weather fronts
326 as well as sustained below-freezing temperatures. Of note, the NCEP dataset didn't characterize
327 enough SWE for the Sierra Nevada region to be further assessed in greater statistical detail. Each of
328 the model datasets are compared to the average of the reanalysis datasets at their closest respective
329 resolution of 0.125° , 0.25° , or 1° . Within the Sierra Nevada masked region, VR-CESM 0.125° and
330 VR-CESM 0.25° (rough) demonstrated the closest statistical match across all observational and
331 reanalysis datasets with mean DJF SWE absolute bias values of 6.4 and 2.7 mm, respectively (the
332 reanalysis dataset average SWE value was 97.4 mm), and median values within 8 to 13 mm (Table

333 2). Maximum DJF SWE values were most closely represented by CESM-FV 0.25° and VR-CESM
334 0.25° (rough), both within 68 mm. It should be noted that an artificial cap on maximum SWE at
335 1,000 mm is imposed in CLM4.0 which impacted maximum SWE values for all VR-CESM and
336 UNIFORM CESM simulations. CESM-FV 0.25° and WRF-9 both showed a positive bias in DJF
337 SWE values for mean and median compared to the reanalysis dataset average. CESM-FV 0.25°
338 had a positive bias of 1.8 times the mean DJF SWE and 2.4 times the median value for the Sierra
339 Nevada mask. WRF-9 exhibited a similar response with a positive bias of 2.4 times the mean and
340 1.4 times the median DJF SWE. The coarser resolution version of VR-CESM and WRF had a
341 negative bias with VR-CESM 0.25° (smooth) at half the mean for DJF SWE in the Sierra Nevada
342 and WRF-27 at 74%. CESM-SE 1°, the model resolution used in most IPCC simulations, was
343 unable to represent both climatological and seasonal DJF SWE trends in the Sierra Nevada with a
344 maximum DJF SWE value of 41.7 mm (<5% of the reanalysis dataset average maximum value),
345 with similar tendencies seen in the mean and median values as well.

346 *Seasonal Variability in Snow Water Equivalent*

347 SWE DJF mean seasonal variability is represented via a plot of standard deviation at each grid
348 point across all datasets (Figure 5). Characterization of interseasonal variability, in comparison to
349 the reanalysis datasets, was shown to be more difficult for most of the modeling platforms. VR-
350 CESM simulations were best represented by VR-CESM 0.25° (rough) which exhibited a slight
351 positive bias of 1% to the reanalysis dataset average (Table 2). VR-CESM 0.125° and VR-CESM
352 0.25° (smooth) were at 87% and 36% of the standard deviation, respectively. CESM-FV 0.25° had
353 a large discrepancy in standard deviation tendency with a positive bias of two times the reanalysis
354 dataset average of the reanalysis datasets. WRF-9 showed an exceedingly high variability with
355 6.8 times the standard deviation of the reanalysis dataset average, although this could be partially

356 amplified by the fact that DAYMET and CESM SWE values were capped at 1,000 mm. Although
357 the standard deviation values were highly variable across modeling platforms in comparison to
358 the reanalysis dataset average, the average seasonal interquartile ranges (IQR) were more closely
359 aligned (Figure 6). The IQR for VR-CESM 0.125° and VR-CESM 0.25° (rough) were closest to
360 the reanalysis dataset average with a slightly negative bias of 11 mm and 7.8 mm, respectively.
361 WRF-9 and CESM-FV 0.25° had a positive bias in IQR, with exceedingly high 75th percentiles,
362 whereas VR-CESM 0.25° (smooth) and WRF-27 were conservative in their higher quartile marks.

363 *Pattern Correlation and Bias in Snow Water Equivalent*

364 The average DJF centered Pearson product-moment coefficients, or the average statistical sim-
365 ilarity between two datasets at identical locations for SWE across the 25 seasons (with removal
366 of the mean), for all of the simulations were computed against each of the remapped reference
367 datasets for the Sierra Nevada masked region (Table 3). The Pearson product-moment coefficients
368 are calculated by computing the covariance of the two datasets and dividing by the product of
369 their standard deviations. Averaging all of the Pearson product-moment coefficients across all
370 grid-points within the mask is useful in showing the seasonal similarity in SWE trend across the
371 entire Sierra Nevada. Interestingly, the VR-CESM simulations were almost identical in average
372 seasonal correlation compared to the reanalysis datasets (at around 0.67 to 0.71) for the Sierra
373 Nevada. WRF-9, remapped to 0.125° (14km) resolution, showed the highest seasonal correlation
374 at 0.83. However, this was not unexpected considering the WRF simulations were forced by ERA-
375 interim data. Both CESM-FV 0.25° and CESM-SE 1° had the lowest correlation with 0.28 and
376 0.19, respectively.

377 Additionally, seasonal average bias was computed across model simulations for the Sierra
378 Nevada (Table 3). VR-CESM 0.25° (rough) had the smallest average seasonal bias to the re-

379 analysis dataset average with a slight negative bias of -2.7 mm, with VR-CESM 0.125° the next
380 closest at -6.4 mm. Although WRF-9 showed best agreement with the NLDAS reanalysis datasets.
381 The WRF and UNIFORM CESM simulations had similar tendencies to one another with a positive
382 seasonal bias occurring in the higher resolution simulations and a negative trend in the coarser res-
383 olution simulations, much the same as Caldwell (2010) indicated for winter precipitation tenden-
384 cies in California. Figure 7 shows the average climatological difference in snow water equivalent
385 between model and reanalysis datasets. Bluer (redder) colors represent a more positive (negative)
386 model bias over the simulation period. In general, higher resolution models tend to overproduce
387 SWE whereas lower resolution models tend to underproduce SWE. This is likely due to the un-
388 derrepresentation of topography within the model simulations. Interestingly, in several of the
389 simulations a positive bias appears on the western slopes of the Sierra Nevada and a negative bias
390 occurs on the eastern slopes. This may be caused by an oversensitivity to orographically forced
391 upslope winds that push the model to overproduce snowfall as the storms move from the wind-
392 ward to leeward side of the Sierra Nevada. In addition, increased topographic height that does not
393 preserve the fractal peaks and valleys in more detailed representations (see ETOPO2v2 in Figure
394 2) could artificially enhance orographic uplift. For example, in Figure 7 the orographic uplift bias
395 was shown in the northern Sierra Nevada for VR-CESM 0.125° and less so in VR-CESM 0.25°
396 (rough), a potential reason why nominal improvement was seen in snowpack characteristics for
397 the Sierra Nevada when VR-CESM model resolution was increased.

398 *Climatology of Total Snowpack over the Water Year*

399 The mean daily climatological total SWE (in kg) within the Sierra Nevada was calculated in
400 order to characterize the total water content of the region provided by snowpack (Figure 8). By
401 averaging the total SWE each day over all years (1980-2005) and then multiplying by the area of

402 the mask (53,102,699,313 m²), the average snowpack mass is shown for the Sierra Nevada across
403 model and reference datasets. Each of the datasets were grouped according to their comparable
404 resolution counterparts (i.e., a) 0.125° (14km), b) 0.25° (28km), and c) 1° (111km)) to better
405 showcase relative magnitudes of Sierra Nevada SWE found within a given climatological day. It
406 should be noted that DAYMET has biases introduced during the dataset formulation that impacts
407 its overall ability to characterize mid-season snowpack and thus alters the SCD and timing of
408 snowmelt. Further, the CAL-ADAPT datasets were not used because daily resolution outputs
409 were not available (only monthly and annual) and the first hour (00 or 12:00 am) of each day
410 within the NLDAS datasets were used within the analysis. In general, VR-CESM 0.125° and
411 VR-CESM 0.25° (rough) appear to most closely match all of the reanalysis datasets in relative
412 magnitude (Figure 8). A bimodal profile in VR-CESM 0.125° is likely indicative of the artificial
413 1,000 mm cap in SWE imposed within CLM4.0 to prevent excessive snow accumulation over
414 Antarctica - future simulations will attempt to alleviate this by removing the cap away from the
415 polar regions. WRF-9, remapped to 14km, had a high bias associated with total SWE in the Sierra
416 Nevada, with a SCD value of around 21.4×10^{12} kg (more than twice the value shown in most of
417 the reanalysis datasets as well as VR-CESM 0.125°). In the 28km datasets, the magnitude of total
418 SWE is consistent with the 14km results. VR-CESM 0.25° (rough) matched most closely to the
419 NLDAS VIC 0.25° reanalysis dataset at 8.0×10^{12} kg, with all other datasets falling under that
420 mark ($<6.0 \times 10^{12}$ kg). The 111km resolution datasets differed greatly from one another, with
421 the peak accumulation of CESM-SE 1° values falling much further below the remapped reanalysis
422 datasets. This further highlights the inability of standard-practice 1° GCM simulations to capture
423 Sierra Nevada snowpack characteristics, especially with respect to total water content.

424 *Snowpack Timing and Melting Patterns*

425 Peak timing of western USA snowpack accumulation (or SCD) is traditionally thought to occur
426 around April 1st (water day 182), although this has shifted due to regional warming trends in the
427 western USA (Kapnick and Hall 2012; Montoya et al. 2014). Since most of the reanalysis datasets
428 had discrepancies in representing the total water content and SCD within the Sierra Nevada, nor-
429 malized values of average climate day SWE are shown in Figure 9 for all datasets in comparison
430 to 19 SNOTEL stations (Figure 3). These stations were chosen based on daily observation avail-
431 ability spanning the years 1980-2005. Further, the SNOTEL locations are representative of several
432 elevations found within the Sierra Nevada, spanning from 1864 m (Spratt Creek) to 2879 m (Vir-
433 ginia Lakes Ridge). Of note, the SNOTEL stations are clustered in the northern to central Sierra
434 Nevada, with no stations present in the south. As such, a subregion of the Sierra Nevada was
435 made to compare model results with observations from SNOTEL stations (see solid black sub-
436 region in Figure 3). This subregion was created using 12 of the USGS Hydrologic Units in the
437 Sierra Nevada (Seaber et al. 1987). If a SNOTEL station was located within or near an adjoining
438 hydrologic unit then the entire unit was kept (within the boundary of the Sierra Nevada Ecore-
439 gion). Further, since the lowest elevation SNOTEL station was located at 1864 m (Spratt Creek), a
440 topographical threshold of 1824 m was imposed to create the subregion (this altitude was chosen
441 to provide a buffer around Spratt Creek). The normalizations were computed by removing the
442 relative mean from all climatological days within a given dataset and then dividing the resultant
443 values by the standard deviation. Like the plots for the mean daily climatological sums of SWE,
444 all datasets are grouped according to resolution, with added comparison to SNOTEL in each plot
445 (Figure 9). Among models, VR-CESM 0.125° and WRF-9 matched most closely to SNOTEL.
446 However, both had an early SCD bias. The SCD in VR-CESM 0.125° falls around water year

447 day 170 (March 21st), the closest match to SNOTEL across all model datasets. SCD for WRF-9
448 falls around water year day 160 (March 11th), around two weeks before the expected date. Melt
449 rate and the date at which the complete melt of SWE occurs differentiated VR-CESM 0.125°
450 and WRF-9, with WRF-9 more closely matching SNOTEL. The melt rate in VR-CESM 0.125°
451 was too rapid resulting in a complete melt occurring around 30 days sooner than in the SNOTEL
452 dataset. DAYMET had a late SCD around day 191 (April 10th), 10 days after SNOTEL. The melt
453 rate in the DAYMET dataset was much slower than all other datasets. Further, since DAYMET
454 analyzed each year in isolation, the snowpack was discontinuous at water year day 91 (Thornton
455 et al. 2014). Snowpack accumulation onset matched fairly well across all datasets, with the onset
456 date around water year day 36 (November 5th). Within the 28km simulations, most model datasets
457 seem to match in terms of having an earlier expected SCD clustered on water year day 151 (March
458 1st), around 30 days sooner than SNOTEL. The remapped version of DAYMET at 0.25° showed
459 a similar late SCD bias (water year day 191) and showed a more drastic slow down in melt rate.
460 All 0.25° datasets matched fairly well in snowmelt rate and accumulation onset, matching well
461 with SNOTEL. Full melt generally occurred earlier (water year day 240) across models compared
462 to SNOTEL (water year day 270). In the 1° datasets, CESM-SE 1° had a physically unreasonable
463 SCD (water year day 90), snowmelt rate, and accumulation onset date. Interestingly, at the 1°
464 resolution, the biases in DAYMET are minimized and the SCD, snowmelt rate, date of complete
465 melt, and accumulation onset date all are well within the range of SNOTEL.

466 *Linear Trends in DJF Seasonal Snowpack*

467 Figure 10 highlights the linear trend in DJF seasonal mean SWE values for the historical period
468 in the Sierra Nevada SNOTEL subregion. For comparison, the 19 SNOTEL station datasets are
469 plotted in the upper left panel. The gray lines indicate individual SNOTEL stations with the

470 mean SNOTEL station seasonal trend shown in black and the linear trend line in red. Each of
471 the model and reanalysis datasets are plotted using similar axis bounds, except for WRF-9 which
472 exhibited larger values of SWE. SNOTEL stations are plotted with a larger axis, representative of
473 these observations being pointwise measurements in regions of greater snow accumulation. The
474 general trend across VR-CESM simulations is a slight decrease in DJF seasonal mean SWE. VR-
475 CESM 0.125° had the largest negative trend at -0.198 mm/year, with VR-CESM 0.25° (smooth) at
476 -0.093 mm/year and VR-CESM 0.25° (rough) at -0.029 mm/year. Except when compared to CAL-
477 ADAPT which shows a dramatic increase in SWE and DAYMET which shows a faster decrease
478 in SWE, the general trend for VR-CESM datasets are slightly more negative than the SNOTEL
479 and NLDAS reanalysis datasets. This result is corroborated by Mote et al. (2005) who found a
480 2.2% decline in mean April 1st SWE across the in situ snowpack observational stations within the
481 Sierra Nevada over the historical record (i.e., 1990-1997 (final period) minus 1945-1950 (initial
482 period)), with inclusion of snow course data too. Interestingly, the 19 sampled SNOTEL stations
483 showed a nearly flat trend (0.016 mm/year) in DJF mean seasonal SWE over the study period.
484 WRF simulations showed differing results, with WRF-9 showing an exceedingly strong positive
485 trend (0.410 mm/year) in mean seasonal SWE and WRF-27 having a stagnant to slightly positive
486 trend (0.011 mm/year) matching most closely with SNOTEL. CESM-SE 1° and CESM-FV 0.25°
487 both had a negative trend in mean seasonal SWE, with magnitudes of -0.259 mm/year and -0.200
488 mm/year.

489 *Snow Cover (SNOWC) Summary Statistics*

490 Figure 11 represents average climatological DJF SNOWC plotted for all datasets over Califor-
491 nia. Similar to SWE, an increase in resolution results in a much more heterogeneous representa-
492 tion of SNOWC properties that is more closely matched to observations, indicated by 12 seasons

493 of MODIS (MODIS-5) data. A topographic influence is clearly seen as resolution is increased,
494 with higher resolution models capturing lower elevation basins that are otherwise smoothed out.
495 This resolution dependence manifests itself in statistical calculations of average DJF SNOWC
496 within the Sierra Nevada (Table 4). WRF-9 showed the closest match to mean seasonal SNOWC
497 with a value only 1.5% lower than the MODIS dataset. VR-CESM 0.25° (rough) and VR-CESM
498 0.125° were the next closest with a slightly more conservative estimate (7% below MODIS) of
499 SNOWC. All other datasets, except CESM-FV 0.25° which had a positive bias of around 8%,
500 had much smaller estimates of mean seasonal SNOWC. CESM-SE 1° provided the largest un-
501 derestimate among the model datasets with mean seasonal values at a quarter of the comparable
502 remapped version of MODIS. Interestingly, two of the best available high resolution reanalysis
503 datasets (NCEP and NARR) seem unable to properly capture the Sierra Nevada SNOWC charac-
504 teristics in the MODIS dataset, with most of the reanalysis datasets showing a negative bias for
505 SNOWC. NARR-32 and NCEP-35 had mean SNOWC values at half to two-thirds of the value
506 indicated by MODIS and NLDAS VIC, NOAH, and MOSAIC were at 84%, 74%, and 47% of
507 MODIS, respectively. The median values for DJF SNOWC for VR-CESM 0.125° and VR-CESM
508 0.25° showed a close approximation to those seen in NLDAS VIC. As expected, since SNOWC is
509 capped at 100%, maximum DJF SNOWC was reached by most modeling platforms.

510 *Seasonal Variability in Snow Cover*

511 Mean seasonal variability (interannual standard deviation of the seasonal mean) in SNOWC is
512 shown over California (Figure 12). Standard deviation values for each of the simulations are given
513 in Table 4. As with the mean seasonal SNOWC values, WRF-9 had the best representation of sea-
514 sonal variability within the Sierra Nevada, with a close approximation to standard deviation values
515 in the remapped MODIS dataset (although it underestimates standard deviation in the lee of the

516 Sierra Nevada). VR-CESM 0.25° (rough) also was able to characterize seasonal variability at a re-
517 alistic level, with a standard deviation only 14% below MODIS. All other modeling platforms had
518 a conservative estimate of variability ranging from half to three-fourths of the observed standard
519 deviation, when comparing to common remapped resolutions. This result is apparent in Figure 13
520 for each dataset and analyzing the IQRs. All datasets, save for WRF-9 and CESM-FV 0.25° , had a
521 conservative estimate of SNOWC summary statistics when compared to MODIS. Median values,
522 along with IQRs, are too low with a noticeable bias in the 75th percentiles.

523 *Pattern Correlation and Bias in Snow Cover*

524 The average seasonal centered Pearson product-moment coefficients and mean climatological
525 bias for SNOWC are exhibited in Table 5. MODIS was not used in the centered Pearson cal-
526 culations as it only spanned five years of the historical period (2000-2005). A close match was
527 seen across both VR-CESM and WRF modeling platforms when compared to the three NLDAS
528 datasets. Most values fell around 0.74 for the VR-CESM simulations and 0.84 for the WRF simu-
529 lations. The CESM-FV and CESM-SE had the lowest correlations at 0.53 and 0.15, respectively.
530 The smallest mean climatological bias in DJF SNOWC between MODIS and the model datasets
531 was VR-CESM 0.125° , VR-CESM 0.25° (rough) and WRF-27, with negative baises of approxi-
532 mately 6-7%. CESM-SE 1° produced the worst match across model datasets with a -28.5% bias.
533 Of note, the NLDAS reanalysis datasets also widely varied in their ability to characterize mean
534 climatological SNOWC bias when compared to MODIS with consistent negative biases ranging
535 between -9.2% (NLDAS VIC) to -29.4% (NLDAS MOSAIC).

536 **5. Discussion and Conclusion**

537 The primary goal of this paper has been to assess the efficacy of VR-CESM in simulating the
538 mean climatological state and seasonal variability within Sierra Nevada snowpack metrics (i.e.,
539 SWE, SCD, and SNOWC). It was determined that the efficacy of the VR-CESM framework in
540 simulating climatological mean and seasonal variability in both SWE and SNOWC was compet-
541 itive with traditional dynamical downscaling. Overall, considering California's complex terrain
542 and intermittent climate, a 0.68 centered correlation (less correlated, yet similar to values seen in
543 WRF), negative mean SWE bias of <7 mm, and an IQR well within the range of values exhibited
544 in the best available spatially continuous datasets for SWE, the ability of both VR-CESM 0.25°
545 (rough) and VR-CESM 0.125° to simulate SWE on both climatological and seasonal scales was
546 confirmed. Of note, both of the VR-CESM simulations were solely constrained by prescribed
547 SST and sea ice data, whereas WRF simulations were further constrained at lateral boundaries by
548 ERA-interim data (in addition to SST and sea ice), yet both showed comparable statistical prop-
549 erties. This was similarly confirmed for the climatological mean for DJF SNOWC where both
550 the VR-CESM 0.125° and VR-CESM 0.25° (rough) simulations were within 7% of the expected
551 mean MODIS value. VR-CESM 0.25° (rough) was able to characterize MODIS' standard de-
552 viation well (86% match). WRF-9 had the best representation of SNOWC with a near identical
553 representation in mean, standard deviation, and IQR, compared to MODIS, but at the cost of un-
554 reasonably high SWE values. This is likely indicative of the over-exaggeration of topography at
555 higher resolutions in the model, where the fractal nature of peaks and, importantly, valleys are
556 misrepresented (compare ETOPO2v2 to model topography in Figure 2) leading to a bias in overall
557 snowpack characterizations. VR-CESM, as well as WRF, conveyed mixed results in representing
558 seasonal variability in SWE (average standard deviation value at each grid point), with generally

559 conservative estimates across all assessed modeling platforms except WRF-9 and CESM-FV 0.25°
560 which had much higher estimates. The total water content of snowpack within the Sierra Nevada
561 was best represented in both VR-CESM 0.125° and VR-CESM 0.25° (rough) when compared to
562 the remapped NLDAS VIC reference dataset at their respective resolutions. VR-CESM 0.125°
563 and WRF-9 showcased the best representation, across datasets, of SCD timing, snowmelt rate, and
564 snowpack accumulation onset, in comparison to SNOTEL. The two datasets differed in the date
565 at which complete melting of SWE occurred with VR-CESM 0.125° occurring too early, whereas
566 WRF-9 had a slightly late onset. Interestingly, both SWE and SNOWC didn't show a significant
567 enhancement in snowpack properties when VR-CESM resolution was moved from 0.25° to 0.125° ;
568 in fact the 0.25° simulation (VR-CESM 0.25° (rough)) was slightly more skillful when considering
569 all metrics. Topographical roughness was found to play a much more significant role in represent-
570 ing snowpack properties with VR-CESM 0.25° (rough) seeing a sixteen-fold decrease in average
571 seasonal SWE bias, threefold increase in SWE seasonal variability, an IQR increase from 48.9 to
572 64.1, and a considerable increase in the SCD total water content for the Sierra Nevada. This is an
573 improvement when compared to the average of all of the reanalysis datasets. Furthermore, DJF
574 temperature characteristics may have played a role in modulating which of the simulations per-
575 formed most optimally. Figure 14 highlights average climatological DJF 2m surface temperatures
576 for only the model simulations. Below freezing (< 273 K) temperatures are shown to be main-
577 tained over greater areas for the climatic period across all higher resolution ($\leq 0.25^{\circ}$) simulations,
578 likely because of increased topographic elevations in those areas. This temperature maintenance
579 likely drives winter season snowpack accumulation and sustainment.

580 The VR-CESM framework provides greatly enhanced representation of snowpack properties
581 compared to widely used GCMs (i.e., CESM-FV 1° and CESM-FV 0.25°). Simulation of Sierra
582 Nevada snowpack in the VR-CESM framework is competitive with traditional dynamical down-

583 scaling techniques, but has the additional means of providing dynamic interaction with large-scale
584 atmosphere-ocean drivers and teleconnections that might not otherwise manifest in an RCM con-
585 strained by boundary conditions. These two points lend them themselves well to using certain
586 versions of VR-CESMs (namely VR-CESM 0.25° (rough) and VR-CESM 0.125°) in projecting
587 future climate change scenarios and their resultant impacts on water resources over the western
588 USA.

589 The topographical smoothing between the two VR-CESM 0.25° simulations had the most dra-
590 matic influence on snowpack product tendencies found within the VR-CESM framework, even
591 when compared to changes resulting from a doubling of model resolution from 0.25° to 0.125°.
592 As shown in Table 2, mean seasonal SWE for the Sierra Nevada nearly doubled from 50.4 mm
593 to 95.2 mm between VR-CESM 0.25° (smooth) and VR-CESM 0.25° (rough), with a decrease in
594 average DJF climate bias in SWE from -52% to -2.3% when compared to the reanalysis dataset
595 average. This tendency was similar for the lower quartile, median, and higher quartile values. Sim-
596 ilarly, the seasonal variability, indicated by the standard deviation plots (Figure 5) and standard
597 deviation values in Table 2, nearly tripled, making the VR-CESM 0.25° (rough) simulation the
598 closest match to the reanalysis dataset average within all model simulations. Changes in SNOWC
599 trends were also apparent, although less dramatic than SWE (Table 4). Average seasonal SNOWC
600 increased by 9% and the IQR increased from 48.9 to 64.1, matching more closely to the MODIS
601 dataset value of 74.5, with the higher quartile less conservatively biased.

602 Improved topographical resolution also resulted in better representation of the snow character-
603 istics of the maritime mountain ranges (e.g., the Cascades and the Coastal Range) (Figure 4).
604 Maritime mountain ranges have shown some of the greatest snowpack decreases over the histor-
605 ical record (Serreze et al. (1999); Mote (2003); Mote et al. (2005)) and are in need of the best
606 available climate change impact analysis due to a greater susceptibility to climate change trends

607 (i.e., warmer and potentially more precipitous weather fronts originating from relatively warmer
608 ocean waters). This is important because conventional GCM simulations are generally performed
609 at resolutions too coarse to properly resolve the aforementioned topographical forcings and, thus,
610 may bias evaluations used to guide climate impact studies and climate policy formulation. This
611 isn't to say that the VR-CESM framework provides perfect representation of these ranges, but that
612 it provides a more realistic and computationally effective means to characterize these ranges in a
613 changing climate. This subject will be the target of further research.

614 A higher resolution surface dataset for PFT type would have been beneficial for this study, to
615 capitalize on the higher resolution ($<0.5^{\circ}$) VR-CESM grids implemented into CLM, however none
616 were available at the time of writing. An extensive review of the North American and European
617 snowpack-canopy interaction literature by Varhola et al. (2010) argued that snowpack accumula-
618 tion and melting patterns can be significantly altered by changes in forest cover, accounting for
619 relative variance changes of 57% in snow accumulation and 72% in snow ablation. After dis-
620 cussion with the CLM development team at NCAR, a two minute PFT dataset for the year 2000
621 was identified. This dataset will be used in future simulations to assess the effects of canopy
622 interactions on snowpack metrics within a VR-CESM framework.

623 Added benefits of the VR-CESM framework, not discussed previously, include the large en-
624 hancement in computational efficiency. For example, the $0.25^{\circ}(0.125^{\circ})$ VR-CESM grid had ap-
625 proximately 8,400 (11,300) elements. When compared to conventional uniform resolution grids at
626 1.00° , 0.25° or 0.125° , which have 5,400, 86,400, and 345,600 elements respectively, a theoretical
627 speedup in computation time of 10 to 30 times is expected for the VR-CESM framework, with the
628 assumption of linear computational scalability highlighted in Dennis et al. (2011) and Zarzycki
629 et al. (2014a). Therefore, for a relatively similar computational cost of a uniform 1.00° grid, one
630 can get vastly improved snowpack product characteristics over a limited region of interest, espe-

cially within the California Sierra Nevada. This is a function of not only resolving smaller scale meteorological features, but also due to better representations of topography and, in some cases, land surface properties. Therefore, for only a fraction of the cost of a high resolution uniform GCM run, the VR-CESM approach can be performed on a local server (<1000 processors), with 20-40 day turnarounds on 25 year simulation periods, and provide model resolutions of 0.25° (28 km) to 0.125° (14 km), which decision makers (especially in the western USA water sector), may find more useful in regional planning endeavors. The enhanced representation of snowpack and relative computational efficiency of VR-CESM lends itself well to future investigations of other SWE dependent regions of the western USA, as well as ensemble-based climate change scenario analysis.

Acknowledgments. The authors would like to acknowledge the computational support, and patience, provided by the University of California, Davis Farm Cluster IT support team (i.e., Bill Broadley and Terri Knight). Additionally, we would like to thank all reviewers for their helpful comments. We believe the quality of the manuscript is greatly improved after incorporating their suggestions. Further, the fruitful conversations with Alison Whipple, Dustin Grogan and Nicolas Bambach throughout the production of this paper were indispensable and truly appreciated. This research was funded by the National Science Foundation (NSF) via the Climate Change, Water, and Society Integrated Graduate Education and Research Traineeship (IGERT) program at the University of California, Davis (NSF Award Number: 1069333), the Leland Roy Saxon and Georgia Wood Saxon Fellowship, and the Department of Energy, Office of Science project “Multiscale Methods for Accurate, Efficient, and Scale-Aware Models of the Earth System.”

652 **References**

653 Anderson, E. A., 1976: A point of energy and mass balance model of snow cover. *NOAA Tech.*
654 *Rep. NWS*, **19**, 1–150.

655 Bales, R. C., J. J. Battles, Y. Chen, M. H. Conklin, E. Holst, K. L. OHara, P. Saksa, and W. Stewart,
656 2011: Forests and water in the sierra nevada: Sierra nevada watershed ecosystem enhancement
657 project. *Sierra Nevada Research Institute report*, **(11.1)**.

658 Bales, R. C., N. P. Molotch, T. H. Painter, M. D. Dettinger, R. Rice, and J. Dozier, 2006: Mountain
659 hydrology of the western United States. *Water Resources Research*, **42**, W08432.

660 Caldwell, P., 2010: California Wintertime Precipitation Bias in Regional and Global Climate Mod-
661 els. *Journal of Applied Meteorology and Climatology*, **49**, 2147–2158.

662 Cayan, D. R., 1996: Interannual climate variability and snowpack in the western United States.
663 *Journal of Climate*, **9**, 928–948.

664 Cayan, D. R., K. T. Redmond, and L. G. Riddle, 1999: ENSO and Hydrologic Extremes in the
665 Western United States. *Journal of Climate*, **12**, 2881–2893.

666 Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn
667 State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. *Monthly
668 Weather Review*, **129 (4)**, 569–585.

669 Collins, W. D., and Coauthors, 2004: Description of the NCAR community atmosphere model
670 (CAM 3.0). Tech. rep., Tech. Rep. NCAR/TN-464+ STR.

671 Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of
672 the data assimilation system. *Quarterly Journal of the Royal Meteorological Society*, **137 (656)**,
673 553–597.

674 DeFlorio, M. J., D. W. Pierce, D. R. Cayan, and A. J. Miller, 2013: Western US extreme pre-
675 cipitation events and their relation to ENSO and PDO in CCSM4. *Journal of Climate*, **26** (12),
676 4231–4243.

677 Dennis, J., and Coauthors, 2011: CAM-SE: A scalable spectral element dynamical core for the
678 Community Atmosphere Model. *International Journal of High Performance Computing Appli-*
679 *cations*, 1094342011428142.

680 Dettinger, M., 2011: Climate Change, Atmospheric Rivers, and Floods in California - A Multi-
681 model Analysis of Storm Frequency and Magnitude Changes. *JAWRA Journal of the American*
682 *Water Resources Association*, **47**, 514–523.

683 Dettinger, M. D., D. R. Cayan, H. F. Diaz, and D. M. Meko, 1998: North-south precipitation
684 patterns in western North America on interannual-to-decadal timescales. *Journal of Climate*,
685 **11**, 3095–3111.

686 Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan, 2011: Atmospheric rivers,
687 floods and the water resources of California. *Water*, **3** (2), 445–478.

688 Fang, C., L. Wu, and X. Zhang, 2014: The impact of global warming on the pacific decadal
689 oscillation and the possible mechanism. *Advances in Atmospheric Sciences*, **31**, 118–130.

690 Gates, W. L., 1992: AMIP: The atmospheric model intercomparison project. *Bulletin of the Amer-*
691 *ican Meteorological Society*, **73** (12), 1962–1970.

692 Ghan, S. J., X. Liu, R. C. Easter, R. Zaveri, P. J. Rasch, J.-H. Yoon, and B. Eaton, 2012: Toward
693 a minimal representation of aerosols in climate models: Comparative decomposition of aerosol
694 direct, semidirect, and indirect radiative forcing. *Journal of Climate*, **25** (19), 6461–6476.

695 Gimeno, L., R. Nieto, M. Vázquez, and D. A. Lavers, 2014: Atmospheric rivers: a mini-review.
696 *Atmospheric Science*, **2**, 2.

697 Glantz, M. H., R. W. Katz, and N. Nicholls, 1991: *Teleconnections linking worldwide climate*
698 *anomalies*. Cambridge University Press, 284–308 pp.

699 Guan, B., N. P. Molotch, D. E. Waliser, E. J. Fetzer, and P. J. Neiman, 2010: Extreme snow-
700 fall events linked to atmospheric rivers and surface air temperature via satellite measurements.
701 *Geophysical Research Letters*, **37 (20)**.

702 Guan, B., N. P. Molotch, D. E. Waliser, E. J. Fetzer, and P. J. Neiman, 2013: The 2010/2011
703 snow season in California's Sierra Nevada: Role of atmospheric rivers and modes of large-scale
704 variability. *Water Resources Research*, **49**, 6731–6743.

705 Hall, D. K., and G. A. Riggs, 2007: Accuracy assessment of the MODIS snow products. *Hydro-
706 logical Processes*, **21 (12)**, 1534–1547.

707 Hall, D. K., G. A. Riggs, and V. V. Salomonson, 2006: Modis snow and sea ice products. *Earth
708 science satellite remote sensing*, Springer, 154–181.

709 Hanak, E., and J. R. Lund, 2012: Adapting californias water management to climate change.
710 *Climatic Change*, **111 (1)**, 17–44.

711 Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme
712 (WSM6). *Asia-Pacific Journal of Atmospheric Sciences*, **42 (2)**, 129–151.

713 Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit
714 treatment of entrainment processes. *Monthly Weather Review*, **134 (9)**, 2318–2341.

715 Huang, X., A. M. Rhoades, P. A. Ullrich, and C. M. Zarzycki, 2015: High-resolution regional
716 climate model evaluation using variable-resolution CESM over California. *Submitted to Journal*
717 *of Climate*.

718 Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins,
719 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative
720 transfer models. *Journal of Geophysical Research: Atmospheres (1984–2012)*, **113** (D13).

721 Jordan, R., 1991: A one-dimensional temperature model for a snow cover: Technical documenta-
722 tion for SNTHERM. 89. Tech. rep., DTIC Document.

723 Kain, J. S., 2004: The Kain-Fritsch convective parameterization: an update. *Journal of Applied*
724 *Meteorology*, **43** (1), 170–181.

725 Kapnick, S., and A. Hall, 2012: Causes of recent changes in western North American snowpack.
726 *Climate Dynamics*, **38**, 1885–1899.

727 Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and struc-
728 tural advances in version 4 of the Community Land Model. *Journal of Advances in Modeling*
729 *Earth Systems*, **3**.

730 Li, W., and C. E. Forest, 2014: Estimating the sensitivity of the atmospheric teleconnection pat-
731 terns to SST anomalies using a linear statistical method. *Journal of Climate*, **27** (24), 9065–
732 9081.

733 Maurer, E. P., and H. G. Hidalgo, 2008: Utility of daily vs. monthly large-scale climate data: an
734 intercomparison of two statistical downscaling methods. *Hydrology and Earth System Sciences*,
735 **12** (2), 551–563, doi:10.5194/hess-12-551-2008, URL <http://www.hydrol-earth-syst-sci.net/12/551/2008/>.

737 Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. *Bulletin of the American*
738 *Meteorological Society*, **87**, 343–360.

739 Montoya, E., J. Dozier, and W. Meiring, 2014: Biases of April 1 snow water equivalent records in
740 the Sierra Nevada and their associations with large-scale climate indices. *Geophysical Research*
741 *Letters*, **41 (16)**, 5912–5918.

742 Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics
743 scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and nu-
744 matical tests. *Journal of Climate*, **21 (15)**, 3642–3659.

745 Mote, P. W., 2003: Trends in snow water equivalent in the Pacific Northwest and their climatic
746 causes. *Geophysical Research Letters*, **30 (12)**.

747 Mote, P. W., A. F. Hamlet, M. P. Clark, and D. P. Lettenmaier, 2005: Declining mountain snowpack
748 in Western North America. *Bulletin of the American Meteorological Society*, **86**, 39–49.

749 National Geophysical Data Center, 2006: 2-minute Gridded Global Relief Data (ETOPO2) v2.

750 National Geophysical Data Center, NOAA. . Doi:10.7289/V5J1012Q [2014].

751 Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a
752 delayed oscillator to a series of events. *Journal of Climate*, **21 (22)**, 5904–5924.

753 Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model
754 (CAM 5.0). NCAR Technical Note NCAR/TN-486+STR, National Center for Atmospheric Re-
755 search, Boulder, Colorado, 268 pp.

756 Oleson, K., and Coauthors, 2010: Technical Description of version 4.0 of the Community Land
757 Model (CLM). NCAR Technical Note NCAR/TN-478+STR, National Center for Atmospheric
758 Research, Boulder, Colorado, 257 pp. doi:10.5065/D6FB50WZ.

759 Palmer, P. L., 1988: The scs snow survey water supply forecasting program: Current operations
760 and future directions. *Proceedings Western Snow Conference*, 43–51.

761 Pandey, G. R., D. R. Cayan, and K. P. Georgakakos, 1999: Precipitation structure in the Sierra
762 Nevada of California during winter. *Journal of Geophysical Research: Atmospheres (1984–*
763 **2012)**, **104 (D10)**, 12 019–12 030.

764 Park, S., and C. S. Bretherton, 2009: The University of Washington shallow convection and moist
765 turbulence schemes and their impact on climate simulations with the Community Atmosphere
766 Model. *Journal of Climate*, **22 (12)**, 3449–3469.

767 Park, S., C. S. Bretherton, and P. J. Rasch, 2014: Integrating cloud processes in the Community
768 Atmosphere Model, Version 5. *Journal of Climate*, **27 (18)**, 6821–6856.

769 Pierce, D. W., and D. R. Cayan, 2013: The uneven response of different snow measures to human-
770 induced climate warming. *Journal of Climate*, **26**, 4148–4167.

771 Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of
772 atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. *Monthly*
773 *Weather Review*, **132 (7)**, 1721–1745.

774 Rupp, D. E., P. W. Mote, N. L. Bindoff, P. A. Stott, and D. A. Robinson, 2013: Detection and
775 attribution of observed changes in Northern Hemisphere spring snow cover. *Journal of Climate*,
776 **26**, 6904–6914.

777 Saha, S., and Coauthors, 2014: The NCEP climate forecast system version 2. *Journal of Climate*,
778 **27 (6)**, 2185–2208.

779 Salzmann, N., and L. O. Mearns, 2012: Assessing the performance of multiple regional climate
780 model simulations for seasonal mountain snow in the upper Colorado River basin. *Journal of*
781 *Hydrometeorology*, **13**, 539–556.

782 Seaber, P. R., F. P. Kapinos, and G. L. Knapp, 1987: *Hydrologic unit maps*. US Government
783 Printing Office.

784 Serreze, M. C., M. P. Clark, R. L. Armstrong, D. A. McGinnis, and R. S. Pulwarty, 1999: Char-
785 acteristics of the western United States snowpack from snowpack telemetry (SNOWTEL) data.
786 *Water Resources Research*, **35** (7), 2145–2160.

787 Stewart, W. C., 1996: Economic assessment of the ecosystem. *Sierra Nevada ecosystem project:*
788 *final report to Congress*, Citeseer, Vol. 3, 973–1064.

789 Tanaka, S. K., and Coauthors, 2006: Climate warming and water management adaptation for
790 California. *Climatic Change*, **76** (3-4), 361–387.

791 Taylor, M., J. Tribbia, and M. Iskandarani, 1997: The Spectral Element Method for the Shallow
792 Water Equations on the Sphere. *Journal of Computational Physics*, **130**, 92–108.

793 Taylor, M. A., and A. Fournier, 2010: A compatible and conservative spectral element method on
794 unstructured grids. *Journal of Computational Physics*, **229** (17), 5879–5895.

795 Thornton, P., M. Thornton, B. Mayer, N. Wilhelmi, Y. Wei, R. Devarakonda, and R. Cook, 2014:
796 Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 2. Data
797 set. Available on-line [<http://daac.ornl.gov>] from Oak Ridge National Laboratory Distributed
798 Active Archive Center, Oak Ridge, Tennessee, USA. Date accessed: 2014/11/01. Temporal
799 range: 1980-2005. Tech. rep., <http://dx.doi.org/10.3334/ORNLDAC/1219>.

800 Ullrich, 2014: SQuadGen: Spherical Quadrilateral Grid Generator. [Available online at <http://climate.ucdavis.edu/squadgen.php>].

801

802 Ullrich, P. A., and M. A. Taylor, 2015: Arbitrary-Order Conservative and Consistent Remapping

803 and a Theory of Linear Maps, Part 1. *Monthly Weather Review*, **(2015)**.

804 Varhola, A., N. C. Coops, M. Weiler, and R. D. Moore, 2010: Forest canopy effects on snow

805 accumulation and ablation: An integrative review of empirical results. *Journal of Hydrology*,

806 **392 (3)**, 219–233.

807 Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during

808 the Northern Hemisphere winter. *Monthly Weather Review*, **109 (4)**, 784–812.

809 Wang, S.-Y., L. Hipps, R. R. Gillies, and J.-H. Yoon, 2014: Probable causes of the abnormal ridge

810 accompanying the 2013–2014 California drought: ENSO precursor and anthropogenic warming

811 footprint. *Geophysical Research Letters*, **41 (9)**, 3220–3226.

812 Wehner, M. F., and Coauthors, 2014: The effect of horizontal resolution on simulation quality in

813 the Community Atmospheric Model, CAM5. 1. *Journal of Advances in Modeling Earth Sys-*

814 *tems*.

815 Wise, E. K., 2012: Hydroclimatology of the US Intermountain West. *Progress in Physical Geog-*

816 *raphy*, **36**, 458–479.

817 Xia, Y., and Coauthors, 2012a: Continental-scale water and energy flux analysis and validation

818 for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation

819 of model-simulated streamflow. *Journal of Geophysical Research: Atmospheres (1984–2012)*,

820 **117 (D3)**.

821 Xia, Y., and Coauthors, 2012b: Continental-scale water and energy flux analysis and validation
822 for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Inter-
823 comparison and application of model products. *Journal of Geophysical Research: Atmospheres*
824 (1984–2012), **117 (D3)**.

825 Yang, Z.-L. Y., X. Cai, G. Zhang, A. A. Tavakoly, Q. Jin, L. H. Meyer, and X. Guan, 2011: Technical Description of the Community Noah Land Surface Model with Multi-Paramterization
826 Options (Noah-MP). Tech. rep., Center for Integrated Earth System Science, The University of
827 Texas at Austin, Boulder, Colorado, 1-72 pp.

828

829 Yen, Y.-C., 1965: Heat transfer characteristics of naturally compacted snow. Tech. rep., DTIC
830 Document.

831

832 Yongjiu, D., and Z. Qingcun, 1997: A land surface model (IAP94) for climate studies part I:
833 formulation and validation in off-line experiments. *Advances in Atmospheric Sciences*, **14**, 433–
834 460.

835

836 Zarzycki, C. M., and C. Jablonowski, 2014: A multidecadal simulation of Atlantic tropical cy-
837 clones using a variable-resolution global atmospheric general circulation model. *Journal of Ad-
838 vances in Modeling Earth Systems*.

839

840 Zarzycki, C. M., C. Jablonowski, and M. A. Taylor, 2014a: Using Variable Resolution Meshes
841 to Model Tropical Cyclones in the Community Atmosphere Model. *Monthly Weather Review*,
842 **142 (3)**, 1221–1239, doi:10.1175/MWR-D-13-00179.1.

843

844 Zarzycki, C. M., C. Jablonowski, D. R. Thatcher, and M. A. Taylor, 2015: Effects of Localized
845 Grid Refinement on the General Circulation and Climatology in the Community Atmosphere
846 Model. *Journal of Climate*, **28**, 2777–2803.

843 Zarzycki, C. M., M. N. Levy, C. Jablonowski, J. R. Overfelt, M. A. Taylor, and P. A. Ullrich,
844 2014b: Aquaplanet Experiments Using CAM's Variable-Resolution Dynamical Core. *Journal*
845 *of Climate*, **27**, 5481–5503, doi:10.1175/JCLI-D-14-00004.1.

TABLE 1. Datasets, and associated metadata, used to analyze the accuracy of the Variable Resolution Global Climate Model (VR-CESM) simulations

Datasets	Snowpack Product	Spatial Resolution	Temporal Resolution	Projection	Years Assessed
VR-CESM 0.25° (smooth)	SWE and SNOWC	28km	Daily	VR-CESM in CAM and CLM - Equidistant	1980-2005
VR-CESM 0.25° (rough)	SWE and SNOWC	28km	Daily	VR-CESM in CAM and CLM - Equidistant	1980-2005
VR-CESM 0.125°	SWE and SNOWC	14km	Daily	VR-CESM in CAM and CLM - Equidistant	1980-2005
UNIFORM CESM (SE and FV)	SWE and SNOWC	111 km and 28 km	Daily	Equidistant	1980-2005
WRF	SWE and SNOWC	27km, 9km	Daily	Lambert Conformal	1980-2005
DAYMET	SWE	1km	Daily	Lambert Conformal Conic	1980-2005
CAL-ADAPT	SWE	14km	Monthly	Equidistant	1980-2005
SNOTEL	SWE	Point Source (19 stations)	Daily	Point Source (Automated Station)	1980-2005
NLDAS-2	SWE and SNOWC	14km	Hourly, Monthly	Equidistant	1980-2005
NCEP (CFSv2)	SWE and SNOWC	35km	Daily	Equidistant	1980-2005
NARR	SNOWC	32km	Daily	Lambert Conformal	1980-2005
MODIS/Terra	SNOWC	5km	Monthly	Geographic Lat Lon or Climate Modeling Grid (CMG)	2000-2013

TABLE 2. Summary Statistics of Seasonally Averaged Snow Water Equivalent (SWE) in the Sierra Nevada

Model	DJF Seasons	Mean	Standard Deviation	Lower Quartile	Median	Upper Quartile	Max	Sierra Mask Points
VR-CESM0.25° (smooth)	25	50.4	80.1	3.10	19.8	60.9	663	2175
VR-CESM0.25° (rough)	25	95.2	134	5.30	32.9	132	750	2175
VR-CESM0.125°	25	91.0	125	7.40	37.6	125	751	8775
WRF-2.7	25	71.6	102	6.20	29.2	91.0	701	2175
WRF-9	22	233	365	5.60	48.8	314	3090	14058
WRF-9 (REGRID 0.125°)	22	231	349	7.60	63.2	317	2850	7721
CESM-SE 1°	25	3.40	7.50	0.00	0.50	2.40	41.7	150
CESM-FV 0.25°	25	179	188	23.6	111	291	875	2175
DAYMET	25	109	176	1.40	36.9	141	1000	1202620
DAYMET (REGRID 0.125°)	25	107	173	1.60	35.1	140	1000	8678
DAYMET (REGRID 0.25°)	25	102.3	168.4	1.90	32.0	127	1000	2156
DAYMET (REGRID 1°)	25	28.0	36.8	2.00	12.1	39.8	174	149
NLDAS VIC 0.125°	25	72.9	103	2.90	29.1	101	777	8748
NLDAS VIC (REGRID 0.25°)	25	73.8	102	3.10	29.4	105	629	2169
NLDAS VIC (REGRID 1.00°)	25	38.1	71.3	1.50	7.80	30.8	345	149
NLDAS NOAH 0.125°	25	56.3	84.2	1.50	19.7	75.5	616	8775
NLDAS NOAH (REGRID 0.25°)	25	57.4	84.4	1.70	21.1	75.9	518	2175
NLDAS NOAH (REGRID 1°)	25	28.7	56.4	0.70	5.60	23.0	321	150
NLDAS MOSAIC 0.125°	25	59.5	98.6	0.60	11.3	76.3	773	8748
NLDAS MOSAIC (REGRID 0.25°)	25	60.5	98.2	0.70	11.6	79.2	647	2171
NLDAS MOSAIC (REGRID 1°)	25	27.1	60.9	0.19	2.40	14.2	325	149
CAL-ADAPT CCSM3 0.125°	25	134	154	9.60	80.7	202	1060	8775
CAL-ADAPT CCSM3 (REGRID 0.25°)	25	136	155	9.90	80.8	206	944	2175
CAL-ADAPT CCSM3 (REGRID 1°)	25	73.4	88.1	1.20	48.4	107	416	150
CAL-ADAPT CNRM 0.125°	25	125	157	8.10	67.3	185	1210	8773
CAL-ADAPT CNRM (REGRID 0.25°)	25	127	158	8.60	68.5	191	1090	2174
CAL-ADAPT CNRM (REGRID 1°)	25	66.4	88.2	2.40	27.4	89.8	544	149
CAL-ADAPT GFDL 0.125°	25	95.0	121	5.40	49.1	141	959	8775
CAL-ADAPT GFDL (REGRID 0.25°)	25	96.3	122	5.60	49.3	141	855	2175
CAL-ADAPT GFDL (REGRID 1°)	25	47.0	65.2	1.90	26.0	67.6	448	150
CAL-ADAPT PCM1 0.125°	25	129	151	14.2	75.2	186	926	8775
CAL-ADAPT PCM1 (REGRID 0.25°)	25	131	153	15.4	75.8	188	861	2175
CAL-ADAPT PCM1 (REGRID 1°)	25	73.8	90.5	6.60	45.4	99.1	426	150
Reanalysis Dataset Average 0.125°	N/A	97.4	134	5.50	45.9	138	915	N/A
Reanalysis Dataset Average 0.25°	N/A	97.9	134	5.90	46.1	139	818	N/A
SNOTEL	25	237	186	103	195	308	1220	19 stations

TABLE 3. Snow Water Equivalent (SWE) Climatological Bias and DJF Seasonal Pearson Product-Moment Coefficients (Centered) within the Sierra

847 Nevada. Absolute value averages are computed to eliminate sign dependency in bias comparisons across datasets.

Model	VR-CESM 0.125°	VR-CESM 0.25° (rough)	VR-CESM 0.25° (smooth)	WRF-9	WRF-27	CESM-FV 0.25°	CESM-SE 1°
DJF Climate Bias (units - mm)							
NLDAS VIC	18.1	21.4	23.4	158	2.20	106	34.7
NLDAS NOAH	34.7	37.8	7.00	175	14.2	122	25.3
NLDAS MOSAIC	31.5	34.7	10.1	172	11.1	119	23.7
CALADAPT CCSM3	42.8	40.3	85.1	97.3	63.9	43.9	70.0
CALADAPT CNRM	34.4	31.8	76.6	105.7	55.4	52.4	63.0
CALADAPT GFDL	4.00	1.10	45.9	136	24.7	83.1	43.6
CALADAPT PCM1	37.9	35.3	80.1	102	58.9	48.9	70.4
DAYMET	16.3	7.10	51.9	124	30.7	77.1	24.6
Reanalysis Dataset Absolute Value Average	27.5	26.2	47.5	134	33.8	81.3	44.5
DJF Pearson Pattern Correlation							
NLDAS VIC	0.72	0.75	0.72	0.90	0.78	0.33	0.09
NLDAS NOAH	0.69	0.71	0.68	0.88	0.74	0.35	0.07
NLDAS MOSAIC	0.68	0.73	0.69	0.86	0.73	0.25	0.06
CALADAPT CCSM3	0.71	0.75	0.75	0.85	0.75	0.32	0.32
CALADAPT CNRM	0.71	0.75	0.73	0.85	0.75	0.31	0.29
CALADAPT GFDL	0.70	0.74	0.75	0.84	0.73	0.29	0.32
CALADAPT PCM1	0.72	0.76	0.73	0.86	0.76	0.35	0.33
DAYMET	0.45	0.48	0.42	0.63	0.48	0.04	0.08
Reanalysis Dataset Average	0.67	0.71	0.68	0.83	0.71	0.28	0.19

TABLE 4. Summary Statistics of Seasonally Averaged Snow Cover (SNOWC) in the Sierra Nevada

Model	DJF Seasons	Mean	Standard Deviation	Lower Quartile	Median	Upper Quartile	Max	Sierra Mask Points
VR-CESM 0.25° (smooth)	25	40.0	30.1	13.6	36.5	62.5	100	2175
VR-CESM 0.25° (rough)	25	48.9	33.5	17.5	46.7	81.6	100	2175
VR-CESM 0.125°	25	48.7	30.3	22.0	47.8	74.1	100	2175
WRF-27	25	42.9	30.1	15.3	40.0	67.2	98.0	2175
WRF-9	22	55.0	37.3	16.3	58.6	96.7	98.0	14058
WRF-9 (REGRID 0.125°)	22	54.3	35.6	19.1	56.3	92.3	98.0	7721
CESM-SE 1°	25	9.10	12.3	0.60	4.40	11.9	60.3	150
CESM-FV 0.25°	25	62.8	32.2	36.6	69.9	92.3	100.0	2175
NCER-35	25	37.1	25.5	15.3	33.7	56.5	96.6	1350
NARR-32	25	22.5	27.5	0.60	9.60	37.5	100	1175
MODIS-5	12	56.7	36.6	18.0	65.0	93.0	100	25932
MODIS-5 (REGRID 0.125°)	12	55.8	35.8	18.5	62.8	90.7	100	4188
MODIS-5 (REGRID 0.25°)	12	55.0	36.0	16.3	61.4	90.8	100	1032
MODIS-5 (REGRID 1°)	12	37.6	33.1	3.80	34.0	69.1	95.7	60
NLDAS VIC 0.125	25	46.6	33.0	15.0	45.9	75.9	100	8742
NLDAS VIC 0.25	25	46.8	33.3	14.9	45.1	78.4	100	2166
NLDAS VIC 1.00	25	32	25.4	11.6	26.6	45.8	87.5	149
NLDAS NOAH 0.125	25	41.5	33.8	7.60	37.5	71.6	100	8720
NLDAS NOAH 0.25	25	42.1	34.3	8.30	38.4	73.4	100	2164
NLDAS NOAH 1.00	25	25.9	25.4	4.10	18.3	40.7	85.0	149
NLDAS MOSAIC 0.125	25	26.4	29.6	1.40	13.1	45.4	98.8	8722
NLDAS MOSAIC 0.25	25	26.8	30.1	1.40	13.1	47.6	98.2	2163
NLDAS MOSAIC 1.00	25	12.8	18.8	0.30	4.20	14.4	66.7	149
Reanalysis Dataset Average 0.125°	N/A	42.6	33.1	10.6	39.8	70.9	99.7	N/A
Reanalysis Dataset Average 0.25°	N/A	42.7	33.5	10.2	39.5	72.6	99.6	N/A

848 TABLE 5. Snow Cover (SNOWC) Climatological Bias and DJF Seasonal Pearson Product-Moment Coefficients (Centered) within the Sierra Nevada.
 849 Absolute value averages are computed to eliminate sign dependency in bias comparisons across datasets.

Model	VR-CESM 0.125°	VR-CESM 0.25° (rough)	VR-CESM 0.25° (smooth)	WRF-9	WRF-27	CESM-FV 0.25°	CESM-SE 1°
DJF Climate Bias (units - mm)							
NLDAS VIC	2.10	2.10	-6.80	-3.70	1.90	16.0	-22.9
NLDAS NOAH	7.20	6.80	-2.10	1.40	6.60	20.7	-16.8
NLDAS MOSAIC	22.3	22.1	13.2	16.5	21.9	36.0	-3.70
MODIS-5	-7.10	-6.10	-15.0	-12.9	-6.30	7.80	-28.5
Reanalysis Dataset Absolute Value Average	9.70	9.30	9.30	8.60	9.20	20.1	18.0
DJF Pearson Pattern Correlation							
NLDAS VIC	0.76	0.79	0.77	0.92	0.84	0.56	0.24
NLDAS NOAH	0.78	0.80	0.77	0.92	0.85	0.60	0.17
NLDAS MOSAIC	0.65	0.69	0.68	0.78	0.76	0.44	0.04
Reanalysis Dataset Average	0.73	0.76	0.74	0.87	0.82	0.53	0.15

850 LIST OF FIGURES

851 **Fig. 1.** The two variable-resolution global climate model grids (0.25° (28km), left and 0.125° (14km), right) used for this study. Both grids are developed on a cubed-sphere with a 1.00° quasi-uniform resolution (111km). The dashed lines highlight the model transition region and the solid lines indicate the higher resolution regions. 48

852

853

854

855 **Fig. 2.** Topographical representation of the Sierra Nevada mountain range and surrounding regions across model datasets. Topography from variable-resolution CESM is displayed in order of increasing grid resolution from (a) to (c). The standard CESM and WRF simulations are displayed in order of increasing resolution from (d) to (g). The ETOPO2V2 dataset, representing 2-minute (2 km) gridded topographic relief is depicted in (h). 49

856

857

858

859

860 **Fig. 3.** The EPA's Ecoregion Level III (6.2.12) shapefile mask used for summary statistic calculations of the Sierra Nevada mountain range (dashed black outline). SNOTEL station locations (blue triangles) are overlaid onto the ETOPO2v2 topography. The solid black outline is used to indicate the subregion used to compare model and reanalysis data to SNOTEL stations. 50

861

862

863

864 **Fig. 4.** Average climatological DJF snow water equivalent (SWE) across model and observational datasets over California. 51

865

866 **Fig. 5.** Average DJF variability (interannual standard deviation of the seasonal mean) of snow water equivalent (SWE) across model and observational datasets over California. 52

867

868

869 **Fig. 6.** Boxplots of seasonal (DJF) Sierra Nevada snow water equivalent (SWE) across modeling platforms and observational datasets. The boxes represent the 25th and 75th percentile values within the Sierra Nevada masked region, with the median value indicated in between. The minimum and maximum range is depicted by vertically dashed lines. Regridding of reanalysis datasets to 0.25° (or 0.125° for DAYMET) had no noticeable effect on the statistics and so are not shown. 53

870

871

872

873

874 **Fig. 7.** Average difference in DJF SWE between model and reanalysis datasets over California. Rows indicate model output and columns represent gridded or reanalysis datasets. Blue (red) indicates a model positive (negative) difference in SWE compared to the given reanalysis dataset. 54

875

876

877

878 **Fig. 8.** Average water year day totals for SWE within the Sierra Nevada SNOTEL subregion. Plots are sorted according to the resolution of the models - namely, (a) 0.125° (14km), (b) 0.25° (28km), and (c) 1° (111km). The Sierra Nevada SNOTEL station dataset (19 locations) is plotted in black within each diagram. The horizontal axis represents Water Year Day (beginning October 1st through September 31st). 55

879

880

881

882

883 **Fig. 9.** Normalized average SWE within the Sierra Nevada SNOTEL subregion. Plots are sorted according to the resolution of the models - namely, (a) 0.125° (14km), (b) 0.25° (28km), and (c) 1° (111km). The Sierra Nevada SNOTEL station dataset (19 locations) is plotted in black within each diagram. The horizontal axis represents Water Year Day (beginning October 1st through September 31st). 56

884

885

886

887

888 **Fig. 10.** Linear trend in average seasonal DJF SWE within the Sierra Nevada SNOTEL comparison subregion across model, observational, and reanalysis datasets over the historical period (DJF season 1980 to 2005). The SNOTEL dataset, plot (a), incorporates 19 SNOTEL stations spread throughout the Sierra Nevada that contained 25 DJF seasons of observations. Gray lines indicate individual SNOTEL station with the average seasonal DJF SWE value

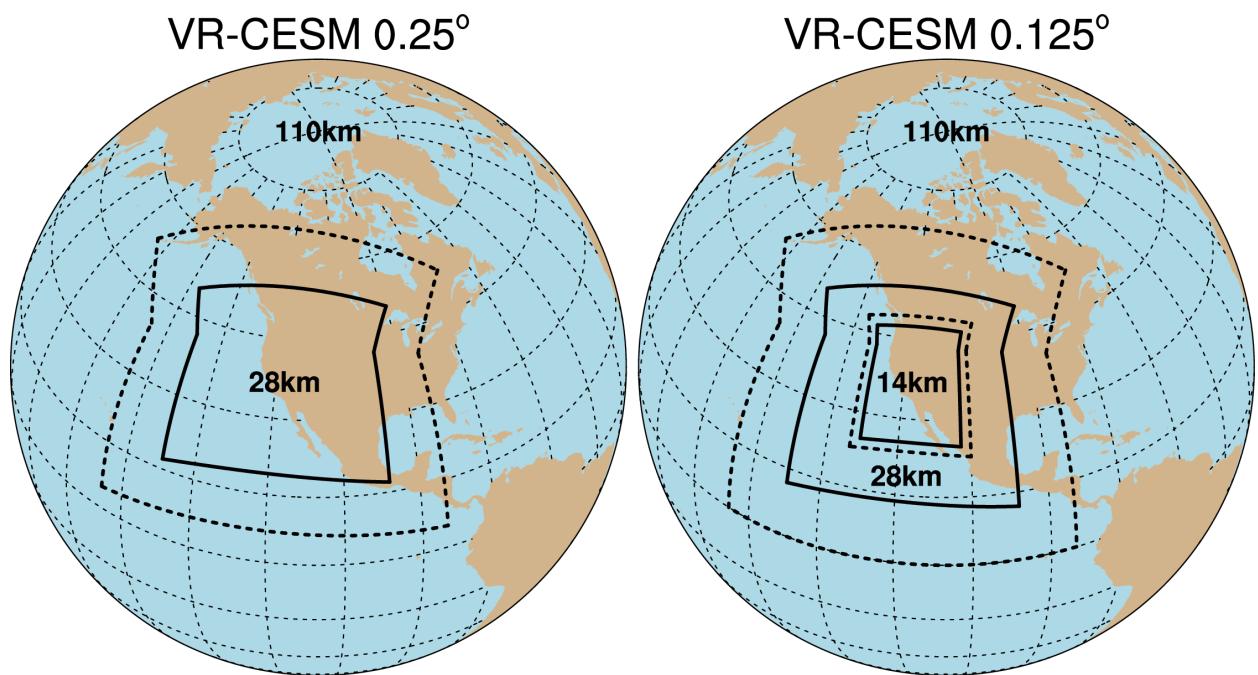
889

890

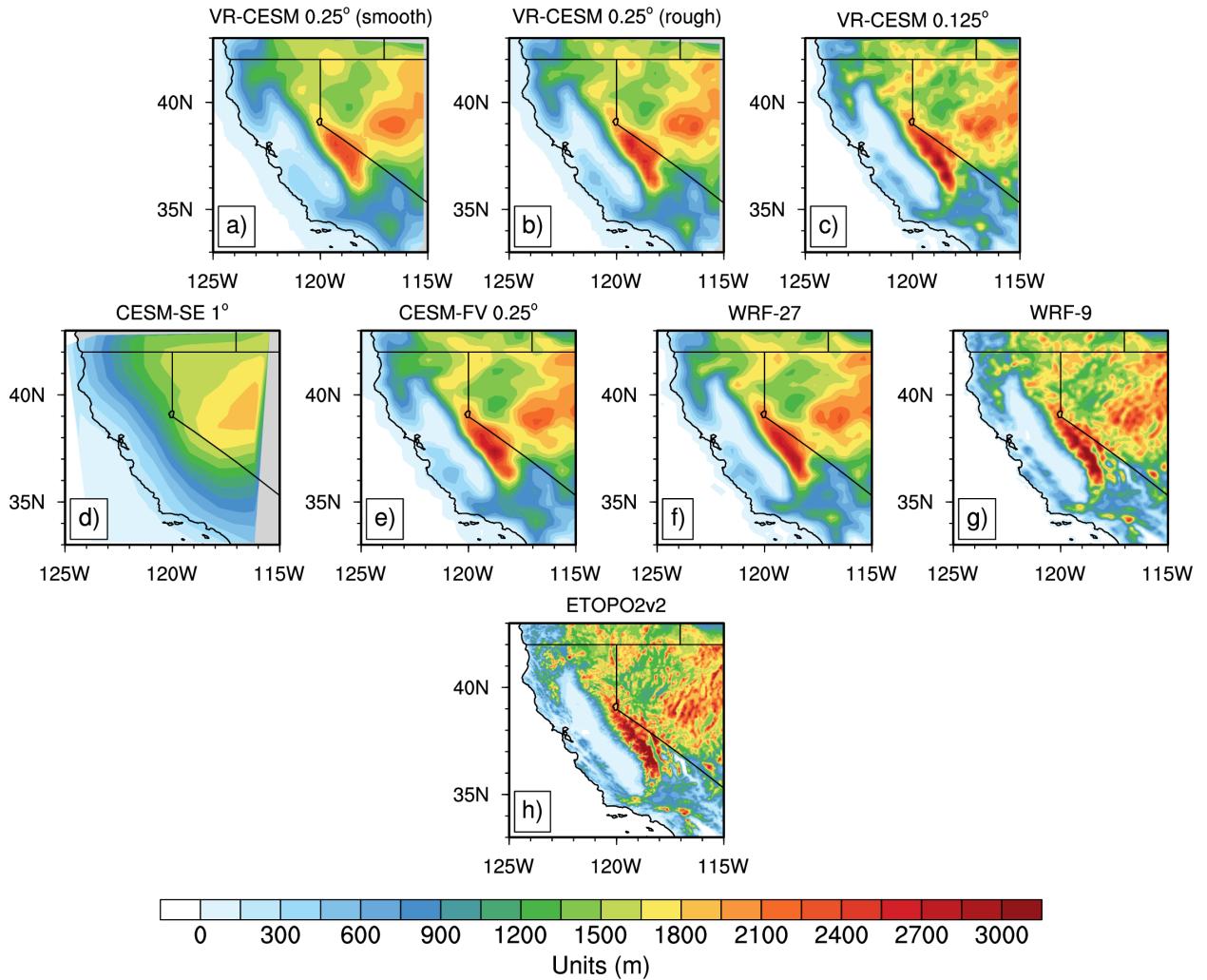
891

892

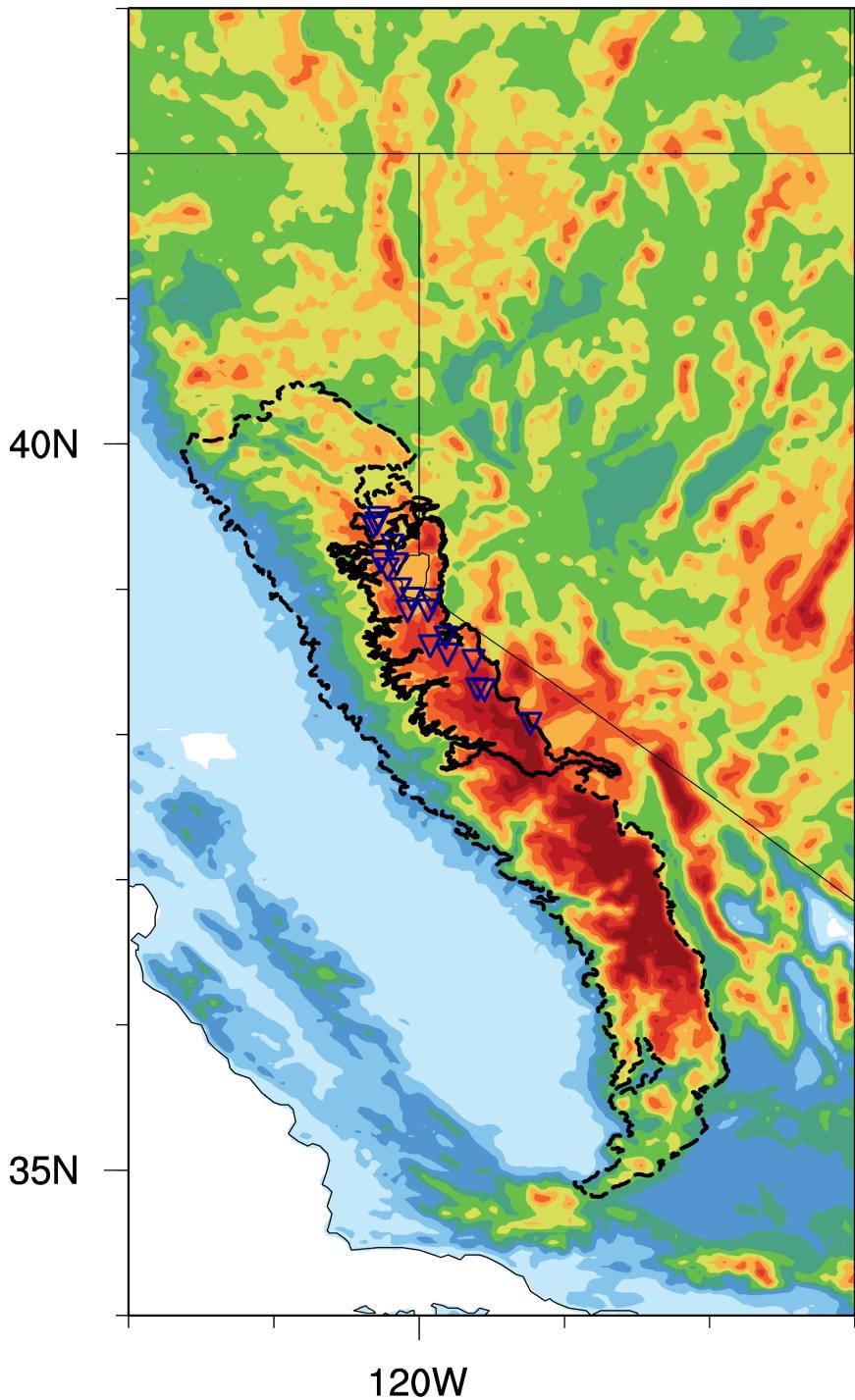
893	represented by the black line. Standardized regression coefficient is shown in the upper left	57
894	corner of each plot.	
895	Fig. 11. Average climatological DJF snow cover (SNOWC) across model, observational, and reanalysis datasets over California. The MODIS dataset spans the years 2000-2012.	58
896		
897	Fig. 12. Average DJF variability (interannual standard deviation of the seasonal mean) of snow cover	
898	(SNOWC) across model, observational, and reanalysis datasets over California. The MODIS	
899	dataset spans the years 2000-2012.	59
900	Fig. 13. Boxplots of seasonal (DJF) Sierra Nevada snow cover (SNOWC) across modeling platforms	
901	and observational datasets. The boxes represent the 25th and 75th percentile values within	
902	the Sierra Nevada masked region, with the median value indicated in between. The mini-	
903	mum and maximum range is depicted by vertically dashed lines. Regridding of reanalysis	
904	datasets to 0.25° (or 0.125° for MODIS) had no noticeable effect on the statistics and so are	
905	not shown. The MODIS dataset spans the years 2000-2012.	60
906	Fig. 14. Average climatological DJF 2m surface temperature across model datasets over California.	61



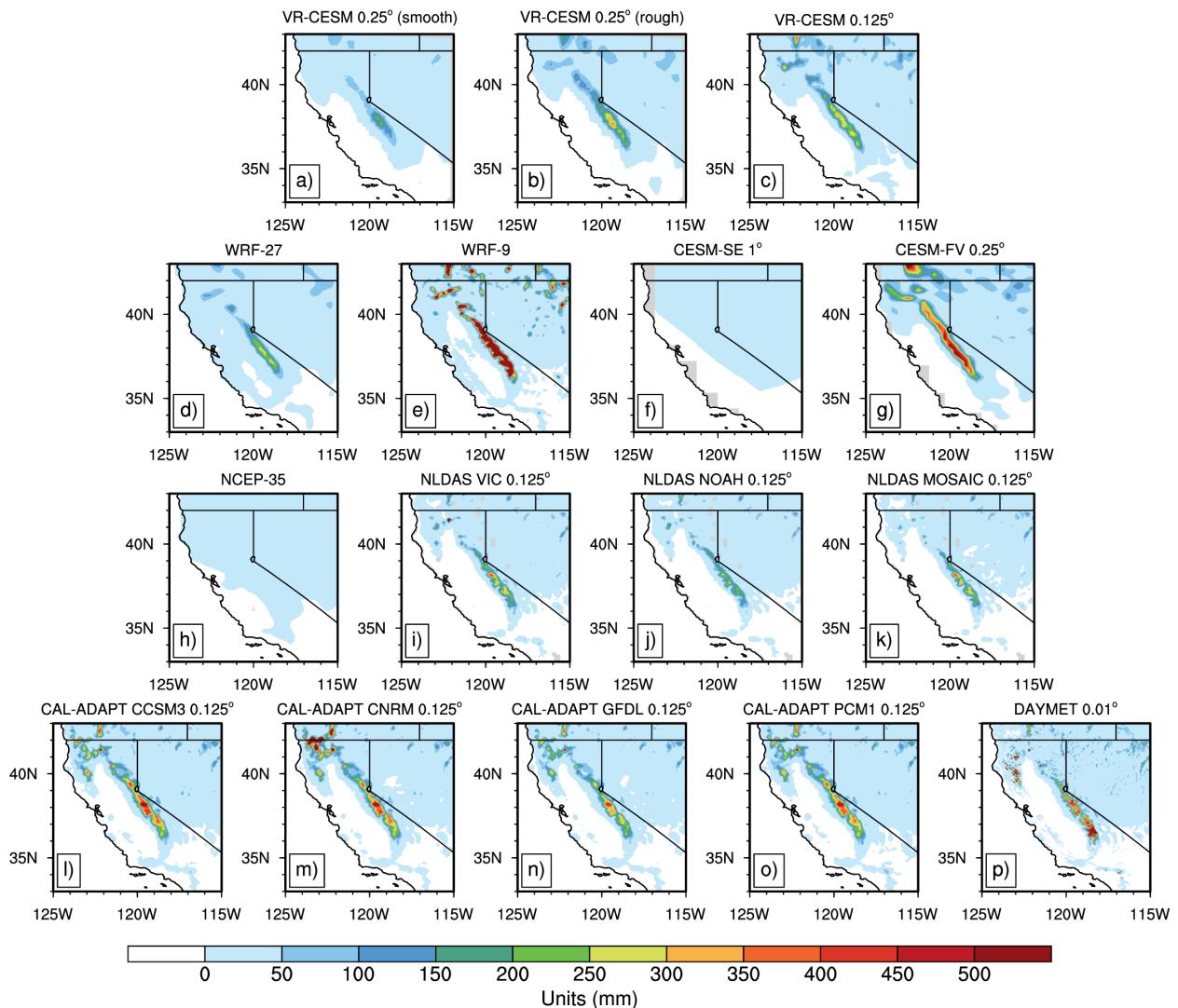
907 FIG. 1. The two variable-resolution global climate model grids (0.25° (28km), left and 0.125° (14km), right)
908 used for this study. Both grids are developed on a cubed-sphere with a 1.00° quasi-uniform resolution (111km).
909 The dashed lines highlight the model transition region and the solid lines indicate the higher resolution regions.



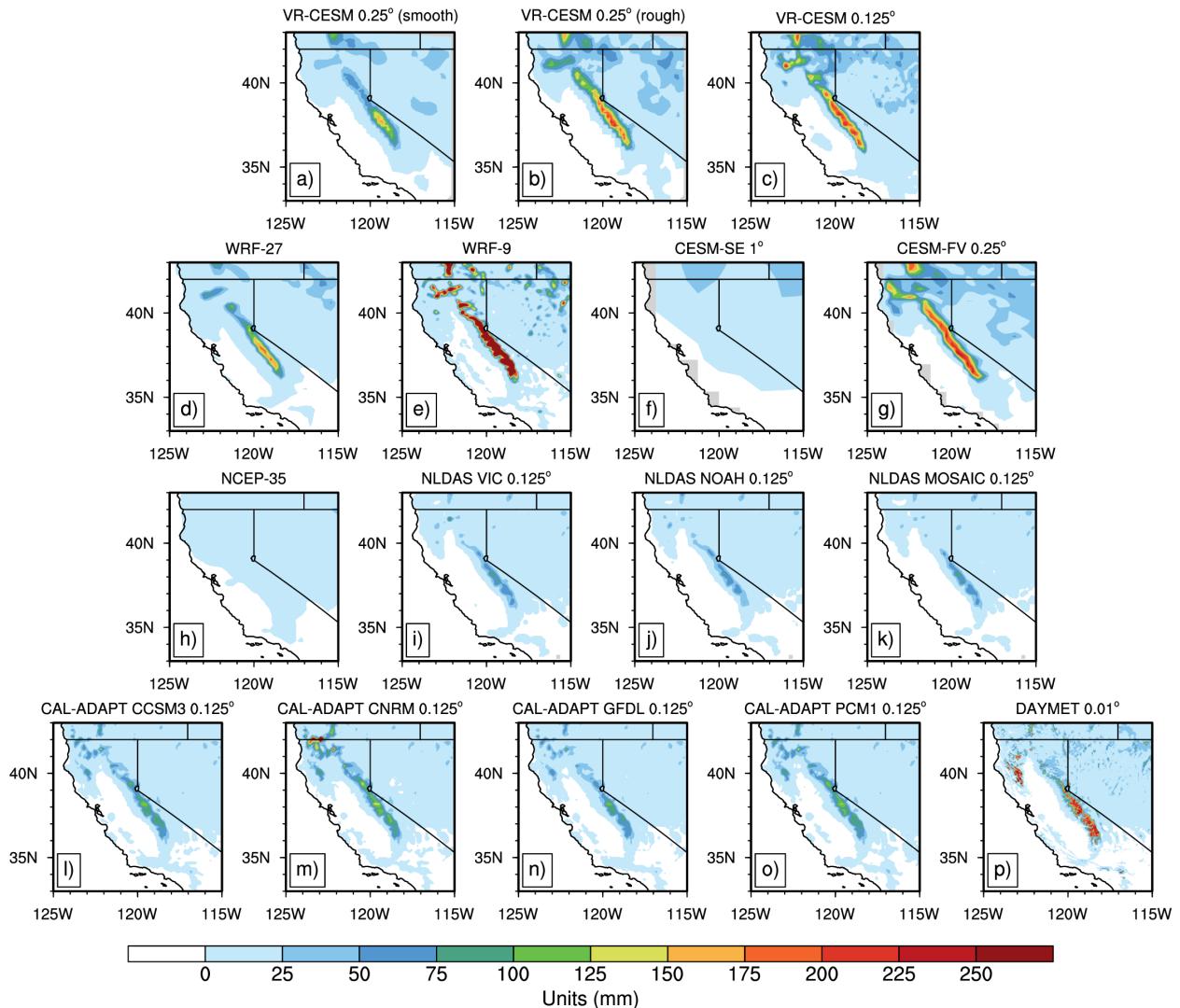
910 FIG. 2. Topographical representation of the Sierra Nevada mountain range and surrounding regions across
 911 model datasets. Topography from variable-resolution CESM is displayed in order of increasing grid resolution
 912 from (a) to (c). The standard CESM and WRF simulations are displayed in order of increasing resolution from
 913 (d) to (g). The ETOPO2V2 dataset, representing 2-minute (2 km) gridded topographic relief is depicted in (h).



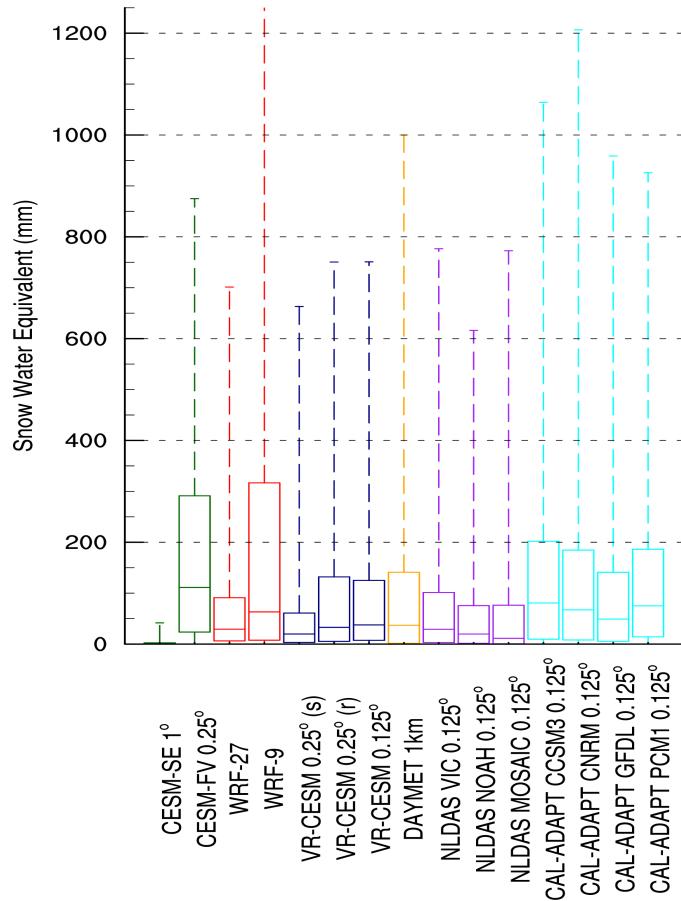
914 FIG. 3. The EPA's Ecoregion Level III (6.2.12) shapefile mask used for summary statistic calculations of the
915 Sierra Nevada mountain range (dashed black outline). SNOTEL station locations (blue triangles) are overlaid
916 onto the ETOPO2v2 topography. The solid black outline is used to indicate the subregion used to compare
917 model and reanalysis data to SNOTEL stations.



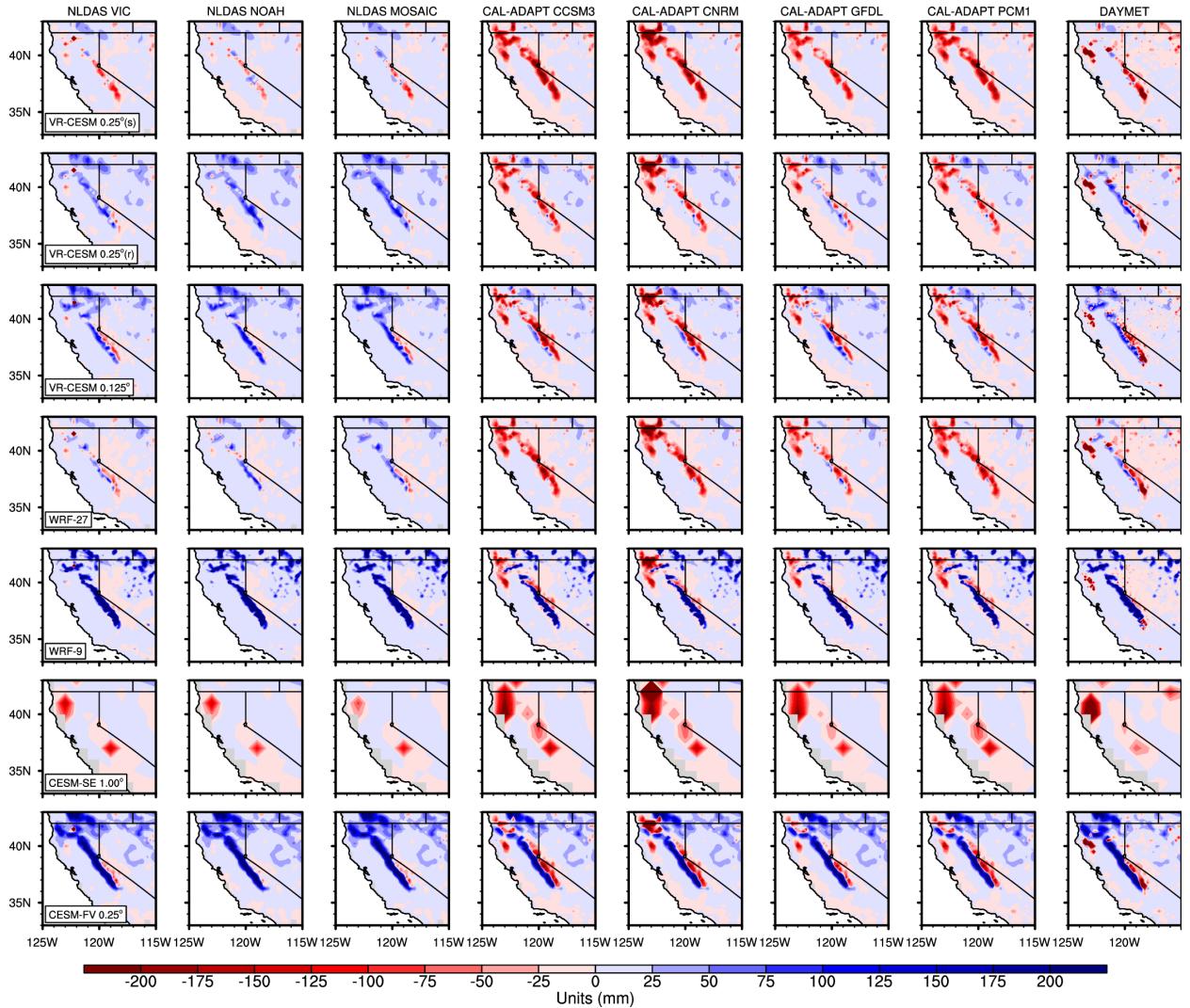
918 FIG. 4. Average climatological DJF snow water equivalent (SWE) across model and observational datasets
 919 over California.



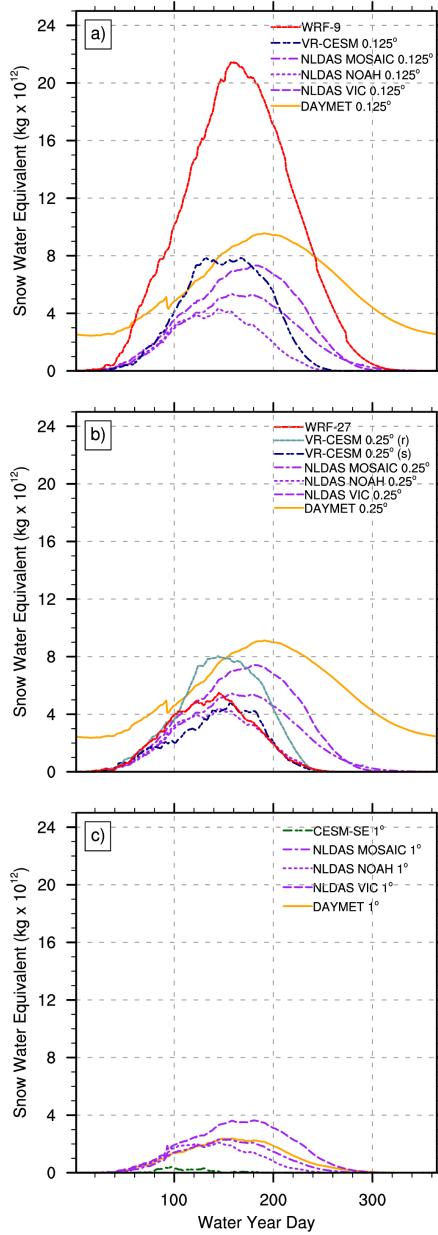
920 FIG. 5. Average DJF variability (interannual standard deviation of the seasonal mean) of snow water equivalent
 921 (SWE) across model and observational datasets over California.



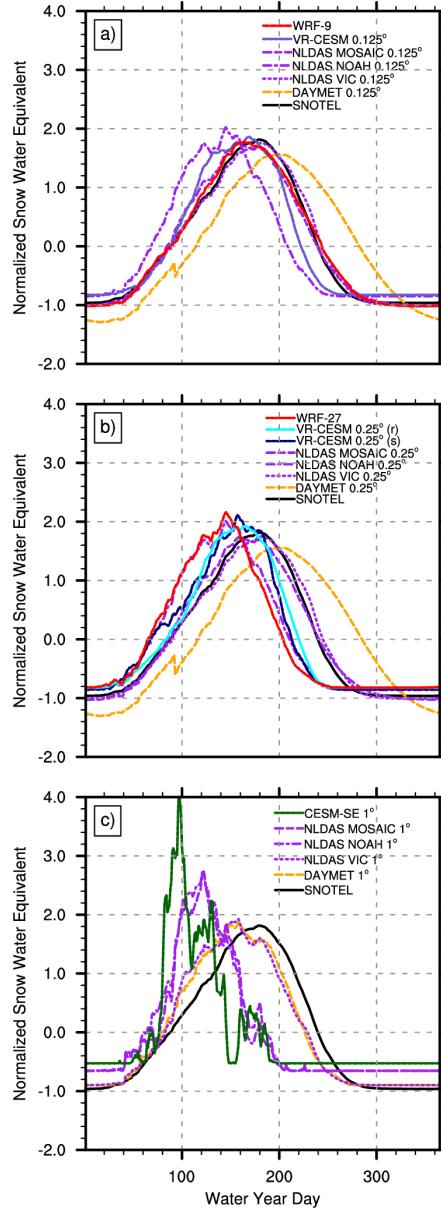
922 FIG. 6. Boxplots of seasonal (DJF) Sierra Nevada snow water equivalent (SWE) across modeling platforms
 923 and observational datasets. The boxes represent the 25th and 75th percentile values within the Sierra Nevada
 924 masked region, with the median value indicated in between. The minimum and maximum range is depicted by
 925 vertically dashed lines. Regridding of reanalysis datasets to 0.25° (or 0.125° for DAYMET) had no noticeable
 926 effect on the statistics and so are not shown.



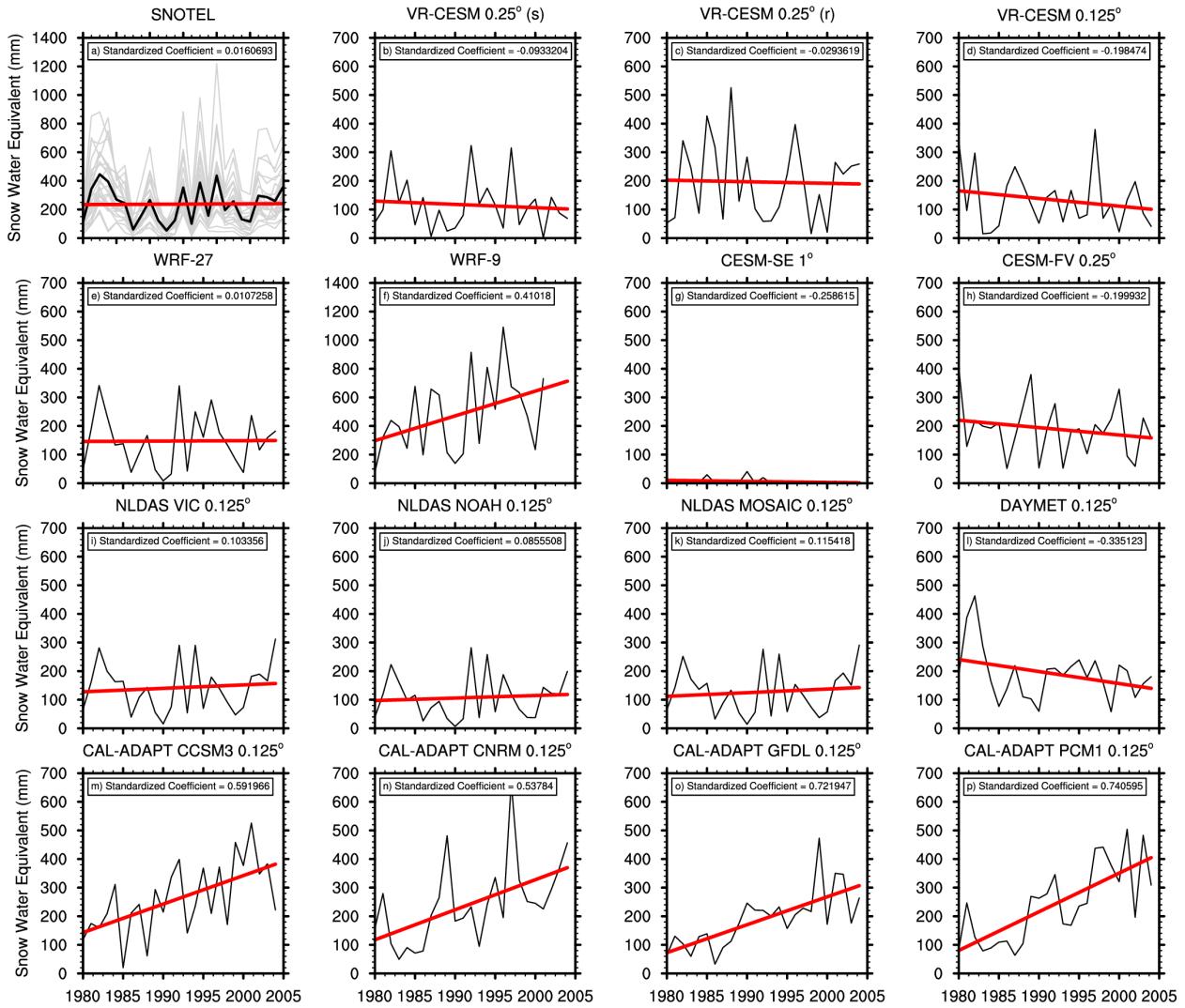
927 FIG. 7. Average difference in DJF SWE between model and reanalysis datasets over California. Rows indicate
928 model output and columns represent gridded or reanalysis datasets. Blue (red) indicates a model positive
929 (negative) difference in SWE compared to the given reanalysis dataset.



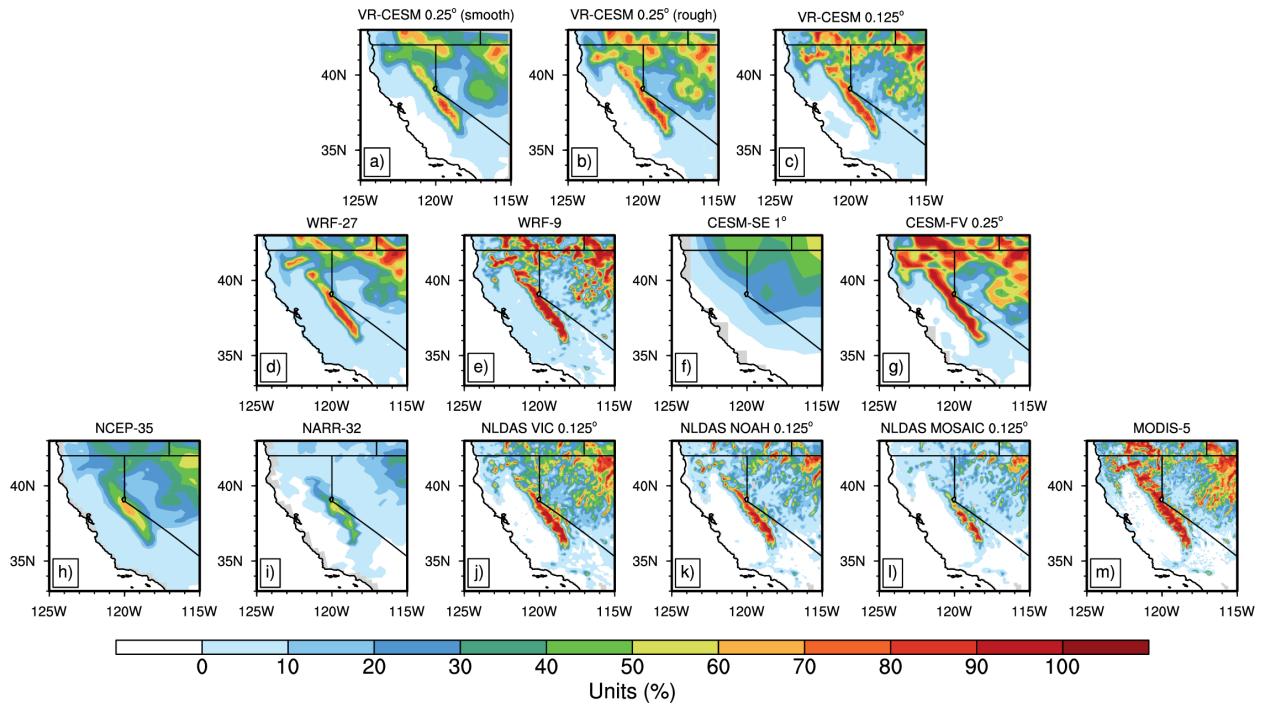
930 FIG. 8. Average water year day totals for SWE within the Sierra Nevada SNOTEL subregion. Plots are sorted
 931 according to the resolution of the models - namely, (a) 0.125° (14km), (b) 0.25° (28km), and (c) 1° (111km).
 932 The Sierra Nevada SNOTEL station dataset (19 locations) is plotted in black within each diagram. The horizontal
 933 axis represents Water Year Day (beginning October 1st through September 31st).



934 FIG. 9. Normalized average SWE within the Sierra Nevada SNOTEL subregion. Plots are sorted according
 935 to the resolution of the models - namely, (a) 0.125° (14km), (b) 0.25° (28km), and (c) 1° (111km). The Sierra
 936 Nevada SNOTEL station dataset (19 locations) is plotted in black within each diagram. The horizontal axis
 937 represents Water Year Day (beginning October 1st through September 31st).



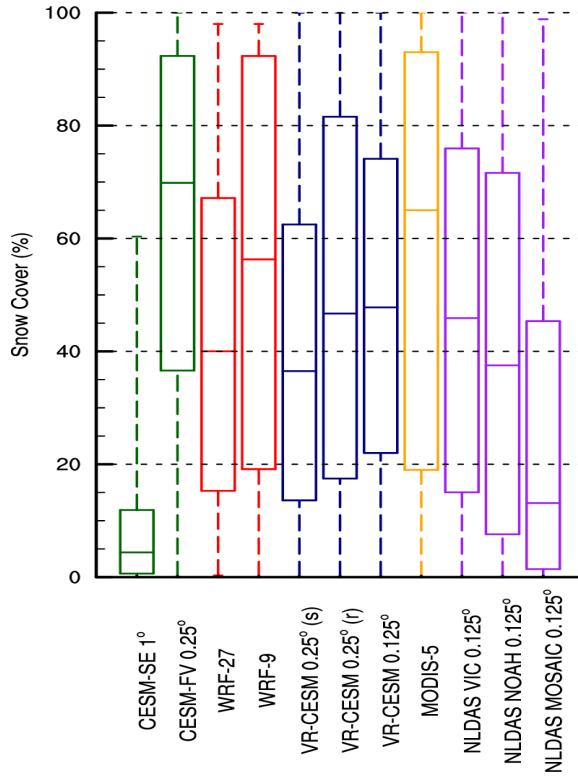
938 FIG. 10. Linear trend in average seasonal DJF SWE within the Sierra Nevada SNOTEL comparison subregion
 939 across model, observational, and reanalysis datasets over the historical period (DJF season 1980 to 2005). The
 940 SNOTEL dataset, plot (a), incorporates 19 SNOTEL stations spread throughout the Sierra Nevada that contained
 941 25 DJF seasons of observations. Gray lines indicate individual SNOTEL station with the average seasonal DJF
 942 SWE value represented by the black line. Standardized regression coefficient is shown in the upper left corner
 943 of each plot.



944 FIG. 11. Average climatological DJF snow cover (SNOWC) across model, observational, and reanalysis
 945 datasets over California. The MODIS dataset spans the years 2000-2012.



946 FIG. 12. Average DJF variability (interannual standard deviation of the seasonal mean) of snow cover
 947 (SNOWC) across model, observational, and reanalysis datasets over California. The MODIS dataset spans
 948 the years 2000-2012.



949 FIG. 13. Boxplots of seasonal (DJF) Sierra Nevada snow cover (SNOWC) across modeling platforms and
 950 observational datasets. The boxes represent the 25th and 75th percentile values within the Sierra Nevada masked
 951 region, with the median value indicated in between. The minimum and maximum range is depicted by vertically
 952 dashed lines. Regridding of reanalysis datasets to 0.25° (or 0.125° for MODIS) had no noticeable effect on the
 953 statistics and so are not shown. The MODIS dataset spans the years 2000-2012.

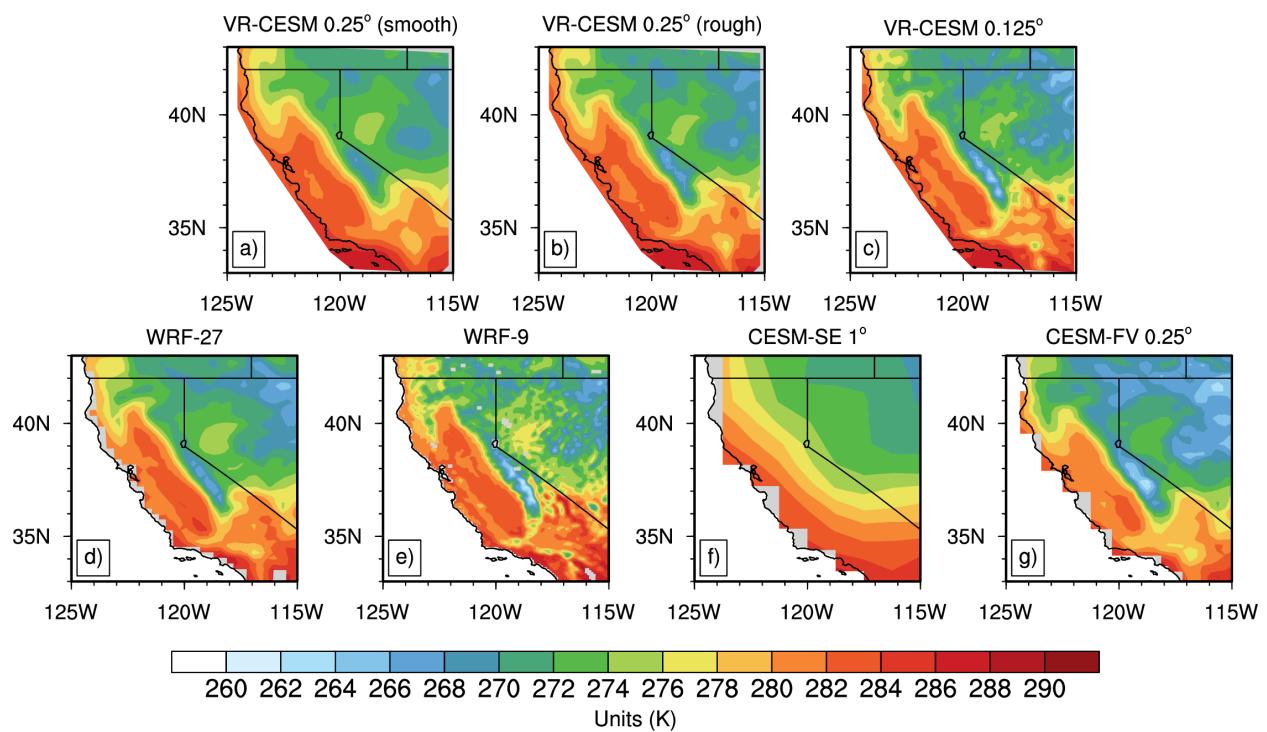


FIG. 14. Average climatological DJF 2m surface temperature across model datasets over California.