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Abstract of the Dissertation

Studying Regional Climate with Variable-Resolution CESM

Regional climate is becoming one of the most important areas under the umbrella

of climate change research, as more information is now needed at finer scales.

High horizontal resolution is required to allow a more accurate representation of

fine scale forcing, and leads to a better representation of processes and interactions

that are significant drivers of regional and local climate variability. Regional cli-

mate models (RCMs) are a traditional method for modeling regional climatology

and have been proven to be capable of both mean climate and extreme climatic

events studies. Over the past decade, variable-resolution global climate models

(VRGCMs) have been introduced as an alternative way for studying regional cli-

mate and applications. In this research, the newly developed variable-resolution

technique within the Community Earth System Model (CESM) has been inno-

vatively investigated and applied comprehensively for long-term regional climate

studies.

In this thesis, firstly, VR-CESM is assessed for long-term regional climate mod-

eling over California against a traditional RCM – the Weather Research and Fore-

casting (WRF) model. Mean historical climatology has been analyzed and con-

trasted with reanalysis and gridded observational datasets. Overall, VR-CESM

produced comparable statistical biases to WRF in the major climatological quan-

tities. When compared with observations, both VR-CESM and WRF adequately

represented regional climatological patterns. VR-CESM demonstrated competi-

tive utility for studying high-resolution regional climatology when compared to

an RCM (WRF). This assessment highlights the value of VRGCMs in capturing

fine-scale atmospheric processes, projecting future regional climate and addressing

the computational expense of uniform high-resolution global climate models.

Supported by the satisfactory performances from the previous evaluation of the

VR-CESM in representing regional climate, the model is further applied to under-

-xiv-



stand the impact of irrigation on California’s climate. Irrigation is an important

contributor to the regional climate over heavily irrigated areas, and within the

U.S. few regions are as heavily irrigated as California’s Central Valley. A flexi-

ble irrigation scheme with relatively realistic estimates of agricultural water use is

employed, and the impacts of irrigation on mean historical climatology and heat

extremes have been investigated. It turns out that high-resolution simulations of

regional climate in CESM or other comparable GCMs or RCMs, particularly over

heavily irrigated regions, should likely enable the irrigation parameterization to

better represent local temperature statistics.

With VR-CESM, which proves to be a useful tool for regional climate studies,

we have focused on investigating the projected changing characters of precipitation

events over the 21st century in the western United States, known to be particularly

vulnerable to hydrological extremes. Both mean changes to precipitation and dis-

tributions of non-extreme and extreme events, projected by the VR-CESM model

under climate forcing, have been analyzed. Although constrained by water in-

flux and soil moisture, changes in extreme precipitation are hypothesized to follow

the Clausius-Clapeyron relationship more closely than that of total precipitation

amount. Based on all these research work, we aim to add value to the study of

regional climate and climatic extremes changes utilizing a reliable model, to re-

duce uncertainty in predicting changes in both mean climatology and extremes.

We expect these studies can contribute to the characterization and attribution of

mean climatology and precipitation extremes at multi-scale, for better formulating

climate adaptation and mitigation strategies locally.
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Chapter 1

Introduction

1.1 Background

Global climate models (GCMs) have been widely used to simulate both past and

future climate. Although these models have demonstrable success in representing

large-scale features of the climate system, they are usually employed at relatively

coarse resolutions (∼1◦), largely as a result of the substantial computational cost

required at higher resolutions. Global climate reanalysis datasets, which assimilate

climate observations using a global model, represent the best estimate of histori-

cal weather patterns. However, reanalysis datasets still cannot fulfill the needs of

policymakers, stakeholders and researchers that require high-resolution regional cli-

mate data (http://reanalyses.org/atmosphere/overview-current-reanalyses).

Local features such as microclimates, land cover, and topography, are not well

captured by either GCMs or reanalysis datasets (Leung et al., 2003a). However,

dynamical processes at unrepresented scales are significant drivers for local cli-

mate variability, especially over complex terrain (Soares et al., 2012). In order to

capture fine-scale dynamical features, a high horizontal resolution is needed for a

more accurate representation of small-scale processes and interactions (Rauscher

et al., 2010). With these enhancements, regional climate data is expected to be

more useful for formulating climate adaptation and mitigation strategies locally.

In order to model regional climate at high spatial resolutions over a limited
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area, downscaling techniques have been developed, such as statistical and dy-

namical downscaling. Dynamical downscaling typically uses nested limited-area

models (LAMs) or, more recently, variable-resolution enabled GCMs (VRGCMs)

(Laprise, 2008). In this context, LAMs are typically referred to as regional cli-

mate models (RCMs) when used for climate study. Forced by the output from

GCMs or reanalysis datasets, RCMs have been widely used to capture physically

consistent regional and local circulations at the needed spatial and temporal scales

(Christensen et al., 2007; Bukovsky and Karoly , 2009; Mearns et al., 2012). Re-

cently, there has been a growing interest in the use of VRGCMs for modeling

regional climate. Unlike RCMs, VRGCMs use a relatively coarse global model

with enhanced resolution over a specific region (Staniforth and Mitchell , 1978;

Fox-Rabinovitz et al., 1997). Strategies that have been employed for transitioning

between coarse and fine-resolution regions within a VRGCM include grid stretch-

ing (Fox-Rabinovitz et al., 1997; McGregor and Dix , 2008) and grid refinement

(Ringler et al., 2008; Skamarock et al., 2012; Zarzycki et al., 2014a). VRGCMs

have demonstrated utility for regional climate studies and applications at a re-

duced computational cost compared to uniform-resolution GCMs (Fox-Rabinovitz

et al., 2006; Rauscher et al., 2013; Zarzycki et al., 2015).

Compared with RCMs, a key advantage of VRGCMs is that they use a single,

unified modeling framework, rather than two separate models (GCM and RCM)

with potentially disparate dynamics and physics parameterizations. RCMs may

suffer from potential inconsistencies between the global and regional scales and lack

two-way interactions at the nest boundary (Warner et al., 1997; McDonald , 2003;

Laprise et al., 2008; Mesinger and Veljovic, 2013), which can be mitigated with the

use of VRGCMs. VRGCMs also provide a cost-effective method of reaching high

resolutions over a region of interest – the limited area simulations in this study

at 0.25◦ and 0.125◦ resolution represent a reduction in required computation of

approximately 10 and 25 times, respectively, compared to analogous globally uni-

form high-resolution simulations. For this study, we focus on the recently developed
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Community Earth System Model with variable-resolution option (VR-CESM) as

our VRGCM of interest. This configuration is driven by the Community Atmo-

sphere Model’s (CAM’s) Spectral Element (SE) dynamical core, which possesses

attractive conservation and parallel scaling properties (Dennis et al., 2011; Tay-

lor , 2011), as well as recently developed variable-resolution capabilities (Zarzycki

et al., 2014a; Zarzycki and Jablonowski , 2015). This model has been employed by

Zarzycki et al. (2014b) to show that a high-resolution refinement patch in the At-

lantic basin for simulating tropical cyclones represented significant improvements

over the unrefined simulation. Zarzycki et al. (2015) also compared the large-scale

climatology of VR-CESM 0.25◦ and uniform CESM at 1◦, and found that adding

a refined region over the globe did not noticeably affect the global circulation.

Rhoades et al. (2016a) has also assessed the use of VR-CESM for modeling Sierra

Nevada mountain snowpack in the western United States. However, for long-term

regional climate modeling, particularly in regions where high-resolution is antici-

pated to be most beneficial, VR-CESM has yet to be rigorously evaluated.

In climate models, irrigation effects are usually ignored for several reasons: irri-

gation usually occurs over a relatively small area (∼2% of the global land surface)

and produces a seemingly negligible cooling effect compared to global greenhouse

warming (Boucher et al., 2004). Nonetheless, irrigation is a potentially important

factor in regulating climate patterns at regions scales, where there is a growing

need for accurate climate assessments and projections. Past studies have typically

addressed the climatic effects of irrigation in limited-area models (LAMs) (Snyder

et al., 2006; Kueppers et al., 2007), which in the context of climate modeling are

usually referred to as regional climate models (RCMs). In these studies, irrigation

is modeled by accounting for the amount of irrigated water needed and the area

of cropland where irrigation is applied. Using a multi-model ensemble of RCM

simulations, Kueppers et al. (2008) found that the behavior of RCMs varied in

representing effects of irrigation on regional climate, depending on each model’s

physics, as well as on the configuration of the irrigation parameterization.
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California is the most irrigated state in the U.S., and most of California’s ir-

rigated cropland is distributed over the Central Valley (CV), which is responsible

for 25% of domestic agricultural products (Wilkinson et al., 2002). Irrigation is

an important contributor to the regional climate of heavily irrigated regions, and

within the U.S. Few regions are as heavily watered as California’s Central Valley.

To model regional climate over the CV, a relatively fine horizontal resolution is

needed to more accurately represent microclimates, land-use, small-scale dynam-

ical features and corresponding interactions (Leung et al., 2003a; Rauscher et al.,

2010). There is a need to study the impact of irrigation on regional climate over

the CV, based on VR-CESM, which features a more flexible irrigation scheme with

relatively realistic estimates of local agricultural water use.

Despite the mean climatology, climate extremes are also important fields bring-

ing substantial and growing interests in understanding their changing charac-

ters, due to their pronounced impacts on both social society and natural ecosys-

tems (Easterling et al., 2000; Hegerl et al., 2004). Particularly, precipitation ex-

tremes have been a major focus, particularly drought and flood events (Seneviratne

et al., 2012), by its noticeable impacts on water availability and flood management

(Kharin et al., 2007; Scoccimarro et al., 2013). Overall, it is widely agreed that

although atmospheric water vapor concentration is increasing, the impacts of a

changing climate on the character of precipitation is far more complicated. Ex-

treme precipitation events are particularly nuanced: Our best projections suggest

that extreme precipitation events will intensify even in regions where mean pre-

cipitation decreases (Tebaldi et al., 2006; Kharin et al., 2007).

Although several past studies have investigated climate extremes at the global

scale (Seneviratne et al., 2012), studies addressing extremes at local and regional

scales are less common. It is well understood how increased GHG concentra-

tions have contributed to the observed intensification of heavy precipitation events

over the tropical ocean (Allan and Soden, 2008) and the majority of Northern

Hemisphere overland areas (Min et al., 2011), but changes are much more poorly
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understood at regional scales where meteorological variability is large (Trenberth,

2011). As a consequence of this variability, confidence in the assessment of regional

extreme precipitation changes requires both high spatial resolution and a long in-

tegration period, both of which can make the computational cost untenable for

global simulations. This issue of insufficient regional-scale climate information has

been a major outstanding problem in climate science, as stakeholders and water

managers typically require fine-scale information on climate impacts to develop

adaptation and mitigation strategies efficiently.

The western United States (WUS) area is known to be particularly vulnerable

to hydrological extremes, particularly floods and droughts (Leung et al., 2003b;

Caldwell , 2010), and hosts a variety of local features and microclimates associated

with its rough and varied topography. It is important to understand the changes

in the character of precipitation, regarding frequency and intensity, from recent

history through the end of the 21st century over WUS.

1.2 Outline of Thesis

In this thesis, the regional climate has been studied from the past to future over the

western United States (especially, California), working with VR-CESM–the newly

developed variable-resolution enabled Community Earth System Model. This the-

sis is organized as follows. In Chapter 2, VR-CESM is assessed for long-term re-

gional climate modeling over California against a traditional RCM – the Weather

Research and Forecasting (WRF) model. We aim to fill that gap by analyzing the

performance of VR-CESM against gridded observational data, reanalysis product

and in comparison to a traditional RCM forced by reanalysis data. This chapter

focuses on the models’ ability to represent current climate statistics, particularly

those relevant to heat and precipitation extremes. In Chapter 3, VR-CESM is

further applied to understand the impact of irrigation on the regional climate of

California. A flexible irrigation scheme with relatively realistic estimates of agri-

cultural water use is employed, and the impact of irrigation on mean historical
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climatology and heat extremes is investigated. In Chapter 4, the projected chang-

ing character of precipitation in the western United States over the 21st century

has been examined under the RCP 8.5 “business-as-usual” scenario. Both mean

changes to precipitation and distributions of non-extreme and extreme events, pro-

jected by the VR-CESM model under climate forcing, have been studied. A short

conclusion is given in the last chapter.
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Chapter 2

An Evaluation of the Variable

Resolution-CESM for Modeling

California’s Climate

2.1 Abstract

In this chapter, the recently developed variable-resolution option within the Com-

munity Earth System Model (VR-CESM) is assessed for long-term regional climate

modeling of California at 0.25◦ (∼28 km) and 0.125◦ (∼14 km) horizontal reso-

lutions. The mean climatology of near-surface temperature and precipitation is

analyzed and contrasted with reanalysis, gridded observational datasets and a tra-

ditional regional climate model (RCM) – the Weather Research and Forecasting

(WRF) model. Statistical metrics for model evaluation and tests for differen-

tial significance have been extensively applied. With only prescribed sea surface

temperatures, VR-CESM tended to produce a warmer summer (by about 1 to

3 ◦C) and overestimated overall winter precipitation (about 25%-35%) compared

to reference datasets. Increasing resolution from 0.25◦ to 0.125◦ did not produce

a statistically significant improvement in the model results. By comparison, the

analogous WRF climatology (constrained laterally and at the sea surface by ERA-

Interim reanalysis) was ∼1 to 3 ◦C colder than the reference datasets, underesti-

mated precipitation by ∼20%-30% at 27 km resolution and overestimated precip-
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itation by ∼65-85% at 9 km. Overall, VR-CESM produced comparable statistical

biases to WRF in key climatological quantities. This assessment highlights the

value of variable-resolution global climate models (VRGCMs) in capturing fine-

scale atmospheric processes, projecting future regional climate and addressing the

computational expense of uniform-resolution global climate models.

2.2 Introduction

For the purposes of long-term regional climate modeling, particularly in regions

where high-resolution is anticipated to be most beneficial, VR-CESM has yet to

be rigorously evaluated. This study aims to fill gap by analyzing the performance

of VR-CESM against gridded observational data, reanalysis product and in com-

parison to a traditional RCM forced by reanalysis data. Our variable-resolution

simulations are implemented with horizontal resolutions of 0.25◦ and 0.125◦ re-

spectively, which are much more typical for dynamically downscaled studies. This

work focuses on California in the western United States as the study area. The

complex topography and coastlines of California strongly modulate large-scale

weather patterns, creating local climatic features such as coastal fog, sea breeze,

mountain-induced precipitation and snowpack. An understanding of local climate

variability in California is incredibly important for policymakers and stakehold-

ers due to its vast agricultural industry, mixed demographics, and vulnerability

to anthropogenically-induced climate change (Hayhoe et al., 2004; Cayan et al.,

2008). Consequently, we expect that California is an excellent test bed for regional

climate modeling.

In this study, the Weather Research and Forecasting (WRF) (Skamarock et al.,

2005) model has been used for simulating California’s climatology at 27km and

9km grid spacing. RCM simulations over California have also been conducted in

previous studies and demonstrated the need for high spatial and temporal res-

olution to better address regional climate and extreme events, especially in the

vicinity of complex topography where large climatological gradients are present
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(Leung et al., 2004; Kanamitsu and Kanamaru, 2007; Caldwell et al., 2009; Pan

et al., 2011; Pierce et al., 2013). In particular, Caldwell et al. (2009) presented

results from WRF at 12km spatial resolution and showed that, although the RCM

was effective at simulating the mean climate when compared with observations,

some clear biases persisted (particularly an overestimation of precipitation).

This study focuses on the models’ ability to represent current climate statistics,

particularly those relevant to heat and precipitation extremes. We anticipate that

this work will validate VR-CESM for modeling the mean regional climatology of

California and will further motivate the adoption of variable-resolution modeling

to study other local climatic processes. Our eventual goal is to utilize these models

for assessing historical and future regional climate extremes.

This chapter is organized as follows: Section 3 describes the model setup,

datasets and methodology for evaluation and intercomparison. In section 4, sim-

ulation results are provided and discussed, with focuses on near-surface (2-meter)

temperature and precipitation. Key results are summarized along with further

discussion in section 5.

2.3 Models and Methodology

2.3.1 Simulation design

In this study, all global simulations use the Atmospheric Model Intercomparison

Project (AMIP) experimental protocols (Gates , 1992). These protocols are widely

used and support climate model diagnosis, validation and intercomparison. AMIP

experiments are constrained by realistic sea-surface temperatures (SSTs) and sea

ice from 1979 to near present without the added complexity of ocean-atmosphere

feedbacks in the climate system. In particular, observed SSTs and sea ice at 1◦

horizontal resolution are provided and updated following the procedure described

by Hurrell et al. (2008).
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2.3.1.1 VR-CESM

CESM is a state-of-the-art Earth modeling framework managed by the National

Center for Atmospheric Research (NCAR), consisting of coupled atmospheric,

oceanic, land and sea ice models. For decades CESM (and its predecessor, the

Community Climate System Model) has been used for modeling present and fu-

ture global climate (Neale et al., 2010a; Hurrell et al., 2013). The coupling in-

frastructure in CESM communicates the interfacial states and fluxes between each

component model to ensure conservation. Since we follow AMIP protocols, only

the atmosphere and land model are integrated dynamically. Here, CAM version

5 (CAM5) (Neale et al., 2010b) and the Community Land Model (CLM) ver-

sion 4.0 (Oleson et al., 2010) are used. As mentioned earlier, the SE dynami-

cal core is employed along with variable-resolution grid support. The FAMIPC5

(F AMIP CAM5) component set, which mainly supports atmospheric, oceanic,

land and sea ice models, is chosen for these simulations. In CAM5, cloud micro-

physics is parameterized using the two-moment scheme with with ice supersatura-

tion (Morrison and Gettelman, 2008; Gettelman et al., 2008), and the deep con-

vection process is treated by Zhang and McFarlane (ZM) cumulus scheme (Zhang

and McFarlane, 1995). A more detailed discussion of the CAM5 configuration can

be found in Neale et al. (2010a).

For our study, the variable-resolution cubed-sphere grids are generated for use

in CAM and CLM with the open-source software package SQuadGen (Ullrich,

2014; Guba et al., 2014). The grids used in this study are depicted in Figure 2.1.

The maximum horizontal resolution on these grids is 0.25◦ (∼28km) and 0.125◦

(∼14km) respectively, with a quasi-uniform 1◦ mesh over the remainder of the

globe. Grids are constructed using a paving technique with a 2:1 spatial resolution

ratio, so two transition layers are required from 1◦ to 0.25◦, and one additional

transition from 0.25◦ to 0.125◦. In our study, and previous studies (e.g. (Zarzycki

et al., 2015)), general circulation patterns (e.g., wind, pressure and precipitation)

do not exhibit apparent artifacts in the variable-resolution transition region, and
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(a) VR-CESM 0.25° (b) VR-CESM 0.125°

(c)

Figure 2.1. The approximate grid spacing in the (a) VR-CESM 0.25◦ and (b)
VR-CESM 0.125◦ meshes used in this study. (c) A depiction of the transition
from the global 1◦ resolution mesh through two layers of refinement to 0.25◦

and again to 0.125◦.

the design of the SE dynamical core ensures that dry air and tracer mass are

conserved globally (Taylor and Fournier , 2010). Simulations are performed over

the time period from 1979-01-01 to 2005-12-31 (UTC) and year 1979 is discarded

as a spin-up period. This 26-year time period is chosen to provide an adequate

sampling of inter-annual variability, to limit computational cost, and to coincide

with the satellite era where adequate high-quality gridded and reanalysis datasets

are available.

Variable-resolution topography files were produced by sampling the National

Geophysical Data Center (NGDC) 2-min (∼4 km) Gridded Global Relief Dataset

(ETOPO2v2), followed by the application of a differential smoothing technique as
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described in Zarzycki et al. (2015). Using this technique, the c parameter from

their Eq. (1) was adjusted to reduce noise in the vertical pressure velocity field.

The grid-scale topography is depicted in Figure 2.2, including the topography of

uniform CESM at 1◦ and observed topography from USGS 2 minute ( 3 km)

dataset. Hypsometric curves, depicting the percentage of the California region

above a given elevation, are plotted in Figure 2.2 for models and observations. It

is apparent that higher resolution provides clear improvement in the representation

of regional topography, which is necessary for the correct treatment of fine-scale

dynamic processes strongly influenced by complex terrain. Topography at very

coarse resolution (∼1◦) is too smooth to represent local details like the shape of

valleys or mountain peaks, resulting in the loss of regional climate patterns.

Land surface datasets, including plant functional types, at 0.5◦ were adopted.

Greenhouse gas (GHG) concentrations and aerosol forcings are prescribed based

on historical observations. CAM and CLM tuning parameters are not modified

from their default configurations.

2.3.1.2 WRF

WRF has been widely used over the past decade for modeling regional climate (Lo

et al., 2008; Leung and Qian, 2009; Soares et al., 2012; Sun et al., 2015). In our

study, the fully compressible non-hydrostatic WRF model (version 3.5.1) with the

Advanced Research WRF (ARW) dynamical core is used. WRF is a limited area

model that supports nested domains with a typical refinement ratio of 3:1. The

simulation domains of WRF are depicted in Figure 2.3. Two WRF simulations,

representing finest grid resolutions of 27 km and 9 km, are conducted. For the WRF

27km simulation, one domain is used. For the WRF 9km simulation, two domains

are used, with the outer domain at 27 km (same as the WRF 27km) and an inner

nested domain at 9 km horizontal grid resolution. For both simulations, grids are

centered on California and have 120×110 and 151×172 grid points, respectively. At

all lateral boundaries, 10 grid points are used for relaxation to the coarse solution.

In order to reduce the drift between forcing data and modeling output, grid nudging
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Figure 2.2. Upper panel: Topographic heights (from top left to bottom right) for
VR-CESM 0.25◦, VR-CESM 0.125◦, uniform CESM 1◦, WRF 27km, WRF 9km,
ERA-Interim (∆x ∼80 km) and USGS (∼3 km); Lower panel: Hypsometric
curves for the above datasets over California.
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(Stauffer and Seaman, 1990) is applied to the outer domain every 6 hours at all

levels except approximate planetary boundary layers (PBL), as suggested by Lo

et al. (2008). The nudging is applied to the wind, temperature and water vapor

mixing ratio with default nudging coefficients. Grid nudging is commonly used

and maturely supported in WRF. Although there is evidence spectral nudging

may improve the quality of the simulations, an investigation of these differences

is out of scope for this study (Liu et al., 2012). This setup uses 41 vertical levels

with model top pressure at 50 hPa.

Additionally, the following physics parameterizations are employed: WSM

(WRF Single-Moment) 6-class graupel microphysics scheme (Hong and Lim, 2006),

Kain-Fritsch cumulus scheme (Kain, 2004), CAM shortwave and longwave radi-

ation schemes (Collins et al., 2004). These settings are chosen by assessing the

results from several common parameterization combinations over a one-year trial

period, which were then compared to gridded observations. For the boundary layer,

the Yonsei University scheme (YSU) (Hong et al., 2006) is used, and the Noah Land

Surface Model (Chen and Dudhia, 2001) is applied. Both are chosen as they are

common for climate applications that balance long-term reliability and computa-

tional cost. Although many other options and parameterization combinations are

available for configuring WRF (and others have tackled a complete assessment of

these options for particular problems), our choices are made simply to represent

a typical WRF configuration. We do note that the Kain-Fritsch convective pa-

rameterization remains active even within the 9km inner mesh – although this is

considered to be in the “gray zone”, it had no appreciable impact on simulation

results since almost all precipitation emerged from (large-scale) condensation, as

discussed in Section 4.

ECMWF Reanalysis (ERA-Interim) data at both the surface and multiple

pressure-levels provides initial and lateral conditions for the domains. The lat-

eral conditions and SSTs are updated every 6 hours. ERA-Interim reanalysis (∼80

km) has been widely used and validated for its reliability as forcing data (Dee
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 WRF domains Climate divisions across California

Topographic Height (m)

Figure 2.3. Left: WRF 27km (entire plot region) and WRF 9km (solid black
box) simulation domains; Right: five climate divisions for California. Both plots
are overlaid with WRF model topography.
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et al., 2011). WRF simulations are conducted over the same time period as VR-

CESM (i.e., 1979-01-01 through 2005-12-31 UTC). Again, the year 1979 is used

as a spin-up period and is discarded for purposes of analysis. Notably, the ∼9 km

resolution employed in the innermost domain is finer than most previous studies

for long-term climate.

The topography employed for the 27 km and 9 km simulations is interpolated

from USGS (United States Geological Survey) elevation data with 10-min (∼20

km) and 2-min (∼4 km) resolution, respectively. The post-processed grid-scale

topography is contrasted in Figure 2.2. Elevation differences between VR-CESM

and WRF are irregular and relatively small, except over the Central Valley where

VR-CESM has consistently higher values than WRF. This indicates a different

methodology for preparation of the topography dataset and may also be partly

due to the use of the USGS elevation instead of NGDC elevation datasets.

2.3.2 Gridded and Reanalysis Datasets

Reanalysis and gridded observational datasets of the highest available quality are

employed (see Table 2.1). Differences between gridded observations can be due

to the choice of meteorological stations, interpolation techniques, elevation models

and processing algorithms. Consequently, the use of multiple reference datasets

is necessary to understand the underlying uncertainty in the observational data.

Detailed descriptions of these datasets are as follows.

NARR The North American Regional Reanalysis (NARR) is the NCEP (Na-

tional Centers for Environmental Prediction) high-resolution reanalysis product

that provides dynamically downscaled data over North America at ∼32 km reso-

lution and 3-hourly intervals from 1979 through present (Mesinger et al., 2006).

We note that some inaccuracies have also been identified in NARR, particularly

in precipitation fields (Bukovsky and Karoly , 2007).

NCEP CPC This dataset provides gauge-based analysis of daily precipitation

from the National Oceanic and Atmospheric Administration (NOAA) Climate Pre-

diction Center (CPC). It is a suite of unified precipitation products obtained by
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combining all information available at CPC via the optimal interpolation objec-

tive analysis technique. The gauge analysis covers the Conterminous United States

with a fine-resolution at 0.25◦ from 1948-01-01 to 2006-12-31.

PRISM The Parameter-elevation Regressions on Independent Slopes Model (PRISM)

(Daly et al., 2008) supports a 4 km gridded dataset obtained by taking point mea-

surements and applying a weighted regression scheme that accounts for many fac-

tors affecting the local climatology. The datasets include total precipitation and

minimum/maximum, (derived) mean temperatures and dewpoints. Monthly cli-

matological variables are available for 1895 through 2014 from the PRISM Climate

Group (Oregon State University, http://prism.oregonstate.edu, created 4 Feb

2004). Notably, PRISM is the United States Department of Agriculture’s official

climatological dataset. PRISM is used as our primary reference dataset for model

performance evaluation.

UW The UW daily gridded meteorological data is obtained from the Surface Wa-

ter Modeling group at the University of Washington (Maurer et al., 2002; Hamlet

and Lettenmaier , 2005). UW incorporates topographic corrections by forcing the

long-term average precipitation to match that of the PRISM dataset. The temper-

ature dataset is produced in a similar fashion as precipitation, but uses a simple

6.1 K/km lapse rate for topographic effect. The dataset is provided at 0.125◦

horizontal resolution covering the period 1949 to 2010.

Daymet Daymet is an extremely high resolution (1 km) gridded dataset with

daily outputs of total precipitation, humidity, and minimum/maximum temper-

ature covering 1980 through 2013 (Thornton et al., 1997, 2014). The dataset is

produced using an algorithmic technique that ingests point station measurements

in conjunction with a truncated Gaussian weighting filter. Some adjustments are

made to account for topography. Daymet is available through the Oak Ridge

National Laboratory Distributed Active Archive Center (ORNL DAAC).
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Table 2.1. Reanalysis and gridded observational datasets used in this study.

Data source Variables used Spatial resolution Temporal resolution

NARR Pr, Ts 32 km daily, 3-hourly

NCEP CPC Pr ∼28 km (0.25◦) daily

UW Pr, Tmin, Tmax ∼14 km (0.125◦) daily

PRISM Pr, Tmin, Tmax, Tavg 4 km monthly

Daymet Pr, Tmin, Tmax 1 km daily

2.3.3 Methodology

Near-surface temperature and precipitation have been analyzed over California to

assess the performance of VR-CESM in representing the mean climatology. Specifi-

cally, our evaluation focuses on daily maximum, minimum and average near-surface

temperatures (Tmax, Tmin and Tavg) and daily precipitation (Pr). These variables

are key in a baseline climate assessment due to their close relationship with water

resources, agriculture and health. In this context, the biggest impact of weather

on California is through heat and precipitation extremes. Since heat extremes

dominate during the summer season, we focus on June, July and August (JJA)

for assessment of temperature. On the other hand, since the vast majority of pre-

cipitation in California occurs in the winter season, December-January-February

(DJF) is emphasized.

In order to adequately account for natural variability of the mean climate,

the simulation period must be chosen appropriately (Solomon, 2007). However,

the number of simulated years required for adequate climate statistics depends

greatly on the regional climate variability and spatial scale. Past studies have used

average weather conditions over a 30-year period to ensure sufficient statistics and

to avoid imprinting from annual variability (Dinse, 2009). To check that our 26-

year simulation period is sufficient, we have examined the interannual variability of
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mean temperature and precipitation in all simulations and observations over 5, 10,

20 and 25 seasons or years (depicted in the supplemental figures). We observe that

for climatological mean temperature and precipitation, the relevant statistics are

effectively converged for a 20-year sample, suggesting that our simulation period

is sufficient to adequately capture the interannual variability of these quantities.

The results in section 4 are obtained from simulated and observed data over

the period 1980 to 2005. All datasets have been linearly de-trended at each grid

point so as to facilitate averaging of all simulation years. It is found that, for

annual and JJA near-surface temperature (Tmax, Tmin and Tavg), a statistically

significant trend is present under the two-tailed t-statistic with a significance level

of 0.05. For Tmin, the average warming in 26 years is ∼0.6 K−1 K for observations,

∼0.5 K for VR-CESMs and WRF 27km and ∼1.5 K for WRF 9km. For Tmax, the

average warming is ∼0.3 K−0.5 K for observations, ∼0.5 K−0.8 K for VR-CESMs

and WRFs. No statistically significant trend has been detected for precipitation.

California consists of a diverse variety of climate regions as a consequence of

its rugged topography and large latitudinal extent. The distinct character of these

regions is poorly captured in typical coarse global climate simulations (Abatzoglou

et al., 2009; Caldwell et al., 2009). In order to assess the performance of VR-CESM

within each region, the state has been divided into five climate divisions, including

the Central Valley (CV), Mountain Region (MR), North Coast (NC), South Coast

(SC), and Desert Region (DR). The spatial extent of these divisions is depicted

in Figure 2.3. These five divisions are determined loosely based on the results of

Abatzoglou et al. (2009) and the climate divisions used by the California Energy

Commission. To restrict the analysis in each division, simulations and datasets

have been masked to restrict climate variables to each division.

Standard statistical measures have been used to quantify the model perfor-

mance in comparison with the reference datasets. These include the root-mean-

square deviation (RMSD), mean signed difference (MSD), mean relative absolute

difference (MRD), and sample standard deviation (s). Further, spatial correlation
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is assessed by computing Pearson product-moment coefficient of linear correlation

between climatological means from models and reference datasets. Mathematically,

these quantities are written as

RMSD =

√√√√ 1

N

N∑
i=1

(vi − v̂i)2 MSD =
1

N

N∑
i=1

(vi − v̂i) (2.1)

s =

√√√√ 1

M − 1

M∑
j=1

(vj − v̄)2 MRD =

(
N∑
i=1

|vi − v̂i|

)/(
N∑
i=1

v̂i

)
. (2.2)

where vi and v̂i are values from the simulation output and reference dataset, re-

spectively; i is the grid-point index and N is the total number of grid points over

specific regions; j is the simulation year index, M is the total number of simulated

years and v̄ is the mean value over all years. Grid-point differences are calculated

by remapping the reference datasets to the model’s output grid using bilinear in-

terpolation. Remapping using patch-based interpolation has also been tested and

nearly identical results have been observed. When necessary, the statistical quan-

tities are further averaged over each division.

Throughout the remainder of this study, student’s t-test has been used to test

whether two sets of annual-, seasonal- or monthly-averaged data are the same.

F-test is applied to test whether the sample variances are equal. These tests are

used only when the sample population can be described adequately by a normal

distribution, where normality is assessed under the Anderson-Darling test. When

the sample populations do not approximately follow a normal distribution, Mann-

Whitney-Wilcoxon (MWW) test and Levene’s test are employed in lieu of the

t-test and F-test, respectively. All statistical tests are evaluated at the p = 0.05

significance level.

Complementary results to this study are provided in the online supplement, in-

cluding the original grid-refined mesh files, the sensitivity of climatological statis-

tics to choice of time period, the observed time trend, and other seasons not ad-

dressed in this study and corresponding statistics metric tables. Results are also

provided with comparison of VR-CESM to the output from a globally uniform
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CESM run at 0.25◦ spatial resolution with the finite volume (FV) dynamical core

(Wehner et al., 2014).

2.3.4 Uncertainty in Reference Products

To assess uncertainty in the observational and reanalysis products, we have cal-

culated the MSD values among PRISM, UW and Daymet for seasonally averaged

JJA Tmax, Tmin and DJF Pr over the five divisions and tabulated these results in

Table 2.2. Student’s t-test is employed to determine significances of differences.

For Tmax and Tmin, gridded observational datasets are different from each other

over some divisions. The most pronounced divergences occur in the NC region,

with MSD values reaching up to ∼4◦C, although differences are also apparent

for MR Tmin. Clearly, UW and Daymet have a colder climatology than PRISM.

NARR, as a reanalysis dataset, is different from the others over most divisions,

with overall larger Tmin and smaller Tmax. For precipitation, essentially no signif-

icant differences are present, especially among PRISM, UW and Daymet. NARR

and CPC (not shown) seem to have slightly lower precipitation values than others.

2.4 Results

A detailed analysis of temperature and precipitation results from WRF and VR-

CESM is provided in this section. A concise summary of key points follows in

section 2.5.

2.4.1 Temperature

The mean JJA Tmax, Tmin and Tavg climatology over the simulation period, to-

gether with PRISM and NARR reference data, is plotted in Figure 2.4. UW and

Daymet have not been plotted here since they are visually indistinguishable to

PRISM everywhere except for NC, where UW and Daymet exhibit lower temper-

atures (see Table 2.2). Statistical measures over California are tabulated in Table

2.3. In general, all simulations have captured the spatial climate patterns exhib-

ited by PRISM, with high spatial correlations (>0.95), especially for Tmax and

Tavg. Nonetheless, several clear biases (relative to PRISM) are present in these
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Table 2.3. RMSD (◦C), MSD (◦C) and Spatial Correlation (Corr) for seasonally-
averaged daily JJA temperatures over California.

RMSD UW PRISM Daymet

Tmax Tmin Tmax Tmin Tavg Tmax Tmin

VR-CESM 0.25◦ 2.32 3.75 2.92 3.12 2.60 2.81 3.93

VR-CESM 0.125◦ 1.90 3.63 2.45 2.94 2.18 2.48 3.70

WRF 27km 2.31 2.74 2.93 2.25 2.17 2.51 2.99

WRF 9km 3.32 2.94 3.49 1.84 1.77 3.20 2.94

Uniform CESM 1◦ 3.06 4.59 3.62 3.43 3.16 3.58 5.07

MSD UW PRISM Daymet

Tmax Tmin Tmax Tmin Tavg Tmax Tmin

VR-CESM 0.25◦ 0.98 2.91 0.61 1.73 0.82 1.18 2.88

VR-CESM 0.125◦ 0.65 2.85 0.20 1.66 0.58 0.82 2.74

WRF 27km -0.58 0.82 -0.95 -0.36 -0.77 -0.39 0.79

WRF 9km -2.28 1.86 -2.72 0.67 -1.14 -2.10 1.76

Uniform CESM 1◦ 0.82 3.03 0.60 1.76 1.08 1.24 3.38

Corr UW PRISM Daymet

Tmax Tmin Tmax Tmin Tavg Tmax Tmin

VR-CESM 0.25◦ 0.99 0.98 0.99 0.98 0.99 0.99 0.97

VR-CESM 0.125◦ 0.99 0.98 0.99 0.98 0.99 0.99 0.98

WRF 27km 0.99 0.98 0.99 0.98 0.99 0.99 0.97

WRF 9km 0.99 0.98 0.99 0.99 0.99 0.99 0.98

Uniform CESM 1◦ 0.99 0.96 0.99 0.97 0.99 0.99 0.95

simulations, as discussed below.

• Tmax: When compared with the reference datasets, VR-CESM showed a

warm bias of about 2 to 3 ◦C in Tmax over much of the inland domain (CV

and MR) and a 2 to 3 ◦C cool bias along the coast, although the coastal

bias is reduced by ∼0.5 ◦C at 0.125◦ resolution. This is in contrast with
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Figure 2.4. JJA averaged daily Tmax, Tmin and Tavg from models and reference
datasets, and differences (sharing the same legend) between model results and
PRISM.
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WRF, which produced an overall colder climate everywhere except the CV.

This bias is especially pronounced for the WRF 9km simulation, which was

approximately 3 ◦C cooler than PRISM. Tmax within the CV has been over-

estimated by all the simulations. This likely represents a systematic issue

with high-resolution models with respect to California. Possible reasons for

this overestimation are discussed at the end of this section.

• Tmin: VR-CESM showed a strong warm bias in Tmin (∼2 to 4 ◦C), with a

particularly large overestimation over Nevada (> 5◦C). WRF also exhibited

a warm bias, but of a much smaller magnitude (∼2 to 3 ◦C). However, the

pattern of Tmin presented in Figure 2.4 in both WRF simulations suggests a

cooler interior to the CV and warmer perimeter, which is not supported by

observations.

• Tavg: The warm bias of Tmin and Tmax by VR-CESM resulted in a similar

overestimation of Tavg. For WRF, underestimation of Tmax and overestima-

tion of Tmin led to an overall closer match to Tavg over most of the domain,

but is indicative of a suppressed diurnal cycle.

Compared with the reference datasets over California, VR-CESM 0.125◦ pro-

duced the lowest RMSD values for Tmax, whereas WRF had smallest RMSD for

Tmin. However, in both cases the RMSD was around 2 ◦C. Notably, Tmin from

VR-CESM matched much more closely with NARR, although this is likely indica-

tive of a related warm bias in NARR. In fact, closer examination of the differences

among VR-CESM, WRF and NARR marine near-surface temperature patterns

indicated that CESM and NARR have Tmin values that are approximately 2 ◦C

larger than WRF. Since coastal near-surface temperature is strongly influenced by

ocean SSTs, this difference is likely a key driver of the warm bias in CESM. The

Delta breeze effect, which is associated with a sea breeze circulation that brings

relatively cool and humid marine air into the interior CV from the San Francisco

Bay area, was apparent in all runs. It is especially encouraging that VR-CESM
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generally performed as well as WRF, in comparison with reference datasets, even

though VR-CESM was not constrained or nudged at the lateral boundaries of the

high-resolution domain.

The spatial standard deviation of JJA Tmax, Tmin and Tavg from models and

PRISM is presented in Figure 2.5. In PRISM, the CV had smaller variability than

surrounding regions, although the difference is small (∼0.2 ◦C). Further, areas

with rougher topography did exhibit somewhat higher variability than smoother

locations. Interestingly, the higher resolution (0.125◦) VR-CESM simulation also

matched the spatial pattern and magnitude of standard deviation observed in

PRISM, especially for Tmin and Tavg. However, in WRF and VR-CESM 0.25◦, the

variability is largely consistent across different divisions, and the values are around

0.5 to 1.5 ◦C for all of the datasets, except for the high Sierras in the WRF 9km

simulation which showed enhanced variability (∼2 ◦C). Compared with reference

datasets, the RMSD values of VR-CESM and WRF 27km are ∼0.1-0.2 ◦C, and

∼0.2-0.3 ◦C for WRF 9km.

The seasonal cycle of monthly mean Tavg in each division is shown in Figure

2.6 for simulations and for reference data from PRISM and NARR along with the

associated 95% confidence interval. PRISM and NARR match closely almost ev-

erywhere except in the summer season of NC, SC and CV, indicative of underlying

observational uncertainty. This difference is likely due to the discrepancy in as-

similating the coastal cooling effect. In general, model results match closely with

reference data with no larger than a 2 ◦C absolute difference, with the largest errors

occurring in the summer and winter seasons. Compared with PRISM, VR-CESM

overpredicts summer Tavg in all divisions except NC and SC, and underpredicts

winter Tavg in all divisions. This corresponds to a larger annual temperature range.

WRF has better performance in preserving the monthly cycle when compared with

VR-CESM, with about 1 ◦C underestimation over all seasons. There is no clear

improvement in the seasonal cycle across resolutions.
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Figure 2.5. Sample standard deviation of JJA average daily Tmax, Tmin and
Tavg from model results and PRISM.
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Figure 2.6. Seasonal cycle of monthly-average Tavg for each climate division.
The shading corresponds to the 95% confidence interval of PRISM and NARR.
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Table 2.4. RMSD for the standard deviation values of monthly-averaged
Tavg/Pr between models and PRISM in each climate division.

Tavg MR CV DR SC NC

VR-CESM 0.25◦ 0.393 0.304 0.231 0.253 0.286

VR-CESM 0.125◦ 0.468 0.355 0.359 0.275 0.334

WRF 27km 0.101 0.199 0.129 0.231 0.141

WRF 9km 0.438 0.561 0.454 0.476 0.536

Pr MR CV DR SC NC

VR-CESM 0.25◦ 0.449 0.976 0.228 0.517 0.670

VR-CESM 0.125◦ 0.315 0.848 0.237 0.532 0.499

WRF 27km 0.193 0.126 0.246 0.494 0.724

WRF 9km 1.700 1.057 0.425 0.817 0.958

Variability in monthly-averaged Tavg is expressed by the interannual standard

deviation of monthly Tavg over the 26-year period and is plotted in Figure 2.7 for

the whole California region (results are similar for sub-regions when renormalized

by the mean Tavg). The 95% confidence interval obtained from the Chi-square

test is also depicted for PRISM so as to identify statistically significant differences.

RMSD values for monthly standard deviations between models and PRISM are

also computed over each climate division (see Table 2.4). Generally, standard

deviation is between 1 to 2 ◦C. Among all models, WRF 27km is closest to PRISM

with RMSD values around 0.1-0.2 ◦C. WRF 9km is also relatively close to PRISM,

but exhibits an unusual ∼1 ◦C increase in variability in January and February

(statistically significant at the 0.05 level), leading to a relatively high RMSD (∼0.5

◦C). VR-CESM exhibits a weaker correlation with PRISM in all divisions with

enhanced variability in DJF and weakened variability in April and May at both

resolutions, and in the fall season in the 0.125◦ simulation, with RMSD around 0.2-

0.4 ◦C. This may be indicative of an issue in capturing the seasonality of large-scale

Pacific meteorology in CESM and merits further investigation.
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Figure 2.7. Standard deviation values of monthly-average Tavg and Pr averaged
over California. The shading refers to the 95% confidence interval of PRISM.
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Due to the impact of summer heat waves, we now focus on Tmax over JJA. In

Figure 2.8, the frequency distribution of Tmax using all JJA daily values at each

gridpoint over 26 years is depicted for models and reference data from UW and

Daymet. PRISM is not included since it only deviates from UW and Daymet in the

coastal divisions (NC and SC). In these divisions PRISM is similar in character to

UW but shifted several degrees towards warmer temperatures. Properties of the

frequency distribution, including average, variability, skewness and Kurtosis are

tabulated in Table 2.5. As exemplified by the similarity in the moments of the

distribution, VR-CESM clearly captures the general distribution of Tmax. Outside

of the CV, skewness and kurtosis measures match closely between VR-CESM and

the UW dataset. In the NC and SC, Daymet overestimates the frequency of very

cold days leading to deviation in the moments from UW. Consistent with the

observations in Figure 2.4, outside of the CV, WRF tends to be cooler in general

and VR-CESM tends to be warmer. In NC and SC, all models more accurately

capture the frequency of high Tmax days than low Tmax days. Enhanced frequency

of cool Tmax values appears to be the primary driver in overestimation of sample

variance in these divisions. For both VR-CESM and WRF there is no apparent

improvement in statistics at higher resolutions.

In the CV, models show a clear warm bias and underestimated skewness, as-

sociated with a long forward tail and temperatures approaching near 50 ◦C. As

discussed earlier, all models overestimate Tmax over CV. In order to further as-

sess the accuracy of the gridded observations, we examine the Tmax data directly

from recorded weather station measurements over the CV (obtained from Global

Historical Climate Network, provided by the NOAA/NCDC, http://www.ncdc.

noaa.gov/). The results validate that Tmax values above 45 ◦C are rare (although

station observations suggest these days may be slightly more frequent than sug-

gested by UW and Daymet). The warm bias associated with the aforementioned

extreme hot days in both VR-CESM and WRF is likely correlated with overly

dry summertime soil moisture, as discussed in Caldwell et al. (2009). This could
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Figure 2.8. Frequency distribution of JJA daily Tmax over the simulation period
1980-2005.
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be caused by the lack of accurate land surface treatment in climate models – for

example, Bonfils and Lobell (2007) found that irrigation over CV has decreased

summertime maximum temperature by ∼2-3 K in heavily-irrigated areas compared

with nearby non-irrigated areas, based on long-term temperature records. Other

studies have also found the cooling effects of irrigation over CV based on model

simulations. Kueppers et al. (2007), using RegCM3 (the third generation of the

Regional Climate Model), found that irrigated areas has been cooled by ∼3.7 K

in August over the CV.

2.4.2 Precipitation

California’s Mediterranean climate is associated with heavy precipitation in win-

ter months and drier conditions in summertime. Agricultural and urban water

use in California thus depends on accumulation of wintertime precipitation, which

accounts for approximately half of total annual average precipitation as we calcu-

lated.

The long-term average climatology of DJF and annual daily Pr over 26 years

from simulations and reference datasets (including PRISM and NARR) is depicted

in Figure 2.9. Other reference datasets match closely with PRISM. Statistical

quantities for precipitation over California are given in Table 2.6. We can see

that precipitation is heavily influenced by orography, leading to most accumulation

occurring along the NC and MR. As with temperature, the model results match the

spatial patterns of the PRISM, with high spatial correlation coefficients (>0.94).

For DJF Pr, especially along the western edge of the Sierra Nevada and into the

CV, VR-CESM overestimates total precipitation (∼25%-35%) relative to PRISM

(see MRD in Table 2.6), particularly for the coarser resolution (0.25◦) simulation.

This difference is statistically significant over the western edge of the Sierra Nevada

compared to PRISM at the 95% level for VR-CESM 0.25◦. VR-CESM 0.125◦ per-

forms better and produces far more realistic (and less scale sensitive) precipitation

over the Sierra Nevada with improved treatment of orographic effects. On the

other hand, precipitation is slightly underestimated relative to PRISM along the
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Figure 2.9. Annual and DJF precipitation from model results and reference
datasets, absolute/relative differences between model results and PRISM.
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Table 2.6. RMSD (mm/day), MSD (mm/d), MRD, Spatial Correlation (Corr)
for averaged precipitation over California

Annual CPC UW

RMSD MSD MRD Corr RMSD MSD MRD Corr

VR-CESM 0.25◦ 0.61 0.39 0.30 0.98 0.62 0.29 0.29 0.96

VR-CESM 0.125◦ 0.47 0.21 0.24 0.98 0.53 0.12 0.24 0.97

WRF 27km 0.42 -0.21 0.21 0.97 0.58 -0.31 0.24 0.97

WRF 9km 2.23 1.49 0.97 0.95 2.05 1.39 0.85 0.96

Uniform CESM 1◦ 1.97 -1.57 0.99 0.94 2.31 -1.70 0.99 0.91

PRISM Daymet

RMSD MSD MRD Corr RMSD MSD MRD Corr

VR-CESM 0.25◦ 0.72 0.20 0.31 0.95 0.57 0.19 0.25 0.97

VR-CESM 0.125◦ 0.62 0.05 0.26 0.96 0.50 0.03 0.22 0.97

WRF 27km 0.77 -0.40 0.27 0.96 0.65 -0.41 0.27 0.97

WRF 9km 1.89 1.32 0.78 0.97 2.01 1.31 0.76 0.96

Uniform CESM 1◦ 2.53 -1.83 0.99 0.90 2.31 -1.80 0.99 0.93

DJF CPC UW

RMSD MSD MRD Corr RMSD MSD MRD Corr

VR-CESM 0.25◦ 1.49 0.99 0.36 0.97 1.45 0.67 0.33 0.95

VR-CESM 0.125◦ 1.19 0.64 0.29 0.97 1.23 0.35 0.27 0.96

WRF 27km 0.89 -0.38 0.21 0.97 1.29 -0.69 0.26 0.96

WRF 9km 4.26 2.61 0.86 0.95 3.84 2.32 0.70 0.95

Uniform CESM 1◦ 3.97 -3.12 0.99 0.93 4.80 -3.50 0.99 0.90

PRISM Daymet

RMSD MSD MRD Corr RMSD MSD MRD Corr

VR-CESM 0.25◦ 1.65 0.58 0.35 0.94 1.35 0.51 0.28 0.96

VR-CESM 0.125◦ 1.40 0.29 0.29 0.95 1.17 0.21 0.25 0.96

WRF 27km 1.55 -0.79 0.28 0.96 1.35 -0.85 0.28 0.96

WRF 9km 3.57 2.26 0.66 0.96 3.80 2.18 0.65 0.95

Uniform CESM 1◦ 5.07 -3.65 0.99 0.90 4.69 -3.65 0.99 0.93
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NC (with a statistically significant difference), particularly near the Oregon border.

There are also notable differences between WRF 27km and WRF 9km. For DJF

Pr, WRF 27km underestimates precipitation along the NC (by about 20%-30%),

but fairly accurately captures precipitation in the CV; whereas WRF 9km greatly

overestimates precipitation (by about 65%-85%) along the NC and MR (see MRD

in Table 2.6). Using Table 2.6 as a guide, VR-CESM 0.125◦ performs better than

VR-CESM 0.25◦ and WRF 27km with RMSD values around 1.2 mm/day over

DJF. Since we expect most of this improvement is due to a better representation

of topography at 0.125◦, this result suggests that the default physical parameter-

ization suite in CESM is fairly resolution insensitive. WRF 9km is significantly

different from PRISM over the MR and part of NC, and the potential reasons are

discussed at the end of this section. The differences between WRF simulations

suggests a strong resolution dependence in the underlying microphysics, likely in

part since WSM6 has been observed to produce excess graupel (Jankov et al.,

2009). However, the resolution dependence could also manifest in the boundary

layer and convection schemes, which remains a topic for future investigation.

Interannual variability of precipitation was calculated for the models and PRISM

using the standard deviation of annual and DJF precipitation and depicted in Fig-

ure 2.10. In general, precipitation variability exhibits a similar pattern to the

precipitation intensity. The spatial pattern of variability agrees well between mod-

els and PRISM, with the closest match provided by VR-CESM 0.125◦ and WRF

27km. Standard deviation is ∼50% higher for WRF 9km, consistent with overes-

timated precipitation intensity. VR-CESM 0.25◦ also tends to overestimate vari-

ability in the southern Sierra Nevada, likely due to over enhanced orographic uplift

from the relatively coarse topography (relative to 0.125◦). Comparing with all the

gridded observations, RMSD values are ∼0.7-0.9 mm/day for VR-CESM, ∼0.5-0.7

mm/day for WRF 27km, and ∼1.7-2.0 mm/day for WRF 9km.

The annual cycle of precipitation averaged over each month and region for the

models and reference datasets (taking PRISM and NARR as representative of all
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Figure 2.10. Sample standard deviation of Annual and DJF precipitation from
models and PRISM.
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datasets) is presented in Figure 2.11. The 95% confidence intervals of UW and

PRISM are also depicted; differences between models and reference datasets are

statistically significant when simulation results appear outside of the highlighted

region. In general, the overall monthly climatology is consistent between models

and reference datasets, with highest precipitation values occurring over winter and

lowest values over summer. Nonetheless, the largest deviations occur during the

winter season. WRF 27km is drier than PRISM and UW with relative differences

ranging from ∼10%-40%, whereas WRF 9km is far wetter with relative differences

reaching up to 40%-80% over these five divisions. VR-CESM tracks well with

observed precipitation with ∼10%-20% relative difference everywhere except in

the CV, where precipitation is overestimated in the rainy seasons by about 70%-

80%. From the MWW test, VR-CESM and WRF 27km are not significantly

different from reference datasets in most divisions, except over the CV in late

winter to spring for VR-CESM 0.25◦, and the NC winter and spring, and DR’s

winter for WRF 27km. The magnitude of precipitation in WRF 9km is significantly

different from the reference datasets over most divisions, except DR and SC’s

winter and spring. Nonetheless, the strong seasonal dependence on precipitation is

apparent with extremely dry conditions during summer months. A slight increase

in summertime precipitation is apparent in the DR, indicating the North American

monsoon. We also observe that the peak month for precipitation tends to occur

earlier in VR-CESM, particularly at 0.125◦, compared with the reference. VR-

CESM also exhibits some unexpected jaggedness (particularly December for VR-

CESM 0.25◦ and February for VR-CESM 0.125◦), likely due to an issue with

capturing the seasonality of moisture transport over the Pacific. This issue being

driven by variability outside of the high resolution domain seems corroborated by

the observation that WRF correlates strongly with the reference datasets (even

though the reported magnitude is incorrect).

The monthly cycle of sample standard deviation is depicted in Figure 2.7 for

California (results are similar for sub-regions when renormalized by the mean pre-
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Desert Region (DR)

Central Valley (CV) Mountain Region (MR)

North Coast (NC)

California

Oct            Dec            Feb          Apr     Jun    Aug     Oct       Dec            Feb         Apr       Jun    Aug   

Oct            Dec            Feb         Apr     Jun    Aug   Oct          Dec            Feb         Apr        Jun       Aug   

Oct            Dec            Feb           Apr      Jun    Aug     Oct        Dec            Feb         Apr       Jun   Aug   

South Coast (SC)

Figure 2.11. As Figure 2.6, but for monthly-average total precipitation. The
shading refers to the 95% confidence interval of PRISM and UW.
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cipitation). Again, the 95% confidence interval from the Chi-square test is de-

picted from PRISM to identify statistically significant differences (although this

test should not be employed for non-normal samples, such as monthly average

precipitation, we have confirmed similar results under Levene’s test). The vari-

ability in observations has a similar monthly trend as precipitation rate, with

overall values from 0 to 4 mm/day. Generally, higher interannual variability oc-

curs over locations with higher mean precipitation (see Figure 2.11), also observed

by previous studies (for example, (Duffy et al., 2006)). Compared with observa-

tions, VR-CESM exhibited ∼1 mm/day larger variability in the rainy season with

RMSDs ranging from ∼0.2 to 0.9 mm/day (see Table 2.4). WRF 9km also showed

enhanced variability, especially during the wintertime (∼1.5 mm/day more), with

significant difference from references. WRF 27km captured the interannual vari-

ability quite well with only minor underestimation except the coastal regions, with

RMSDs around 0.1-0.7 mm/day. The primary driver for the interannual variability

of precipitation over California is the El Niño-Southern Oscillation (ENSO), which

impacts the moisture flux transport to this region (Cayan et al., 1998, 1999; Leung

et al., 2003c).

The frequency distribution of DJF Pr has been constructed from rainy days

(Pr>=0.1mm/day) for simulations and reference datasets and is depicted in Fig-

ure 2.12. Since the frequency of precipitation is very similar across all reference

datasets, only UW and CPC are included. Generally, VR-CESM matches closely

with observations everywhere except in the CV. In the CV, WRF 27km appears

to better capture high-intensity precipitation events, but performs poorly on low-

intensity events (Pr<20 mm/day). The underestimation of rainfall frequency in

WRF 27km appears consistent across divisions. WRF 9km produces a significantly

better treatment of low-intensity events, but greatly overestimates the frequency

of high-intensity events (Pr>20 mm/day). For strong precipitation events, VR-

CESM matches closely to observations everywhere except the CV.

The overestimation of precipitation for WRF at high resolution has also been
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Figure 2.12. As Figure 2.8, but for DJF rainy days (Pr>=0.1mm/day) (note
that the vertical scale is logarithmic).
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found in previous studies. Although not as pronounced as WRF 9km here, Caldwell

et al. (2009) demonstrated that WRF at 12km largely overestimated the precip-

itation over California’s mountainous regions (however, this study did employ a

different set of parameterizations and had a different spatial extent of mountain

region). Further discussion can be found in former studies that employ different

microphysics schemes (and so produce a wide range of precipitation magnitudes)

(Jankov et al., 2005; Chin et al., 2010; Caldwell , 2010). However, Caldwell et al.

(2009) also argued that the bias comes from a variety of sources, rather than simply

different choices of sub-grid scale parameterizations. The exact cause of this over-

prediction has yet to be identified in the literature and a comprehensive analysis

of the cause of these errors is beyond the scope of this study.

2.4.3 Overall Performance and Extreme Events

A simple schematic summary is given in Table 2.7 indicating observed biases from

VR-CESM and WRF by region relative to PRISM. As mentioned earlier, over the

coastal regions (especially NC) the observational datasets show significant uncer-

tainty (see Table 2.2) that must be taken into account. In general, both VR-CESM

and WRF correlate well with observations. WRF is better at capturing Tmin, but

VR-CESM provides a better estimate of Tmax. WRF 9km grossly overestimate

DJF precipitation, with values nearly two times larger than observations. Over-

all, these observations indicate VR-CESM provides a competitive representation

of the regional climatology over California with simulation biases that are compa-

rable to WRF. Across resolutions, there is a small but clear improvement in using

VR-CESM 0.125◦ compared to 0.25◦ for simulating Tmax and Pr.

We now briefly address the behavior of VR-CESM 0.125◦ and WRF 9km for

simulating climatological extremes. Figure 2.13 depicts the spatial distribution of

average number of days per year where Tmax exceeds 35◦, referred to as extreme

heat days, and the average number of days per year where Pr>20mm/day, re-

ferred to as extreme precipitation days. The spatial patterns associated with these

extremes match closely with simulated Tmax from Figure 2.4, for extreme heat
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Table 2.7. A summary of the biases in VR-CESMs and WRF, compared to
PRISM, for JJA Tmax, JJA Tmin and DJF Pr in each region. Red (blue) colors
indicate positive (negative) bias. Darker color indicates the most significant
differences. Grey boxes indicate no statistically significant difference.)

VR-CESM 0.25◦ VR-CESM 0.125◦

Tmax Tmin Pr Tmax Tmin Pr

CV 2−3◦C 2−3◦C 70−100% 2−3◦C 2−3◦C 30−60%

MR 2−3◦C 2−4◦C 2◦C 2−3◦C

SC 2◦C 2−3◦C 2◦C 2−3◦C

NC 2−3◦C 2−3◦C

DR 2−4◦C 60% 2−4◦C 30%

Notes: Over California, VR-CESM correctly captures the spatial interannual standard

deviation of seasonal temperature and precipitation and interannual variability in monthly

average Tavg and Pr (in both cases finer resolution performs better). In VR-CESM the

peak month for precipitation tends to occur earlier than in observations.

WRF 27km WRF 9km

Tmax Tmin Pr Tmax Tmin Pr

CV 2−3◦C 1◦C 1−2◦C 50−70%

MR 2◦C 2◦C 3−4◦C 2◦C 70−100%

SC 2◦C 1◦C 20−30% 2◦C 1◦C 30%

NC 2−4◦C 20% 2−4◦C 1◦C 30−60%

DR 20−40% 2−3◦C 2◦C

Notes: Over California, WRF 27km correctly captures the spatial interannual standard

deviation of temperature and precipitation. WRF 27km can also reproduce the monthly

cycle of Tavg, and interannual variability of Tavg and Pr (better than VR-CESM).
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Figure 2.13. Number of days per year with (top) Tmax>35◦C and (bottom)
Pr>20mm/day in VR-CESM 0.125◦, WRF 9km and UW over the simulation
period 1980-2005.
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days, and simulated DJF precipitation from Figure 2.9, for extreme precipitation

days. Consequently, we anticipate that improvements in the model’s treatment

of Tmax and Pr will directly impact the capability of these models to simulate

corresponding extremes.

2.5 Discussion and summary

The need for high-resolution model data to address regional climate change and

extreme events has motivated the development of new modeling tools. To support

this work, this study investigated the variable-resolution Community Earth Sys-

tem Model (VR-CESM) for two-way dynamically downscaled climate modeling.

VR-CESM was evaluated for modeling California’s unique regional climate and

compared against gridded observational datasets, reanalysis data and the WRF

model (forced with ERA-Interim data at lateral boundaries).

Based on 26 years of high-resolution historical climate simulations (1980-2005),

we analyzed the mean climatology of California across its climate divisions in terms

of both near-surface temperature and precipitation. Generally, when compared

with gridded observational datasets, both VR-CESM and WRF adequately rep-

resented regional climatological patterns with high spatial correlations (>0.94).

Uncertainty between reference datasets is apparent, and is statistically significant

over some climate divisions, making it necessary to utilize more than one high-

quality observational product in the model evaluation. Overall, we found that

VR-CESM showed comparable performance to WRF for regional climate model-

ing at spatial resolutions of 10-30 km.

Simulated temperature was assessed in terms of the mean climatology of Tmin,

Tmax and Tavg and interannual monthly-averaged variability of Tavg. Deviations

between the models and the reference datasets were apparent, but their charac-

ter differed between VR-CESM and WRF. During the summer period, VR-CESM

produced a 2 to 3 ◦C warmer climate than observations, especially in the CV.

On the other hand, WRF exhibited a colder (∼2 ◦C) Tmax over most divisions
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(except the CV), but was only a little warmer in Tmin. Overall, VR-CESM was

more accurate in reproducing mean climatology of Tmax, whereas WRF was better

at modeling Tmin and Tavg. WRF modeled the annual cycle of Tavg better than

VR-CESM with about a 1 ◦C overall underestimation. VR-CESM overestimated

Tavg by 2 ◦C over the summer season and underestimated Tavg by 2 ◦C over the

winter season, indicating a larger annual temperature range over most divisions.

Higher resolution (0.125◦) VR-CESM captures the spatial pattern of annual vari-

ability for near-surface temperature pattern shown in PRISM. Both WRF and

VR-CESM well represent variability in monthly average Tavg over each climate

devision, except for the WRF 9km in January and February where variability was

greatly overestimated.

Temperatures were further investigated in terms of the climatology of JJA

Tmax, due to its relevance to summertime heat waves. Both models successfully

simulated the spatial character of JJA Tmax, although both also had an apparent

warm bias over the CV. The failure to correctly capture CV Tmax is likely caused in

part by the lack of irrigation cooling over this division in both models. Future work

will address this issue by applying irrigation model to VR-CESM so as to figure

out the role irrigation plays in regulating Tmax and its frequency distribution.

Precipitation was assessed in terms of mean climatology, interannual monthly-

averaged variability and frequency of precipitation intensity. In general, VR-CESM

matched closely with PRISM everywhere except for an overestimation of DJF

Pr (about 25%-35%) along the western flank of the Sierra Nevada and into the

CV. Increasing the spatial resolution to 0.125◦ produced some reduction in this

overestimation (about 10%) likely due to improved treatment of orographic effects.

WRF 27km underestimated DJF precipitation (by about 20%-30%) along the NC

and MR (where almost all the precipitation appears), whereas WRF 9km showed

a large overestimation (about 65%-85%). The standard deviation of precipitation

ranged from 0 to 6 mm/day, with generally higher interannual variability over

locations of higher mean precipitation. When assessing the frequency of strong
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precipitation events, VR-CESM matched closely to the UW dataset everywhere

except the CV.

Higher resolution (0.125◦) VR-CESM did produce better results when assess-

ing JJA Tmax and precipitation (along with their variability), compared with the

coarser resolution run. However, the improvements were not statistically signifi-

cant over most of the study area. The largest improvement at higher resolution

was in the spatial character of precipitation, driven primarily with a better repre-

sentation of the underlying topography. Notably, this result highlights the relative

insensitivity to resolution in VR-CESM’s physical parameterizations. This may be

an advantageous result for multi-scale modelers interested in climate applications.

Correctly simulating precipitation is vital to properly representing snowpack, which

is of critical importance to water availability in the western United States (Bales

et al., 2006; Wise, 2012; Rhoades et al., 2016a). Decreased scale sensitivity implies

the result will be more independent of the choice of grid resolution. However, since

the range of scales in this investigation is small (∼28km to ∼14km), we do not

discount sensitivity over a wider range of scales (Wehner et al., 2010; Rauscher

et al., 2010). Notably, for both regional and global models, resolution effects do

not typically have a linear dependency (e.g. (Hughes et al., 2014; Wehner et al.,

2014)).

For WRF, when resolution is increased to 9km, the model produces vastly

overestimated precipitation, as previous studies have also found when using RCMs

for fine-scale regional simulations. Although the convective parameterization was

not disabled (as is suggested for some models below 10km resolution), the effect

of this change is minor since almost all of the precipitation comes from resolved

(large-scale) condensation (not shown). In this sense, precipitation modeling bias

of WRF is more strongly related with resolved-scale processes and the choice of

microphysics scheme plays a major role, motivating the need for more work on

scale-aware parameterizations (O’Brien et al., 2013).

Regarding computational cost, we note that a direct comparison between VR-
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CESM and WRF is somewhat misleading, due to widely disparate configurations

of each model (for instance, differences in dynamical core, parameterization suite,

optimization strategy, and output variables). Nonetheless, for our simulations we

report core hours per grid point, where the total number of grid points is equal to

the number of atmospheric columns multiplied by number of model levels. VR-

CESM was configured with 30 model levels and 75,062 (101,954) columns on the

0.25◦ (0.125◦) mesh, whereas WRF was configured with 41 model levels and 13,200

(39,172) columns for the 27km (9km) simulations. The high resolution region

represented approximately 1/3 and 1/2 of all grid points in VR-CESM at 0.25◦

and 0.125◦, respectively. On the Yellowstone cluster we observed that VR-CESM

simulations at 0.25◦ (0.125◦) required 0.0043 (0.0037) core hours per grid point

per simulated year, compared with 0.0011 (0.0027) core hours of that with WRF

27km (WRF 9km). In our experiments, VR-CESM demonstrated effectively linear

scalability in the number of elements simulated.

In summary, VR-CESM demonstrated competitive utility for studying high-

resolution regional climatology when compared to a regional climate model (WRF).

Compared to regional models, variable-resolution models are more suitable for re-

gional climate studies where non-local processes are a major influence, including

two-way interactions at the nest boundary and potential upstream impacts (Sak-

aguchi et al., 2015). Variable-resolution models are also useful for assessing and

tuning resolution dependence of physical parameterizations in global models, and

are also valuable for short-term weather prediction (Zarzycki and Jablonowski ,

2015). On the other hand, RCMs tend to have more sub-grid parameterization

choices that can be tailored for particular studies (e.g., (Cassano et al., 2011))

and tend to be more efficient, as computational expense can be precisely targeted.

Deviations exhibited within these models are not indicative of deep underlying

problems with the model formulation, but one should nonetheless be aware of

these biases when using these models for climate studies. This study suggests

that VRGCMs are, in general, useful tools for assessing climate change over the
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coming century. As the need for assessments of regional climate change increases,

alternative modeling strategies, including VRGCMs will be needed to improve our

understanding of the effects of fine-scale processes representation in regional cli-

mate regulation. Future work will focus on the capability of the variable resolution

system to correctly capture the features of discrete, extreme heat and precipitation

events.
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2.7 Supporting Information

This supporting information includes:

1) The interannual variability plots of mean Tmax, Tmin, Tavg and Pr in sim-

ulations and PRISM over 5, 10, 20 and 25 years. These plots show that

our simulation period from year 1980-2005 is appropriate for the regional

climatology studies in this work;

2) Figures depicting the spatial distribution of Tmax, Tmin, Tavg and Pr trends

in models and PRISM over the period 1980-2005, including the indicator

of statistical significance under the two-tailed t-statistic with a significance

level of 0.05;

3) Plots of seasonally-averaged Tmax, Tmin, and Tavg for seasons not addressed

in this study, and associated tabulated statistics;
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4) Results from a globally uniform CESM run at 0.25◦ spatial resolution with

the finite volume (FV) dynamical core (Wehner et al., 2014).
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Table 2.8. RMSD (◦C), MSD (◦C) and Spatial Correlation (Corr) for seasonally-
averaged MAM (March-April-May) temperature over California

RMSD UW PRISM Daymet

Tmax Tmin Tmax Tmin Tavg Tmax Tmin

VR-CESM 0.25◦ 1.776 2.212 2.297 2.164 2.033 2.344 2.686

VR-CESM 0.125◦ 1.727 1.841 2.145 1.883 1.908 2.214 2.287

WRF 27km 1.945 2.062 2.433 1.863 1.991 2.366 2.541

WRF 9km 3.114 2.065 3.060 1.568 1.801 2.969 2.293

Uniform CESM 0.25◦ 2.680 2.112 3.059 2.404 2.674 3.099 2.631

MSD UW PRISM Daymet

Tmax Tmin Tmax Tmin Tavg Tmax Tmin

VR-CESM 0.25◦ -0.859 1.308 -0.813 0.681 -0.819 -0.608 1.350

VR-CESM 0.125◦ -1.261 0.983 -1.274 0.328 -1.202 -1.052 0.952

WRF 27km -1.066 0.745 -1.020 0.117 -0.942 -0.818 0.788

WRF 9km -2.516 1.259 -2.530 0.604 -1.312 -2.305 1.227

Uniform CESM 0.25◦ -1.191 0.417 -1.139 -0.212 -1.398 -0.938 0.458

Corr UW PRISM Daymet

Tmax Tmin Tmax Tmin Tavg Tmax Tmin

VR-CESM 0.25◦ 0.997 0.963 0.995 0.963 0.990 0.994 0.942

VR-CESM 0.125◦ 0.998 0.975 0.996 0.972 0.993 0.995 0.959

WRF 27km 0.996 0.959 0.994 0.968 0.991 0.994 0.937

WRF 9km 0.993 0.971 0.994 0.983 0.994 0.993 0.962

Uniform CESM 0.25◦ 0.993 0.960 0.990 0.949 0.984 0.989 0.938
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Table 2.9. RMSD (◦C), MSD (◦C) and Spatial Correlation (Corr) for seasonally-
averaged SON (Sept.-Oct.-Nov.) temperature over California.

RMSD UW PRISM Daymet

Tmax Tmin Tmax Tmin Tavg Tmax Tmin

VR-CESM 0.25◦ 1.591 3.866 2.065 2.788 1.777 2.088 3.837

VR-CESM 0.125◦ 1.212 3.906 1.652 2.851 1.524 1.900 3.797

WRF 27km 1.665 3.022 2.111 1.784 1.663 2.059 3.060

WRF 9km 2.262 3.788 2.574 2.322 1.285 2.402 3.615

uniform CESM 0.25◦ 2.605 3.344 2.970 2.789 2.464 2.999 3.444

MSD UW PRISM Daymet

Tmax Tmin Tmax Tmin Tavg Tmax Tmin

VR-CESM 0.25◦ 0.122 3.303 -0.353 1.766 -0.240 0.102 3.063

VR-CESM 0.125◦ 0.394 3.439 -0.126 1.908 -0.048 0.353 3.134

WRF 27km 0.181 2.044 -0.295 0.507 -0.739 0.158 1.807

WRF 9km -1.412 3.310 -1.931 1.779 -0.673 -1.451 3.004

uniform CESM 0.25◦ -0.187 2.415 -0.655 0.877 -0.826 -0.205 2.175

Corr UW PRISM Daymet

Tmax Tmin Tmax Tmin Tavg Tmax Tmin

VR-CESM 0.25◦ 0.998 0.950 0.996 0.975 0.994 0.996 0.951

VR-CESM 0.125◦ 0.999 0.957 0.998 0.978 0.996 0.997 0.961

WRF 27km 0.997 0.949 0.996 0.982 0.995 0.996 0.948

WRF 9km 0.996 0.953 0.996 0.986 0.997 0.996 0.959

uniform CESM 0.25◦ 0.993 0.956 0.992 0.965 0.989 0.991 0.952
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Table 2.10. RMSD (◦C), MSD (◦C) and Spatial Correlation (Corr) for
seasonally-averaged DJF temperature over California.

RMSD UW PRISM Daymet

Tmax Tmin Tmax Tmin Tavg Tmax Tmin

VR-CESM 0.25◦ 1.959 2.751 2.196 2.015 1.742 2.253 2.700

VR-CESM 0.125◦ 1.633 2.302 2.035 1.840 1.747 2.089 2.318

WRF 27km 1.699 2.756 2.106 1.734 1.537 2.033 2.665

WRF 9km 1.876 2.753 2.324 1.865 1.324 2.169 2.625

uniform CESM 0.25◦ 2.979 2.072 3.339 2.500 3.211 3.310 2.408

MSD UW PRISM Daymet

Tmax Tmin Tmax Tmin Tavg Tmax Tmin

VR-CESM 0.25◦ -0.549 2.108 -0.984 0.977 -0.920 -0.774 1.836

VR-CESM 0.125◦ -0.723 1.678 -1.178 0.541 -1.202 -0.978 1.345

WRF 27km -0.075 2.027 -0.510 0.895 -0.620 -0.302 1.759

WRF 9km -1.049 2.214 -1.504 1.077 -0.594 -1.301 1.880

uniform CESM 0.25◦ -1.862 -0.010 -2.293 -1.142 -2.616 -2.085 -0.280

Corr UW PRISM Daymet

Tmax Tmin Tmax Tmin Tavg Tmax Tmin

VR-CESM 0.25◦ 0.989 0.856 0.988 0.925 0.978 0.987 0.856

VR-CESM 0.125◦ 0.993 0.900 0.991 0.941 0.979 0.989 0.898

WRF 27km 0.992 0.842 0.987 0.931 0.982 0.988 0.838

WRF 9km 0.990 0.859 0.987 0.942 0.987 0.988 0.870

uniform CESM 0.25◦ 0.980 0.922 0.977 0.885 0.926 0.976 0.893
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Table 2.11. RMSD (mm/day), MSD (mm/d), MRD, Spatial Correlation (Corr)
for averaged precipitation over California

MAM CPC UW

RMSD MSD MRD Corr RMSD MSD MRD Corr

VR-CESM 0.25◦ 0.542 0.279 0.264 0.981 0.589 0.193 0.265 0.968

VR-CESM 0.125◦ 0.554 0.291 0.267 0.979 0.579 0.217 0.263 0.970

WRF 27km 0.448 -0.183 0.209 0.975 0.587 -0.269 0.234 0.970

WRF 9km 2.143 1.370 0.881 0.966 1.991 1.295 0.783 0.971

uniform CESM 0.25◦ 0.601 0.182 0.254 0.971 0.611 0.096 0.259 0.964

MAM PRISM DAYMET

RMSD MSD MRD Corr RMSD MSD MRD Corr

VR-CESM 0.25◦ 0.542 0.279 0.264 0.981 0.589 0.193 0.265 0.968

VR-CESM 0.125◦ 0.554 0.291 0.267 0.979 0.579 0.217 0.263 0.970

WRF 27km 0.448 -0.183 0.209 0.975 0.587 -0.269 0.234 0.970

WRF 9km 2.143 1.370 0.881 0.966 1.991 1.295 0.783 0.971

uniform CESM 0.25◦ 0.601 0.182 0.254 0.971 0.611 0.096 0.259 0.964
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Table 2.12. RMSD (mm/day), MSD (mm/d), MRD, Spatial Correlation (Corr)
for averaged precipitation over California

JJA CPC UW

RMSD MSD MRD Corr RMSD MSD MRD Corr

VR-CESM 0.25◦ 0.138 -0.017 0.361 0.903 0.138 -0.008 0.359 0.905

VR-CESM 0.125◦ 0.153 -0.006 0.388 0.889 0.148 0.005 0.375 0.897

WRF 27km 0.213 0.010 0.587 0.850 0.186 0.019 0.515 0.892

WRF 9km 1.013 0.644 2.518 0.853 1.000 0.654 2.654 0.881

uniform CESM 0.25◦0.177 -0.034 0.471 0.835 0.179 -0.025 0.467 0.837

JJA PRISM DAYMET

RMSD MSD MRD Corr RMSD MSD MRD Corr

VR-CESM 0.25◦ 0.138 -0.017 0.361 0.903 0.138 -0.008 0.359 0.905

VR-CESM 0.125◦ 0.153 -0.006 0.388 0.889 0.148 0.005 0.375 0.897

WRF 27km 0.213 0.010 0.587 0.850 0.186 0.019 0.515 0.892

WRF 9km 1.013 0.644 2.518 0.853 1.000 0.654 2.654 0.881

uniform CESM 0.25◦0.177 -0.034 0.471 0.835 0.179 -0.025 0.467 0.837
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Table 2.13. RMSD (mm/day), MSD (mm/d), MRD, Spatial Correlation (Corr)
for averaged precipitation over California

SON CPC UW

RMSD MSD MRD Corr RMSD MSD MRD Corr

VR-CESM 0.25◦ 0.536 0.346 0.338 0.984 0.579 0.323 0.351 0.966

VR-CESM 0.125◦ 0.381 -0.054 0.223 0.969 0.471 -0.067 0.260 0.956

WRF 27km 0.382 -0.271 0.247 0.982 0.506 -0.294 0.278 0.971

WRF 9km 1.851 1.297 1.091 0.960 1.779 1.283 1.065 0.964

uniform CESM 0.25◦ 0.365 0.022 0.214 0.972 0.479 -0.001 0.271 0.955

SON PRISM DAYMET

RMSD MSD MRD Corr RMSD MSD MRD Corr

VR-CESM 0.25◦ 0.536 0.346 0.338 0.984 0.579 0.323 0.351 0.966

VR-CESM 0.125◦ 0.381 -0.054 0.223 0.969 0.471 -0.067 0.260 0.956

WRF 27km 0.382 -0.271 0.247 0.982 0.506 -0.294 0.278 0.971

WRF 9km 1.851 1.297 1.091 0.960 1.779 1.283 1.065 0.964

uniform CESM 0.25◦ 0.365 0.022 0.214 0.972 0.479 -0.001 0.271 0.955
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Figure 2.14. Sample standard deviation of annual Tmax from models and
PRISM with 5 year step from year 1980.
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unit: KTmin
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Figure 2.15. Sample standard deviation of annual Tmin from models and PRISM
with 5 year step from year 1980.
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unit: KTavg
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Figure 2.16. Sample standard deviation of annual Tavg from models and PRISM
with 5 year step from year 1980.
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Figure 2.17. Sample standard deviation of annual Pr from models and PRISM
with 5 year step from year 1980.
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Figure 2.18. Sample standard deviation of JJA Tmax from models and PRISM
with 5 year step from year 1980.
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Figure 2.19. Sample standard deviation of JJA Tmin from models and PRISM
with 5 year step from year 1980.
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Figure 2.20. Sample standard deviation of JJA Tavg from models and PRISM
with 5 year step from year 1980.
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Figure 2.21. Sample standard deviation of DJF Pr from models and PRISM
with 5 year step from year 1980.
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annual probabilty(>0.975 reject null at 0.025 one-size sig level) 

annual linear regression coefficient 

Figure 2.22. Results of Student’s t-test for a statistically significant linear time
trend of annual Tmax, Tmin and Tavg over 1980-2005 of models and PRISM.
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JJA probabilty(>0.975 reject null at 0.025 one-size sig level) 

JJA linear regression coefficient 

Figure 2.23. Results of Student’s t-test for a statistically significant linear time
trend of JJA Tmax, Tmin and Tavg over 1980-2005 of models and PRISM.
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DJF probabilty(>0.975 reject null at 0.025 one-size sig level)

DJF linear regression coefficient

annual probabilty(>0.975 reject null at 0.025 one-size sig level)

annual linear regression coefficient

Figure 2.24. Results of Student’s t-test for a statistically significant linear time
trend of annual and DJF precipitation over 1980-2005 of models and PRISM.
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Figure 2.25. Same as Figure 2.4 for season JJA along with uniform CESM 0.25◦.
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Figure 2.26. As Figure 2.4 for season MAM along with uniform CESM 0.25◦.
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Figure 2.27. As Figure 2.4 for season SON along with uniform CESM 0.25◦.
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Figure 2.28. As Figure 2.4 for season DJF along with uniform CESM 0.25◦.
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Figure 2.29. As Figure 2.6 but with the addition of uniform CESM 0.25◦.
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Annual unit: mm/day

unit: mm/day

Figure 2.30. As Figure 2.9 but with the addition of uniform CESM 0.25◦.
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Figure 2.31. As Figure 2.11 but with the addition of uniform CESM 0.25◦.
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Figure 2.32. As Figure 2.14 but with the addition of uniform CESM 0.25◦.
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Chapter 3

Irrigation impacts on California’s

climate with the

variable-resolution CESM

3.1 Abstract

The variable-resolution capability within the Community Earth System Model

(VR-CESM) is applied to understand the impact of irrigation on the regional cli-

mate of California. Irrigation is an important contributor to the regional climate

of heavily irrigated regions, and within the U.S. there are few regions that are as

heavily irrigated as California’s Central Valley, responsible for 25% of domestic

agricultural products. A flexible irrigation scheme with relatively realistic esti-

mates of agricultural water use is employed. The impact of irrigation on mean

climatology and heat extremes is investigated over the 26 year period 1980-2005

using a relatively fine grid resolution of 0.25◦ (∼28 km). Three simulations are

performed, including an unirrigated control run and two irrigation-enabled runs,

with results compared to gridded observations and weather station datasets. Dur-

ing the summer months (when irrigation peaks), irrigation leads to cooling of the

daily maximum near-surface temperature field (Tmax) by approximately 1.1 K.

Under irrigation, latent heat flux increased by ∼61% during the daytime as a re-

sult of increased surface evaporation; specific humidity increased by about 12%;

-77-



heat stress was reduced by 22% and the average soil moisture exhibited a small

(∼4.4%) but statistically significant increase. Compared with observations, irriga-

tion improved the frequency distribution of Tmax, and both length and frequency

of hot spells were better represented with irrigation enabled. Consequently, we

argue that high-resolution simulations of regional climate in CESM, particularly

over heavily irrigated regions, should likely enable the irrigation parameterization

to better represent local temperature statistics.

3.2 Introduction

Over the past century, human activity has had a clear impact on global and regional

climate, largely through indirect effects associated with increasing greenhouse gases

(Solomon et al., 2007), but also as a result of land cover changes, particularly defor-

estation, agriculture and urbanization (Bonan, 1997; Pielke et al., 2002; Kueppers

et al., 2008). Conversion of the natural land cover to cropland features prominently

in this change, which is accompanied by modified albedo and differences in both

sensible and latent heat fluxes (Foley et al., 2003). Besides affecting energy bal-

ance, land management also impacts the climate system by modifying the carbon

and water cycles, which are driven in part by cropping length and irrigation strat-

egy (Lobell et al., 2006). The pronounced cooling effect of irrigation, especially

over regions where irrigation is extensive, has been emphasized by previous studies

(Kueppers et al., 2007; Lobell and Bonfils , 2008).

The CV extends 600 km between its northernmost and southernmost point

and is between 60-100km in width. It features a vast agricultural industry that

has adapted to an extremely dry growing season with a Mediterranean climate

through the adoption of extensive irrigation practices. The USGS reported that

in the year 2000, approximately 42 km3 of water was used over ∼41,000 km2 of

irrigated area within California (Döll and Siebert , 2002; Famiglietti et al., 2011).

Bonfils and Lobell (2007) found that irrigation over CV has decreased summertime

maximum temperature by ∼2-3 K in heavily-irrigated areas compared with nearby

78



non-irrigated areas, based on long-term temperature records, although these im-

pacts had a negligible effect on nighttime temperatures. Similar impacts have also

been demonstrated in Nebraska’s irrigated areas by Mahmood et al. (2006).

Although global climate models (GCMs) rarely account for irrigation, it is

nonetheless meaningful to understand to what extent irrigation may affect the

global climate patterns (Sacks et al., 2009). Lobell et al. (2006) coupled the com-

munity atmosphere model (CAM) 3.0 to the community land model (CLM) 3.0 at

∼2-2.5◦ horizontal grid spacing to model irrigation by fixing soil moisture at sat-

uration during the growing season in all croplands. Although this approach likely

overcompensated for total added water, it produced global land surface cooling of

1.3 K, and regional cooling of up to 8 K. Lo and Famiglietti (2013) used CAM 3.5

along with CLM 3.5 at ∼1.4◦ horizontal resolution, and argued that the increase

in evapotranspiration and water vapor due to irrigation significantly impacts the

atmospheric circulation in the southwestern United States by strengthening the

regional hydrological cycle.

In order to model regional climate over the CV, relatively fine horizontal reso-

lution is needed to more accurately represent microclimates, land-use, small-scale

dynamical features and corresponding interactions (Leung et al., 2003a; Rauscher

et al., 2010). In this study, we use the recently developed variable-resolution option

in Community Earth System Model (VR-CESM) to study the impact of irrigation

on regional climate over the CV, that features a more flexible irrigation scheme

with relatively realistic estimates of regional agricultural water use (as will be de-

scribed in Section 2). VR-CESM has been demonstrated to be effective for regional

climate studies and applications at a reduced computational cost compared to uni-

form GCMs (Zarzycki et al., 2015; Rhoades et al., 2016a; Huang et al., 2016). In

particular, this study is one of the first to use variable resolution for assessing the

impact of a physical parameterization at high-resolution in a global Earth-system

model. The central hypothesis of this study is that irrigation in the CV of Cali-

fornia is an important contributor to the region’s surface energy budget and must
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be accounted for in order to properly simulate temperature statistics, tested by a

control (non-irrigated) and two irrigated 26-year simulations in VR-CESM.

This work builds on a number of previous modeling studies that have explored

the importance of irrigation in controlling the climate over the CV region in the

following ways: (1) it employs relatively high resolution (∼28 km) covering the

western U.S. over long-term period (from year 1980-01-01 to 2005-12-31); (2) it

uses a more realistic irrigation parameterization embedded in CLM 4.0 and cou-

pled in CESM 1.2.0 rather than experimentally fixed irrigated water, as in many

previous studies (i.e. Lobell et al. (2006); Lo and Famiglietti (2013)); (3) it uses a

variable-resolution global climate model (rather than the low-resolution global or

limited area models forced by reanalysis dataset or GCM output that have been

previously used); and (4) it explores a more comprehensive array of impacts of

irrigation on the regional climate, focusing on temperature statistics, including ex-

treme heat episodes. We conclude that the irrigation parameterization in CESM is

effective at addressing a bias in daily maximum temperatures and heatwave statis-

tics in California’s CV, and is necessary in order to accurately capture temperature

statistics in heavily irrigated regions at high model resolution.

This study is organized as follows: Section 2 describes the model setup, em-

ployed datasets and methodology. In section 3, simulation results are provided and

analyzed. Key results are summarized along with further discussion in section 4.

3.3 Model setup and reference datasets

3.3.1 Irrigation parameterization

As a state-of-the-art Earth modeling framework, CESM 1.2.0 consists of coupled

atmospheric, oceanic, land and sea ice models (Neale et al., 2010b; Hurrell et al.,

2013). In this study, CAM version 5 (CAM5) (Neale et al., 2010b) and CLM version

4.0 (Oleson et al., 2010) are used. Global sea-surface temperatures are prescribed in

accordance with the Atmospheric Model Intercomparison Project (AMIP) protocol

(Gates , 1992). The finest horizontal resolution of our grid is ∼28 km covering the
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(a) VR-CESM 0.25°

(b)

Figure 3.1. (a) The approximate grid spacing used for the VR-CESM 0.25◦

mesh. (b) A depiction of the transition from the global 1◦ resolution mesh
through two layers of refinement to 0.25◦.

western U.S., with a quasi-uniform 1◦ mesh over the remainder of the globe (see

Figure 3.1). Considering the relatively flat topography (less than 100 m) over

most of CV, the ∼28 km grid resolution satisfies our need for modeling irrigation

effects. In particular, simulations at 0.125◦ (∼14 km) conducted in Huang et al.

(2016) did not show a statistically significant change in temperature statistics over

California. In our study, as in Zarzycki et al. (2015), general circulation patterns

(e.g., wind, pressure and precipitation) do not exhibit apparent artifacts in the

variable-resolution transition region. A detailed description of the techniques of

VR-CESM employed in this study can be found in Rhoades et al. (2016a). Here,

our model description focuses on the irrigation scheme within CLM 4.0.

The fractional land-use data used for computing cropland (independent of spe-
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cific type) that is equipped for irrigation within each grid cell is from Siebert et al.

(2005) for the year 2000, and is fixed over the simulation period (see Figure 3.2).

This assumption is reasonable since irrigated area has been largely unchanged in

California since year 1980 (Bonfils and Lobell , 2007).

The need for daily irrigation is determined at 6 AM local time by computing

the deficit between the current soil moisture content and a target soil moisture

content. Note that this calculation does not account for the infiltration rate of the

soil. If positive, the difference is then added to the ground surface at a constant

rate over the following four hours, bypassing canopy interception. By default, CLM

simulates ten soil layers, with a total depth of 3.4 m (Oleson et al., 2010). The

target soil moisture content in each soil layer i (wtarget,i, in kg/m2) is a weighted

average of (a) the minimum soil moisture content that results in no water stress

(wo,i, kg/m2) and (b) the soil moisture content at saturation (wsat,i, kg/m2), in

accordance with

wtarget,i = (1− α) ∗ wo,i + α ∗ wsat,i (3.1)

The default value of the irrigation weight factor α is 0.7, which was determined

empirically to give global, annual irrigation amounts that approximately match

observed gross irrigation water use around the year 2000 (Shiklomanov , 2000).

This parameterization is designed to approximate human behavior – that is, enough

water is added so as to avoid water stress in crops, but not so much that the soil

is completely saturated. More details about the irrigation model can be found in

the online technical description (Sacks , 2011).

3.3.2 Simulations

In order to understand the impacts on the local climate triggered by irrigation

over the CV, we have conducted a control run (NRG) without irrigation and two

irrigation-enabled runs, referred to as IRG and IRG(0.5) respectively. The IRG

run uses the default irrigation weight factor (α = 0.7). This value was adjusted to
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Figure 3.2. The percent of irrigated cropland at each grid cell. The black line
delineates the boundary of the CV region.
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0.5 in the irrigated IRG(0.5) run so as to determine the impact of changes in total

irrigation water. Simulations were performed over the period 1979-01-02 to 2005-

12-31 (UTC). For purposes of analysis, 1979 was discarded as a spin-up period

to allow adequate time for the land and atmosphere to equilibrate. Initial soil

moisture conditions are specified from the output of long-term simulations so as

to ensure the groundwater aquifer was initially in near-equilibrium with the local

climatology. The 26-year time period was chosen to provide an adequate sampling

of annual variability within computational constraints. A land cover dataset at

3 min (∼10 km) grid resolution for year 2000 was used as it provided a realistic

fraction of irrigated cropland in each grid cell over the CV when interpolated onto

the 28 km grid (see Figure 2).

Irrigation water applied in the IRG simulation was ∼2.84 mm/day in JJA when

averaged over the CV, which equates to 31.7 km3 total water. Given that no re-

liable and comprehensive dataset on cropland utilization or fallowing is available,

and that information on local irrigation practices is even harder to come by, it was

determined that there was no precise and publicly available numbers for the irri-

gation area and total utilized irrigation water over the CV. However, as mentioned

earlier, in the year 2000 the USGS reported that approximately 42 km3 of water

was used over approximately 41,000 km2 of irrigated area in California. Based

on the fraction of cropland equipped for irrigation in the year 2000 obtained from

Siebert et al. (2005), we arrived at an estimate of CV irrigated area of about 33,190

km2, which is about 81% of California’s total irrigated area. Assuming between

half to two thirds of the 42 km3 of water was employed over the CV during JJA

(excluding certain water amount for late spring and early fall), that resolves to

about 21 to 28 km3, or 0.66 to 0.88 times the amount applied in IRG (∼ 32km3).

This suggests that the water use imposed by this irrigation scheme is relatively

realistic.
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3.4 Methodology

In the CV, irrigation peaks during the summer growing season (Salas et al., 2006)

in response to California’s dry Mediterranean summers (with a precipitation rate

of about 0.13 mm/day averaged over year 1980-2005). Our simulations accurately

reproduce this observation, as most irrigated water is added during summer (see

Figure 1 in the supplement document). To study the climatological impacts of

irrigation, we focus primarily on changes in June, July and August (JJA) near-

surface (2 m) temperatures including daily maximum, minimum and average tem-

peratures (Tmax, Tmin and Tavg), and the associated mechanisms driving the

relative changes.

To determine how irrigation affects heat extremes within the CV, we calculated

hot spell length, hot spell frequency, and mean Tmax over the hot spells, based on

the JJA daily Tmax over the 1980-2005 period. For our purposes, a hot spell is

present in a given grid cell when five or more consecutive days with Tmax exceeds

38◦C. This threshold value approximately corresponds to the 90th percentile of

all daily Tmax values within the CV. Hot spell length is defined as the average

duration (in days) for all hot spells over the 26 year period, hot spell frequency is

defined as the average number of hot spells per year, and mean hot spell Tmax

is defined as the average Tmax over all the hot spell days. When analyzing hot

spells, declustering is employed following the strategy of Ferro and Segers (2003)

to ensure hot spells are serially independent. This functionality is implemented in

the R package extRemes (Gilleland and Katz , 2011).

To restrict the analysis to the CV, the variables of interest have been masked

and/or averaged within the area defined by the bounded region as sketchily de-

picted in Figure 3.2, which contains 155 grid points. To quantify model perfor-

mance against reference datasets, the root-mean-square deviation (RMSD) and

mean signed difference (MSD) are used, and spatial correlation (Corr) is assessed

by computing sample linear cross-correlations at lag 0 after converting a two-

dimensional dataset to a one-dimensional array. Mathematically, RMSD and MSD

85



are written as,

RMSD =

√√√√ 1

N

N∑
i=1

(vi − v̂i)2 MSD =
1

N

N∑
i=1

(vi − v̂i) (3.2)

where vi and v̂i are values from the simulation output and reference dataset re-

spectively; i is the grid-point index and N is the total number of grid points over

specific regions.

Throughout the remainder of this study, Student’s t-test has been used to test

the equality of the means of two datasets. This is employed for the seasonally-

averaged data at each grid point and for spatially averaged data over CV. F-test is

applied to test whether the sample variances are equal. These tests are used here

when the sample population can be adequately described by a normal distribution,

where normality is assessed under the Anderson-Darling test. All these tests are

evaluated at the α = 0.05 significance level.

3.4.1 Reference datasets

For comparison, we employ two high-quality gridded observational datasets (UW

and PRISM) and selected weather station data (NCDC) to evaluate our simulation

output. The detailed descriptions of these reference datasets are as follows.

UW The UW daily gridded meteorological data is obtained from the Surface Wa-

ter Modeling group at the University of Washington (Maurer et al., 2002; Hamlet

and Lettenmaier , 2005). The dataset is provided at 0.125◦ horizontal resolution

covering the period from year 1949 to 2010 with daily time frequency for Tmax

and Tmin in the aspect of temperature, which are used in this study.

PRISM The Parameter-elevation Regressions on Independent Slopes Model (PRISM)

(Daly et al., 2008) gridded dataset at 4 km resolution is also employed in this study.

This model ingests point measurements and applies a weighted regression scheme

that accounts for key factors affecting the local climatology. PRISM is the United

States Department of Agriculture’s official climatological dataset. Monthly cli-

matological variables are available for year 1895 through 2015 and daily data for
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year 1981 to 2015 from the PRISM Climate Group (PRISM Climate Group, 2004).

This study makes use of monthly Tmax, Tmin, Tavg, and daily Tmax.

NCDC Weather station measurements over the CV are obtained from the Global

Historical Climate Network (GHCN) and provided by NOAA/NCDC (Menne et al.,

2012). Weather stations within the study region were chosen from all stations with

at least 90% observations of Tmax over all JJA days from 1981 to 2005. A subset

of 11 stations were then chosen to provide roughly even spatial coverage of the CV.

3.5 Results

The average JJA Tmin, Tavg and Tmax over the 1980-2005 period from all sim-

ulations and gridded datasets are depicted in Figure 3.3. Relative to the gridded

datasets, NRG has a prominent overestimation of Tmax, with MSD values of ∼0.75

K and RMSD values of ∼1.7 K (see Table 4.1). The cooling effect caused by ir-

rigation is clear in all temperature fields when comparing NRG and IRG results,

with all fields exhibiting significant differences over parts of the CV (as hatched

in Figure 3). Notably, no statistically significant difference in temperature arises

from reducing the irrigation factor from 0.7 to 0.5. Although the IRG run shows

a slight cold bias with an MSD around -0.36 K (which is reduced in IRG(0.5) to

around -0.2 K), this effect is limited to the base of the Sierra Nevada and the San

Francisco Bay Delta region.

Compared with NRG, the RMSD of Tmax for IRG(0.5) is only reduced by

about 20% against PRISM, which appears to be due to the offset effects caused by

the non-irrigated grid cells around our study region’s boundary. Although Tmin

was also reduced by about 0.5 K in IRG over the irrigated area, all three runs still

exhibit a warm bias in this field relative to the reference. The net result is that

Tavg is overestimated in NRG over the CV, except in regions influenced by the

Delta sea breeze, whereas IRG produced a slight cool bias in Tavg after alleviating

the overestimation of Tmax in the northern and southern reaches of the CV. The

correlation coefficients between simulations and reference datasets are about 0.76
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Figure 3.3. Average JJA Tmax, Tmin and Tavg over year 1980-2005 for mod-
els and observations (◦C). Hatching denotes statistically significant differences
between NRG and IRG.
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Table 3.1. RMSD (◦C), MSD (◦C) (left column minus top row) and Corr of
Tmax, Tmin and Tavg between models and gridded observations over the CV
in JJA (1980-2005).

JJA Tmax UW PRISM NRG

RMSD MSD Corr RMSD MSD Corr RMSD MSD Corr

NRG 1.685 0.749 0.857 1.689 0.751 0.856

IRG 1.511 -0.357 0.816 1.422 -0.355 0.841 1.378 -1.105 0.973

IRG(0.5) 1.467 -0.205 0.821 1.383 -0.203 0.843 1.251 -0.953 0.975

JJA Tmin UW PRISM NRG

RMSD MSD Corr RMSD MSD Corr RMSD MSD Corr

NRG 2.929 2.117 0.799 2.759 1.596 0.763

IRG 2.505 1.694 0.797 2.272 1.173 0.774 0.659 -0.423 0.993

IRG(0.5) 2.536 1.730 0.797 2.306 1.209 0.773 0.625 -0.387 0.993

JJA Tavg PRISM NRG

RMSD MSD Corr RMSD MSD Corr

NRG 1.746 0.478 0.851

IRG 1.340 -0.309 0.862 1.066 -0.786 0.983

IRG(0.5) 1.318 -0.215 0.863 0.992 -0.692 0.984

to 0.86, indicating that VR-CESM can capture the overall spatial distributions

of temperature. Although NRG and IRG are highly correlated with each other

(>0.95), this simply implies that the spatial pattern of IRG is quite similar to

NRG under spatially uniform cooling. Over non-irrigated areas, the results are

essentially identical among all runs, suggesting that temperature modulation is

largely a local phenomenon.

As mentioned earlier, the differences in temperature between the IRG and

IRG(0.5) simulations were not statistically significant, and were much smaller than

the differences between IRG and NRG. Therefore, the intrinsic variability (even

with some differences in irrigation water amounts) is small for VR-CESM relative
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to the effect of irrigation. This further testifies that the statistically significant

differences between IRG and NRG are due to enabled irrigation instead of random

variation.

Key variables associated with the irrigation model have been tabulated in Table

3.2. Tmax, latent heat flux, precipitation and soil moisture are further illustrated

in Figure 3.4. With the relative scarcity of natural precipitation in summer season

(∼0.1 mm/day), there is a ∼61% increase in latent heat flux after adding ∼2.84

mm/day irrigated water for IRG over the hot and dry summer period. The main

contribution to latent heat flux increase from NRG to IRG is due to ground evap-

oration (which is about 2.5 times larger), as vegetation evapotranspiration did

not differ significantly between NRG (∼1.1 mm/day) and IRG (∼1.25 mm/day).

Therefore, cooling of Tmax is largely due to increased latent heat flux during the

daytime caused by evaporation from the surface.

With irrigation enabled, the specific humidity increased by about 12% due to

increased evaporation, and sensible heat flux decreased by 13% with lower surface

temperatures and a shift of sensible to latent heat flux. The soil moisture averaged

over all surface and subsurface soil layers showed a statistically significant increase

(∼ 4.4%) under irrigation. Since variability of the soil moisture is smaller at lower

levels compared to upper levels, even a 4.4% change in the total column average

was significant. The change in soil moisture was largest near the surface, with soil

water in the topmost five soil layers increased by more than 10% (reaching ∼ 52%

at the first thin layer).

Notably, the small difference in column soil moisture (averaged over all the ten

soil layers) between IRG and IRG(0.5) (equal to about 1.4%, but still significant

at the 95% level) suggests that irrigated water does not effectively infiltrate into

lower soil layers, given that the irrigated water applied in IRG is more than two

times that of IRG(0.5). The soil water between IRG and IRG(0.5) is significantly

different at the ground surface (∼ 5% difference) and in the bottom layers (∼ 1%

difference), but not at the near-surface and throughout the middle levels. In fact,

90



T
ab

le
3.

2.
K

ey
va

ri
ab

le
s

as
so

ci
at

ed
w

it
h

ir
ri

ga
ti

on
w

it
h

in
th

e
C

V
in

J
J
A

(1
98

0-
20

05
).

Ir
ri

ga
te

d
L

at
en

t
S
en

si
b
le

G
ro

u
n
d

S
u
rf

ac
e

S
oi

l
P

re
ci

p
it

at
io

n
2m

sp
ec

ifi
c

w
at

er
h
ea

t
fl
u
x

h
ea

t
fl
u
x

ev
ap

or
at

io
n

ru
n
off

m
oi

st
u
re

h
u
m

id
it

y

(m
m

/d
ay

)
(W

/m
2
)

(W
/m

2
)

(m
m

/d
ay

)
(m

m
/d

ay
)

(k
g/

m
2
)

(m
m

/d
ay

)
(g

/k
g)

N
R

G
0.

00
0

38
.8

32
12

0.
45

8
0.

25
7

0.
01

6
11

4.
11

4
0.

10
1

6.
98

9

IR
G

2.
83

8
62

.5
74

10
4.

75
2

0.
90

7
1.

61
0

11
9.

15
8

0.
11

9
7.

85
2

IR
G

(0
.5

)
1.

27
2

61
.6

95
10

5.
73

0
0.

89
2

0.
23

6
11

7.
55

0
0.

11
8

7.
78

2

91



(c) Precipitation (mm/d) (d) Soil moisture (kg/m^2)

(a) Tmax ( C) (b) Latent heat flux (W/m^2)

Figure 3.4. Box plots for JJA averaged (a) Tmax, (b) Latent heat flux, (c)
Precipitation, and (d) Soil moisture. From top to bottom, horizontal lines
represent maximum value, third quartile, median, first quartile and minimum
value, respectively.
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most of the additional water (∼1.57 mm/day) from IRG(0.5) to IRG directly led to

surface runoff (parameterized by removing surface water after infiltration into the

soil at ∼0.24 mm/day for IRG(0.5) and ∼1.6 mm/day for IRG). Since irrigation

water use in the IRG simulations is comparable to observations, this suggests that

ineffective infiltration could be driving substantial water waste in the CV.

Based on the JJA-averaged values of each year over the 26-year period, box-and-

whisker diagrams for four selected variables are given in Figure 3.4. With irrigation,

both the average magnitude and annual variability of Tmax (around 0.9◦C) are

closer to observations. Compared to NRG, the range of Tmax for irrigation runs

reduced to ∼3◦C from ∼4.5◦C with a more concentrated distribution, suggesting

that there may be some indication of irrigation having a modulating effect on

temperature variability (although the differences of variances are not statistically

significant). The mean latent heat flux almost doubles when irrigation in enabled,

however the variance of the distribution (with inter-annual standard deviation of

∼2.7 W/m2 for IRG and ∼3.3 W/m2 for IRG(0.5)) did not substantially differ

from NRG (with inter-annual standard deviation of ∼3.7 W/m2).

Average precipitation also did not significantly change among these three runs

(under the Mann-Whitney-Wilcoxon test at 0.05 level together with the observa-

tions of ∼0.13 mm/day for UW and ∼0.14 mm/day for PRISM), however adding

irrigation tended to widen the range of precipitation intensity (significantly differ-

ent, with inter-annual variability around 0.12 to 0.13 mm/day for irrigation runs,

and about 0.08 mm/day for NRG). This is possibly due to enhanced local convec-

tive processes driven by irrigation modifying the depth of planetary boundary layer,

lifting condensation level, and mixing layer (also found by Kawase et al. (2008);

DeAngelis et al. (2010); Qian et al. (2013)). A statistically significant increase in

convective available potential energy (CAPE) over the irrigated region and part of

its surrounding area was observed in our results (see Figure 3 in the supplement).

The mean soil moisture significantly increased under irrigation, with the standard

deviation of soil moisture decreasing significantly between IRG (about 1.5 kg/m2)
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and NRG (∼ 2.2kg/m2), likely simply due to modulation of soil moisture content

associated with the irrigation parameterization.

As irrigation clearly led to a strong cooling effect for average Tmax over the hot

summers of the CV, we further investigated the frequency distribution of Tmax

(as depicted in Figure 3.5) based on all JJA daily values at each CV grid point

for all runs and reference datasets including UW, PRISM and 11 weather stations

(area weighted using Voronoi diagram). Since PRISM does not provide daily data

for the year 1980, we only assess the period 1981 to 2005 in this calculation.

Overall, the NRG run exhibited an obvious warm bias associated with a relatively

long forward tail with Tmax approaching 48◦C. This forward tail was also absent

from the NCDC weather station data, adding further evidence that it is associated

with unrealistically frequent warm temperatures. However, with irrigation enabled

there was much closer agreement with UW and PRISM, especially in the upper tail,

although a slight cold bias remains. Examining absolute differences, the first four

moments of the frequency distribution of Tmax all showed marked improvement

under irrigation (Table 3.3). Under the Kolmogorov-Smirnov (KS) test, compared

with UW and PRISM, the spatially averaged JJA Tmax over the CV for the 25

years (resulting in 25 values) was significantly different for NRG at the 90% level,

whereas the difference was not significant for IRG or IRG(0.5).
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Table 3.3. The first four moments of the JJA Tmax frequency for models and
observations over CV. Column titles refer to the Average (Avg), Variance (Var),
Skewness (Skew) and Kurtosis (Kurt).

Avg Var Skew Kurt

NRG 33.535 25.732 -0.445 0.252

IRG 32.374 21.343 -0.505 0.415

IRG(0.5) 32.537 21.125 -0.556 0.632

UW 32.745 22.442 -0.717 0.794

PRISM 32.814 24.007 -0.802 1.120

Notes: If skew > 0 [skew < 0], the distri-

bution trails off to the right [left]. If kurto-

sis > 0 [< 0], a sharper [flatter] peak com-

pared to a normal distribution (leptokurtic

and platykurtic, respectively) is expected.

Hot spell features related with heat extremes are tabulated in Table 3.4 for

simulations and the UW dataset (results from PRISM were effectively equivalent

to UW). Hot spells were too long and too frequent without irrigation, but once

irrigation was enabled, number, duration and intensity were all closely matched to

UW by the model (no significant differences under t-test). Notably, the cooling

effect associated with irrigation led to a reduction in length and frequency of hot

spells of about 20% and 30%, respectively (both statistically significant at the 0.05

level). The difference in Tmax between IRG and NRG runs when averaged over

hot spells, compared with the seasonal average, was approximately halved (but

still significant). It appears that irrigation has less impact on the temperature of

hot days, compared with average summer days.
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Figure 3.5. Frequency distribution of JJA daily Tmax over the period 1981-2005
from simulations and reference datasets.
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Table 3.4. Hot spell features including length (days), number and mean Tmax
(◦C) from simulations and UW data over the CV in JJA from 1980-2005.

NRG IRG IRG(0.5) UW

Hot spell length 8.810 7.014 6.483 6.930

Hot spell number 2.174 1.500 1.505 1.539

Hot spell Tmax 40.340 39.806 39.887 39.720
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Due to the important role the CV plays in agricultural industry, we have also

examined the heat stress experienced by crops. As defined by Teixeira et al.

(2013), heat stress can be quantified by the number of hours per day exceeding

35◦C. In our study, heat stress was assessed for days from June 1st to September

30th (JJAS) for NRG and IRG runs. Given only daily outputs of Tmin and

Tmax (as opposed to hourly temperature values), heat stress was obtained using

a cosine fit to approximate hourly temperatures. This approach was validated by

comparing the number of hours exceeding 35◦C from one year of simulation with

hourly output against the cosine approximation. Since the observed discrepancy

was only about 4%, the cosine approximation was subsequently applied to obtain

hourly temperature exceedance over the 26-year study period in the CV. Based on

the averaged hourly counts (depicted in Figure 3.6), it was observed that both the

heat stress intensity and frequency were reduced under irrigation, most obviously

during mid-July to early September. The average hours per day exceeding 35◦C

over the JJAS period was 2.352 for NRG and 1.838 for IRG – a ∼22% decrease.

3.6 Discussion and Summary

With irrigation employed, nighttime warming is expected to occur, leading to an

increase in daily Tmin due to the increased thermal conductivity of wet soil, as

found by Kanamaru and Kanamitsu (2008). However, in our irrigation-enabled

runs, Tmin did not increase but instead decreased over part of the irrigated area

(statistically significant, although the magnitude of this decrease was much smaller

than that of Tmax). As argued by Bonfils and Lobell (2007), our result further

supports the conclusion that irrigation does not completely explain the large night-

time warming observed in California. As discussed in Kueppers et al. (2008) and

Kanamaru and Kanamitsu (2008), the sign of the change in Tmin associated with

irrigation depends on the particular parameterization and the assessed climate

model. These differences are further associated with differences in soil properties,

including soil heat capacity and conductivity, and on nighttime soil-air tempera-
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Figure 3.6. The number of hours larger than or equal to 35◦C per day from
June 1st to September 30th averaged over 1980-2005, for NRG and IRG runs.
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ture gradient. Our study matches the findings of previous studies that irrigation

generally lowers temperatures in the CV region, but with a smaller magnitude

(∼1.1 K) than claimed by Lobell et al. (2006).

Lo and Famiglietti (2013) concluded that increases in evapotranspiration and

water vapor export caused by irrigation significantly impacts the atmospheric cir-

culation in the southwestern United States, including strengthening the regional

hydrological cycle. Their study was conducted using coupled CAM 3.5 and CLM

3.5 at the grid resolution of 1.4◦. However, irrigation was accounted for in this work

using an approach substantially different from the present study: namely, they pre-

scribed a fixed soil moisture which accounted for all irrigated water (around 16.7

km3/JJA) within the irrigated area – this is in contrast with our approach which

only obtained soil moisture via infiltration from applied surface water. Unlike in

Lo and Famiglietti (2013), we observed no evidence for an enhanced hydrological

cycle and associated increase in water vapor transport. Namely, our simulations

exhibit no significant changes at the 90% level (the same level as Lo and Famiglietti

(2013) used) to precipitation, low-level cloud, near-surface specific humidity and

CAPE, and the moisture flux anomaly at 850 hPa over the U.S. southwest, where

Lo and Famiglietti (2013) found changes attributed to irrigation in the CV (see

Figure 3 in the supplement). We do see that there are certain positive increases

of precipitation, low-level cloud and CAPE between IRG and NRG over some re-

gions of Nevada and Utah, but these are not present when comparing IRG(0.5)

and NRG.

We have also explored the possible mechanisms by which irrigation may bring

about global change, including latent heat flux, near-surface specific humidity, pre-

cipitation and global cloud cover. The quantitative impacts are quite similar to

what has been obtained in Sacks et al. (2009), and so are not repeated here. In

order to determine if irrigation changes the overall atmosphere circulation, the 500

hPa geopotential height field was examined (see Figure 2 in supplement). We ob-

served that the large-scale pattern was similar in all cases, although statistically
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significant differences did sporadically arise. Since no clear pattern was present

among regions with statistically significant differences, and there is no clear phys-

ical mechanism to connect these regions with irrigated areas, we attribute these

differences to insufficient ensemble size.

By decreasing the irrigation weight from 0.7 to 0.5, total irrigated water em-

ployed was nearly reduced by half. Nonetheless, the climatological impacts ob-

served in IRG(0.5) were quite similar to IRG. To understand the climatological

impacts under an extreme water deficit, we also performed a five year test run in

which the irrigation weight factor was set to zero, and added half of the water

that was calculated from the deficit equation described in Section 2, resulting in

irrigated water being applied at 0.42 mm/day. In this case, the average latent

heat flux was around 50.65 W/m2, which is about 80% of the value of IRG run.

This emphasizes the non-linear dependency between irrigated water application

and resultant latent heat flux: specifically, most of the extra water applied in the

irrigation calculation simply resulted in surface runoff rather than an enhance-

ment of soil moisture, suggesting that CLM performs relatively conservatively in

soil moisture regulation. According to the CLM 4.0 technical report (Oleson et al.,

2010), the maximum infiltration capacity is determined from soil texture and soil

moisture (Entekhabi and Eagleson, 1989) and the runoff is parameterized by the

simple TOPMODEL-based (Beven and Kirkby , 1979) runoff model (SIMTOP) de-

scribed by Niu et al. (2005). In CLM 4.0, the surface and subsurface runoff are

assumed to be washed into nearby rivers and then end up in ocean. CLM 4.0

does provide a simple river routing model (RTM) which was not enabled in our

simulations since it lacks the realistic control of water infiltration or groundwater

replenishment present in a watershed model. To accurately address the impli-

cations of irrigation, we expect that a coupled integrated hydrological modeling

system is necessary to correctly represent regional hydrological processes.

To summarize, the variable-resolution Community Earth System Model (VR-

CESM) was used to simulate the impact of irrigation on the regional climate of
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California’s Central Valley (CV), one of the most heavily irrigated and produc-

tive areas in the U.S. Within the land component model (CLM), an irrigation

scheme with relatively realistic estimates of water use was employed. The cooling

effect caused by irrigation was obvious in the Tmax field with a magnitude around

1.1 K (seasonally averaged over summer months), which arose from the greatly

increased (∼61%) latent heat flux associated with daytime ground evaporation.

With irrigation, both the average magnitude and annual variability of Tmax were

better captured when compared with gridded observations and weather station

data. Compared with Tmax, smaller differences were observed for Tmin over the

irrigated area, but no statistically significant impacts from irrigation were observed

over the surrounding non-irrigated area’s climate. Although irrigated water did

not effectively infiltrate into lower soil layers, soil moisture nonetheless exhibited a

statistically significant increase (with a slight amplitude ∼4.4%) under heavy irri-

gation. With irrigation enabled, an exceptional warm bias associated with a long

forward tail of the frequency distribution of Tmax is alleviated, although a slight

cold bias remained at higher elevations. Further, the cooling effect associated with

irrigation led to a reduction in length and frequency of hot spells for about 20%

and 30%, closely matched to observations, and a decrease in the heat stress fre-

quency by about 22% for cropland. This work suggests that the irrigation scheme

should be enabled for regional climate studies with CLM and CESM, particularly

over heavily irrigated regions.

In this study, we have argued that irrigation in the CV is an important com-

ponent of the region’s surface energy budget that must be parameterized in high-

resolution climate models in order to properly simulate temperature statistics. The

ongoing California drought (2012-present) highlights the importance of water re-

sources to agriculture in the CV. In the absence of surface water for irrigation,

groundwater reserves were depleted in order to maintain agricultural production.

However, it is widely acknowledged that in a prolonged future drought, continued

groundwater pumping would not be sustainable, which would in turn lead to a
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reduction in applied irrigation water. This study suggests that under these condi-

tions, warming from climate change, which is tampered by irrigation in the CV,

would be exacerbated and leads to a substantial increase in daily Tmax through-

out the CV with repercussions for human health and heat stress (Williams et al.,

2015). Consequently, we anticipate this study can be extended to better under-

standing the feedbacks associated with prolonged drought conditions in the U.S.

Southwest.
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3.8 Supporting Information

This supplement includes:

1) The irrigated water of IRG run, and the precipitation for both NRG and

IRG runs over each of the four seasons, averaged over the period 1980-2005.

2) The geopotential height at 500 hPa for all the simulations averaged over JJA

from 1980-2005.

3) The averaged JJA Precipitation, low-level cloud, near-surface specific humid-

ity and convective available potential energy (CAPE) of all the simulations

and their differences with t-test results for year 1980-2005 period.
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Figure 3.7. Irrigated water from IRG, and precipitation for both NRG and IRG
for each of the four seasons, as averaged over the period 1980-2005.
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Figure 3.8. Geopotential height at 500 hPa for all simulations (averaged over
JJA from 1980-2005).
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Chapter 4

The changing character of

twenty-first century precipitation

over the western United States in

the variable-resolution CESM

4.1 Abstract

The changing character of precipitation frequency and intensity in the western

United States over the 21st century is investigated using an ensemble of 26-year

simulations with the variable-resolution Community Earth System Model (VR-

CESM) at a local grid resolution of ∼0.25◦. Simulations are forced using prescribed

sea-surface temperatures, sea-ice extent, and greenhouse gas concentrations from

the representative concentration pathway (RCP) 8.5 scenario. VR-CESM is shown

to be effective at accurately capturing the spatial patterns of the historical precip-

itation climatology. In the Intermountain West and Southwest U.S., we observe a

statistically significant increase in mean precipitation and rainy days through mid-

century, although this trend is tampered by the end of the century in response to

a decrease in relative humidity. In the Pacific Northwest, extreme precipitation

events are observed to increase significantly as a result of improved cool-season

integrated vapor transport. In particular, extreme precipitation in this region ap-
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pears to increase more rapidly than would be predicted by the Clausius-Clapeyron

relationship. No clear climate signal emerges in mean precipitation or for extremes

in California, where the precipitation climatology is subject to large interannual

variability that is tied more closely to ENSO. Results are discussed in the context

of the existing literature on precipitation extremes in the western U.S.

4.2 Introduction

Future climate projections, particularly those addressing the frequency and in-

tensity of rare events, are inevitably subject to large uncertainties. Nonetheless,

climate models have been invaluable tools for developing insight into this prob-

lem (Easterling et al., 2000). In particular, global climate models (GCMs) have

often been used to investigate changes in the mean, variability, and extremes of cli-

mate, as forced with predicted greenhouse gas (GHGs) concentrations and aerosol

emissions (Meehl et al., 2006).

Under the lasting human-induced increases in greenhouse gases, the precipita-

tion is predicted to undergo diverse changes regionally (Tebaldi et al., 2006; Kharin

et al., 2007). This can not be accurately described by coarse resolution used in the

previous studies. Dynamical downscaling with regional climate models (RCMs)

has been one of the few tools available to ascertain the frequency, intensity, and

duration of extreme events at the needed scales. Higher resolution enables more

accurate simulation of precipitation extremes, which are driven by circulation pat-

terns, cloudiness, land use, land/water contrast, snowpack and topography (Leung

et al., 2003a; Diffenbaugh et al., 2005; Salathé Jr et al., 2008; Wehner et al., 2010).

For example, Leung et al. (2003b) showed that the higher-resolution RCMs yield

more realistic precipitation patterns and produce more frequent heavy precipita-

tion over the western U.S. (WUS), consistent with observations. Diffenbaugh et al.

(2005) studied both extreme temperature and precipitation events over the con-

tiguous United States using an RCM configured at 25 km horizontal resolution,

and demonstrated that fine-scale processes were critical for accurate assessment
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of local- and regional-scale climate change vulnerability. Salathé Jr et al. (2008)

found significant differences in trends for temperature and precipitation over the

Pacific Northwest using a high-resolution RCM for future climate simulations. And

Ashfaq et al. (2016) observed a 7.4% increase in precipitation extremes over the

contiguous U.S. from simulations with RegCM4 driven by CMIP5 global data.

Despite their success, RCMs also have known issues associated with inconsis-

tency between the lateral forcing data and the driven RCM. The menu of physical

parameterizations and tuning parameters typically available to RCMs can also

lead to over-tuning of the model for a particular geographic region or climato-

logical field (McDonald , 2003; Laprise et al., 2008; Mesinger and Veljovic, 2013).

Consequently, there has been growing interest in variable-resolution enabled GCMs

(VRGCMs) to improve regional climate simulations. This study focuses on changes

in the character of precipitation over the 21st century within the WUS, as pre-

dicted from long-term ensemble runs conducted with VR-CESM with a local grid

resolution of ∼0.25◦.

Simulations of the future climate are performed in accordance with the repre-

sentative concentration pathway (RCP) 8.5 scenario, which describes a “business-

as-usual” projection for GHGs (Riahi et al., 2011). In this study, we focus singu-

larly on the RCP 8.5 scenario because its mid-century results are similar to a more

optimistic RCP2.6 scenario end-of-century. Simulations are further conducted in

accordance with the Atmospheric Model Intercomparison Project (AMIP) proto-

col (Gates , 1992). It is well-known that correctly simulating changes to the spatial

pattern of SSTs in state-of-the-art coupled GCMs remains a significant challenge

(Joseph and Nigam, 2006; Stevenson, 2012; Jha et al., 2014; Taschetto et al., 2014).

However, by constraining atmospheric boundary conditions at the sea surface, we

avoid model biases that are known to exist in the fully coupled configuration (Grod-

sky et al., 2012; Small et al., 2014) but accept inherent uncertainties associated

with our choice of SSTs.

Changes in the character of precipitation, in terms of frequency and intensity,
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have been assessed in our study from recent history through the end of the 21st

century. A comprehensive set of indices for precipitation extremes have been eval-

uated from the ensemble simulations over the 26-year periods corresponding to

historical (1980-2005), mid-century (2025-2050) and end-of-century (2075-2100).

Spatial inhomogeneity in local geography and temperature are observed to result

in similarly inhomogeneous impacts on the precipitation field. Teleconnections

(specifically the El Ninõ-Southern Oscillation, ENSO) are also found to have a

pronounced effect on precipitation features. Since only one SST dataset was used

for this study, we note that our projections are conditioned on a particular future

character of ENSO. This is a potentially significant source of uncertainty, as at

present there is no clear consensus on how ENSO may behave under a warming cli-

mate, i.e. whether ENSO activity will be enhanced or damped, and if the frequency

will change (Fedorov and Philander , 2000; Latif and Keenlyside, 2009; Guilyardi

et al., 2009; Collins et al., 2010; DiNezio et al., 2012). Therefore, strengthening

or weakening of the ESNO pattern will have clear consequences for our results (as

discussed in section 4.74.7.4).

This work builds on a number of previous studies that have explored the pro-

jected future change in WUS precipitation. For example, Kim (2005) applied

downscaled climate change signals to selected indicators, and concluded that global

warming induced by increased CO2 is likely to drive increases in extreme hydrologic

events in the WUS. Duffy et al. (2006) found that changes to mean precipitation

predicted by the RCMs are not statistically significant compared to interannual

variability in many regions over WUS, although there is little consistency among

the different RCMs as to responses in precipitation to increased GHGs. Gao et al.

(2015) pointed out a potentially large increase in atmospheric river events by the

end of the 21st century under the RCP8.5 scenario, with implications for large-scale

and heavy precipitation events along the Pacific coast.

This study is structured as follows. Section 4.3 describes the model setup.

Section 4.4 describes the methodology and reference datasets employed. An as-
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sessment of the ability of the model to capture the climatology of the WUS is

given in section 4.5 with discussions of drivers of precipitation change in section

4.6. Results from the future mean climatological trend and projected changes to

precipitation indices are in section 4.7. Section 4.8 summarizes the main points of

the study along with a further discussion.

4.3 Model Setup

CESM is a state-of-the-art Earth modeling framework, consisting of coupled at-

mosphere, ocean, land and sea ice models (Neale et al., 2010b; Hurrell et al.,

2013). In this study, the Community Atmosphere Model version 5 (CAM5) (Neale

et al., 2010b) and the Community Land Model version 4.0 (Oleson et al., 2010) are

used. CAM5 is configured with the Spectral Element (SE) dynamical core, which

is known for its improved conservation properties, accuracy and parallel scalabil-

ity (Dennis et al., 2011; Taylor , 2011) and incorporates the variable-resolution

option (Zarzycki et al., 2014b). CLM is employed in the unigrid configuration,

which allows the land model and atmospheric model to utilize the same model

grid so eliminates the need for interpolation. SSTs and sea ice, which are used

to compute ocean-atmosphere fluxes, are prescribed in accordance with the AMIP

protocol (Gates , 1992). The variable-resolution mesh used for this study is de-

picted in Figure 4.1, in accord with our past studies (Rhoades et al., 2016a; Huang

et al., 2016; Huang and Ullrich, 2016; Rhoades et al., 2016b). The Figure 4.1

also incorporates the topography and six named geographical divisions over WUS

including the northwest, California, northern Rockies, southwest, intermountain

west, and the Great Plains.

Simulations have been performed for the historical period (1979-2005, hereafter

referred to as hist) and for two future periods: 2024-2050 (hereafter referred to as

mid) and 2074-2100 (hereafter referred to as end). Daily outputs are recorded

for each period on the native SE grid and then remapped to a regional latitude-

longitude mesh (Ullrich and Taylor , 2015; Ullrich et al., 2016). For purposes of
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(a) VR-CESM 0.25°

(b)

m

(c) Topography height

(c)(a)

Figure 4.1. (a) The approximate grid spacing used for the VR-CESM 0.25◦

mesh. (b) A depiction of the transition from the global 1◦ resolution mesh
through two layers of refinement to 0.25◦. (c) Topography height over the
study area.

analysis, the first year of each time period was discarded as a spin-up period to

allow adequate time for the initialized land and atmosphere to equilibrate. The

26-year duration was chosen to provide an adequate sampling of annual variability

for each time phase. As mentioned earlier, GHG concentrations are set based on

RCP8.5. Historical SSTs and sea ice are prescribed at 1◦ resolution, as described

by Hurrell et al. (2008). SSTs and sea ice for each future period are developed

from fully-coupled RCP 8.5 climate simulations from CESM with bias correction

applied (Cecile Hannay, personal communication). Annually-updated land surface

datasets, which prescribe land-use characteristics, are interpolated from 0.5◦ to the

land model grid.

Ensemble runs are needed to ensure that the sample adequately accounts for

climate variability, especially for statistics associated with climatological extremes.

However, the exact number of ensemble members required is heavily dependent on
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the variability of the particular metric being examined, and so no standard ensem-

ble criteria exists. Deser et al. (2012a) suggest that around three ensemble runs

are required to detect a significant epoch difference for JJA (June-July-August)

surface temperatures, whereas 10 to 30 ensemble members are needed for that for

DJF (Dec.-Jan.-Feb.) precipitation. In our study, the use of prescribed SSTs does

reduce the intrinsic variability of the climate system (see Supplement Figure S1, S2

and S3), and so we found reasonably converged results with two ensemble members

for the historical period and four ensemble members for each future period.

4.4 Methodology

4.4.1 Precipitation indices

Standard indices have been employed to characterize precipitation (Tebaldi et al.,

2006; Zhang et al., 2011; Sillmann et al., 2013). To choose a comprehensive (but

minimal) set that is informative to stakeholders and water resource managers, in-

dices from throughout the literature were compiled. The indices examined include

those defined by the Expert Team on Climate Change Detection and Indices (ETC-

CDI) (Karl et al., 1999) that are featured in earlier studies (Dulière et al., 2011;

Sillmann et al., 2013; Diffenbaugh et al., 2005; Singh et al., 2013) and others such

as return levels, dry spell and wet spell characteristics defined by either percentiles

or by selected thresholds. As a result, the indices we have chosen for this study

attempt to provide a relatively comprehensive characterization of precipitation,

and are summarized in Table 4.1. Indices related to dry spells of variable duration

have been investigated in this study, but only exhibited significant differences for

extremely short (≤ 5 days) dry spells and so are not included in our results.

4.4.2 Impacts of ENSO

The impact of ENSO on precipitation is emphasized in our study due to its influ-

ence on precipitation over a majority of our study area, particularly the southwest

U.S. (Cayan et al., 1999; Zhang et al., 2010; Deser et al., 2012b; Yoon et al., 2015).

The phase of ENSO (i.e. El Niño and La Niña) is identified each year using the

113



Table 4.1. Precipitation indices employed in this study.

Indice Definition

Pr Mean daily precipitation

R1mm Number of days per year with Pr>1 mm

SDII Simple precipitation intensity index: Precipitation amount / 〈 R1mm 〉

R5mm Number of days per year with Pr>1 mm and Pr=<5 mm

R10mm Number of days per year with Pr>5 mm and Pr=<10 mm

R20mm Number of days per year with Pr>10 mm and Pr=<20 mm

R40mm Number of days per year with Pr>20 mm and Pr=<40 mm

Rxmm Number of days per year with Pr>40 mm

F1mm Fraction of precipitation to the total amount for days of R1mm

(similarly for F5mm, F10mm, F20mm, F40mm and Fxmm)

P5mm Precipitation amount from R5mm

(similarly for P10mm, P20mm, P40mm, Pxmm)

Oceanic Niño Index (ONI), defined as the 3-month running means of SST anoma-

lies in the Niño 3.4 region (covering 5N-5S, 120-170W based on (NOAA, 2013)).

An El Niño or La Niña episode is said to occur when the ONI exceeds +0.5 or

-0.5 for at least five consecutive months for a water year (i.e. from July to June)

(NOAA, 2013) (see the Supplement Figure S2). To adjust for the trend in the

SST field associated with climate change, the anomaly is computed against the

detrended mean SSTs from the periods 2020-2050 and 2070-2100 for mid and end

respectively, using the aforementioned predicted SST dataset. As argued by Kao

and Yu (2009), it may be desirable to use an expanded Niño 3.4 region to determine

the phase of ENSO – however, when employing SST anomalies integrated over an

extended region 105-170W, we observed no significant impact on ONI statistics.
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4.4.3 Assessing statistical significance

Student’s t-test has been used to determine whether or not two datasets at each

grid point are statistically equivalent if the sample population can be adequately

described by a normal distribution. The normality of a data set is assessed under

the Anderson-Darling test. When the sample populations do not approximately

follow a normal distribution, Mann-Whitney-Wilcoxon (MWW) test is employed

in lieu of the t-test since MWW test is considerably more efficient than the t-test

for non-normal cases. All tests are evaluated at the 0.05 (α) significance level.

When comparing different time periods, statistical tests are conducted by treating

all years from all ensemble members as independent samples (26× 2 sample years

for hist and 26× 4 sample years for mid and end).

4.4.4 Reference datasets

Gridded observational datasets and reanalysis of the highest available quality, with

comparable horizontal resolutions to our VR-CESM simulations, are used for as-

sessing the simulation quality. Multiple reference datasets are necessary due to the

underlying uncertainty in the precipitation field. The three datasets employed are

as follows:

UW Gridded Data: The 0.125◦ UW daily gridded meteorological data

is obtained from the Surface Water Modeling group at the University of

Washington, covering the period 1949-2010 (Maurer et al., 2002; Hamlet and

Lettenmaier , 2005). The UW dataset imposes topographic corrections by

forcing the long-term average precipitation to match that of the Parameter-

elevation Regressions on Independent Slopes Model (PRISM) dataset.

National Centers for Environmental Prediction (NCEP) Climate

Prediction Center (CPC): The 0.25◦ CPC daily dataset provides gauge-

based analysis of daily precipitation covering the period 1948-2006. It is

a unified precipitation product that covers the Conterminous United States

and amalgamates a number of data sources at CPC via optimal interpolation

115



objective analysis.

North American Regional Reanalysis (NARR): The ∼32 km NCEP

NARR reanalysis provides 3-hourly precipitation snapshots, obtained by

dynamical downscaling over North America and covering the period 1979-

present (Mesinger et al., 2006).

4.5 Assessment of Precipitation Character in VR-

CESM

Before proceeding, we assess the ability of VR-CESM to represent the historical

character of precipitation over the WUS. The indices defined in Table 4.1 are

depicted in Figures 4.2, 4.3 and 4.4 for VR-CESM and each of the reference datasets

over the historical period (1980-2005). We assume same confidence in each of the

reference datasets and use Student’s t-test (with UW, CPC, and NARR as the

three statistical samples) to identify regions where VR-CESM deviates significantly

from the reference mean. Areas, where differences are statistically significant in

the VR-CESM dataset are identified with stippling.

Overall, VR-CESM accurately captures the spatial patterns of precipitation

and its indices. As expected, the majority of precipitation is distributed along

the northwest coast and the mountainous regions of the Cascades and the Sierra

Nevada. Nonetheless, several apparent biases are present:

First, VR-CESM significantly overestimates Pr over arid regions with differ-

ences between 0.2 mm to 1.5 mm, and over the eastern flank of the Cascades

and on both sides of the Sierra Nevada (with relative differences reaching 50%-

150%) as further discussed below. The overestimation of Pr over dry areas is

further reflected in the overestimation of the non-extreme Pr events frequency

(with Pr≤10mm/day) since most precipitation over that region is associated with

low rainy rate days.

However, the grossly exaggerated intensity over the western flank of the Sierra

Nevada through California’s Central Valley does merit some additional discussion.
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Figure 4.2. Mean precipitation and associated indices from VR-CESM and
reference datasets over the historical period, 1980-2005. Areas with statistically
significance differences are marked with stippling.
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Figure 4.3. Mean precipitation and associated indices from VR-CESM and
reference datasets over the historical period, 1980-2005 (continued).
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Figure 4.4. Mean precipitation and associated indices from VR-CESM and
reference datasets over the historical period, 1980-2005 (continued).
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Here, the overestimation of precipitation and enhanced intensity is associated with

too many extreme precipitation events (Pr>20 mm/day) (see Figure 4.4, R40mm,

and Rxmm). This bias is related to exaggerated orographic uplift (upslope winds)

and triggers a dry bias along the eastern flank of the Sierras. Similar biases in sim-

ulating extreme precipitation over topographically complex regions have also been

found in high-resolution RCM simulations, and have been primarily attributed

to excessively strong winds (Walker and Diffenbaugh, 2009; Singh et al., 2013).

This issue may be further impacted by the diagnostic treatment of precipitation

in CAM5 (Morrison and Gettelman, 2008; Gettelman et al., 2008).

Second, as with many regional models, VR-CESM is “dreary” and exhibits too

many precipitation days (R1mm, Pr≥1 mm/day and R5mm, 1 mm/day≤ Pr ≤

5 mm/day) over most of the study area (see Figure 4.2 and 4.3) (Stephens et al.,

2010). Nonetheless, over most regions the relative contribution of each precipi-

tation frequency subset to total precipitation (F1mm, F5mm, F10mm, F20mm,

and F40mm) agrees well, suggesting that the frequency distribution describing

precipitation intensity is accurately simulated almost everywhere.

The spatial pattern of precipitation intensity (SDII) agrees well between VR-

CESM and references with agreement everywhere except in the Great Plains (the

eastern edge of our domain) and California’s Central Valley. The Great Plains is

not a focus of this study, but the suppressed intensity is primarily during the warm

season (April-September) and so likely represents a failure of the convection scheme

to adequately simulate variability in this region. This bias is also observed in 0.25◦

uniform-resolution CESM simulations (Small et al., 2014), and so is not a symptom

of the eastern edge of the variable-resolution transition region. Nonetheless, the

model performance is improved for higher rain rate days. VR-CESM captures the

precipitation features including frequency and intensity satisfactorily over the main

wet regions, where most precipitation is resulted from extreme Pr events (when

Pr>10mm/day), without significant difference.

The representation of precipitation in VR-CESM over California was also dis-
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cussed in Huang et al. (2016), where it was observed that VR-CESM simulations

at 0.25◦ adequately represented regional climatological patterns with high spatial

correlation. VR-CESM demonstrated comparable performance to WRF at 27 km

(which was forced with ERA-Interim reanalysis), but still overestimated overall

winter precipitation compared to reference datasets (by about 25%-35%), with the

largest differences over the western edge of the Sierra Nevada. This bias is not

alleviated by simply increasing the spatial resolution, as experimental VR-CESM

simulations at 14km, 7km, and 3.5km show only modest improvement (Alan M.

Rhoades, personal communication). This suggests that the bias might be related to

more complex dynamic processes rather than treatment of the orographic effects.

CESM at 1◦ resolution was also assessed to better understand the impacts of

resolutions. Overall, we find that precipitation patterns over complex topography

are represented poorly in the 1◦ dataset without capturing the spatial patterns

induced by orographic effects (see the Supplement Figure S3). Over the Cascades

and the Sierra Nevada, total precipitation is grossly underestimated by the 1◦

data, even when compared to gridded and reanalysis datasets. Precipitation has

otherwise been smoothed out over the coastal areas and the mountainous regions

of the northwest U.S when simulated with CESM at coarse resolution. This result

clearly underscores the benefits of high resolution (particularly the representation

of topography) in simulating precipitation features. Results are also provided in

the supplement for the output from a globally-uniform CESM run at 0.25◦ spatial

resolution with the finite volume (FV) dynamical core (Wehner et al., 2014), which

exhibits similar performance to VR-CESM (also see the Supplement Figure S3).

Overall, 0.25◦ resolution appears to provide the best tradeoff between accuracy

and computational cost, as the coarser resolution does not correctly represent

precipitation features and higher resolution does not substantially improve model

accuracy (at least in this version of CAM).

We have also assessed the impact of the ENSO signal within the historical

VR-CESM runs by differencing the precipitation fields between the warm phase
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(i.e. El Niño) and cool phase (i.e. La Niña), compared to references (see the

Supplement Figure S4). The results showed that ENSO exhibits a weaker signal

for observational precipitation, compared to VR-CESM, which might suggest that

the model exaggerates ENSO’s impact on precipitation, especially over the north-

west U.S. The improvement of ENSO in the model is directly proportional to the

representation of ENSO-forced precipitation anomalies (AchutaRao and Sperber ,

2006).

4.6 Drivers of Climatological Precipitation Change

The remainder of this study now focuses on model predictions of precipitation

change over the 21st century. Precipitation has been observed and modeled to

be modified in character at both global and regional scales under climate change.

The observed intensification of heavy precipitation events over the recent past

for the majority of Northern Hemisphere land areas is primarily attributed to

increases in GHGs (Min et al., 2011). GHGs drive radiative changes in the lower

troposphere, increase SSTs and lead to increased evaporation, all of which then

impact the character of precipitation events (Allen and Ingram, 2002; Sugi and

Yoshimura, 2004). Several studies have argued that precipitation extremes will

intensify continuously through the end of the 21st century in both dry and wet

regions, although the extent of this change will be spatially heterogeneous (Donat

et al., 2016).

In accordance with the Clausius-Clapeyron (C-C) relationship, saturation va-

por pressure in the atmosphere is expected to increase by∼7% for each 1◦C increase

in temperature (Allan and Soden, 2008). As long as a source of water vapor is

present, a corresponding increase in atmospheric water vapor content is expected.

Naturally, evaporation over the ocean will intensify with climate warming, but

increases in water vapor content over land may be constrained by soil moisture

(Cayan et al., 2010). When specific humidity is high, heavy rain events become

more probable, even if total precipitation is decreasing (Trenberth, 2011). This
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suggests that globally total precipitation is expected to increase at a slower rate

than precipitation extremes (Allan and Soden, 2008). It is argued that changes to

extreme precipitation follow the C-C relationship more closely than total precipi-

tation amount by previous studies (e.g. Trenberth et al. (2003); Allan and Soden

(2008); O’Gorman and Schneider (2009); Min et al. (2011)). However, there is still

substantial uncertainty regarding the magnitude of these changes, since precipi-

tation extremes are also dependent on factors such as the vertical velocity profile

and temperature (O’Gorman and Schneider , 2009).

With overland water vapor constrained by soil moisture content, changes to

moderate or heavy precipitation events over the WUS are mainly the result of in-

creased large-scale vapor transport from the eastern Pacific Ocean rather than di-

rectly from evaporation, typically associated with atmospheric rivers (ARs) and/or

orographic uplift (Trenberth et al., 2003; Neiman et al., 2008). Warming may lead

to enhancement of the storm track, which would increase ARs along the U.S. west

coast with increased air water vapor content in the future (Dettinger , 2011; Gao

et al., 2015).

The precipitation of the WUS has strong inter-annual variability caused by

large-scale atmospheric circulation mainly associated with the ENSO (Leung et al.,

2003b). As a significant driver of precipitation, ENSO modulates the storm track

behavior over western U.S. with a northwest/southwest precipitation dipole (Ger-

shunov and Barnett , 1998), as discussed in 4.74.7.4. The projected SSTs used in

this study emerge from one possible realization of ENSO. However, there is still

substantial uncertainty regarding how El Niño will change under global warming

(Fedorov and Philander , 2000; Guilyardi et al., 2009), which is a source of uncer-

tainty in our results. Capotondi (2013) showed that the diversity of El Niño char-

acteristics in CCSM4 is comparable to what was found in observations, although,

as found by Deser et al. (2012c), the overall magnitude of ENSO in CCSM4 is

overestimated by ∼30% over the preindustrial period.
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4.7 Results

4.7.1 Mean climatology

Differences in the mean climate of the WUS, as predicted by VR-CESM across

three time periods, are depicted in Figure 4.5. Since the character of WUS precip-

itation has a strong seasonal contrast, changes to mean precipitation, near-surface

temperature, and near-surface relative humidity are depicted for what we refer to

as the cool season (October to March) and the warm season (April to September).

As a result of enhanced GHG concentrations, mean annual near-surface tem-

perature (Tavg) increases by between 1.5 to 3.5K from hist (i.e. year 1979-2005) to

mid (i.e. year 2024-2050) and between 4 to 7.5K from hist to end (i.e. 2074-2100).

Despite the large spatial variation in mean seasonal temperatures, the observed

differences in mean temperature across time periods are fairly uniform, particu-

larly over the ocean and in coastal regions. Away from the coast, there is a weak

gradient in the temperature change field, with the largest increase in temperatures

occurring towards the northeast during the cool season and towards the north

during the warm season. The increase in temperature is also about 0.5K and

1.0K larger during the warm season compared to the cool season for mid and end,

respectively.

Overall, future RH is constrained closely to hist since it is governed by com-

peting increases in temperature and atmospheric water vapor content. Although

RH increases monotonically over the ocean in response to increased evaporation,

over land the character is more heterogeneous: In general, RH tends to increase in

regions where Tavg increase is constrained below ∼ 2 K, but decrease when Tavg

anomaly exceeds ∼ 2 K. The decrease in these regions is on the order of 2% and 3-

6%, for mid and end respectively. In fact, trends in RH are spatially consistent with

temperature increase but opposite in magnitude with a spatial correlation coeffi-

cient of approximately 0.8. This suggests that continental evaporation and oceanic

water vapor transport are insufficient vapor sources when temperature reaches a

certain level, consistent with the observation of Joshi et al. (2008). This effect
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has also been observed in results by Rowell and Jones (2006) over continental and

southeastern Europe and Simmons et al. (2010) over low-latitude and midlatitude

land areas.

In response to these changes to temperature and RH, from hist to mid mean pre-

cipitation over the entire domain exhibited a 0.2-0.6 mm/day increase during the

cool season. The largest changes were over northwest, where cool-season precipita-

tion emerges from large-scale patterns (namely, atmospheric rivers and associated

storm systems)(Trenberth et al., 2003; Neiman et al., 2008). Over the warm sea-

son, where precipitation in the WUS is primarily from convection, the increase was

around 0.2 mm/day through the intermountain west and southwest with drying

through the northwest (a decrease in mean precipitation of 0.2 mm/day). These

trends largely hold and intensify through end period but with a significant decrease

of Pr over part of the northwest during dry season. Statistical significance of these

results is depicted in Figure 4.7.

The increase in cool season precipitation in the northwest is primarily driven

by intensified integrated vapor transport (IVT) (see Figure 4.6) during extreme

precipitation events. As observed in previous studies, IVT is particularly useful

for understanding extreme precipitation events that arise from large-scale mete-

orological features (Ralph et al., 2004; Leung and Qian, 2009; Dettinger , 2011).

IVT is composed of humidity and wind velocity, which are both impacted by the

climate change signal, as plotted in Figure 4.6. Over the eastern Pacific, we ob-

serve increases in both water vapor content and wind speed, which are in turn

responsible for increases to IVT in the Pacific Northwest. However, over the conti-

nent we see a weakening of the westerlies overland driven by a reduced meridional

temperature contrast. The increased cool-season IVT does not manifest strongly

along the Pacific coast off of California, where IVT is much smaller on average and

is primarily modulated by ENSO.

Changes in precipitation over the intermountain west and southern part of

WUS during the warm season are primarily associated with convective processes
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Figure 4.6. Differences in specific humidity and horizontal wind patterns at
850hPa for moisture flux, and pointwise IVT (averaged over days with (a)
10mm<Pr<=40mm and (b) Pr>40mm) for the cool season (October to March)
averaged over 26 years. The minimum wind vector length is set to 0.5 m/s for
better visualization. (Lower plot) Specific humidity and wind patterns are av-
eraged over all days over cool season.
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and so are directly impacted by variations in RH. As shown in Figure 4.5, RH

increases through mid-century in this region (although with modest significance)

and then significantly decreases through end-of-century over most the study area

(except over where soil moisture was already low in hist). This results in a modest

increase in precipitation through mid-century followed by a reduced increase trend

by end-of-century. In addition, no significant changes of Pr are expected over the

northwest, southwest and northern Rockies under relatively intense decrease of the

relative humidity in the future. Further climate warming is expected to further

decrease RH and drive increased aridity in those regions.

4.7.2 Precipitation indices

We now analyze observed changes to the precipitation indices given in Table 4.1.

For each index, the change for each period, yearly averaged over all ensemble

members are plotted in Figure 4.7 (for the indices that quantify precipitation days)

and Figure 4.8 (for the indices describing precipitation amounts).

On comparing hist and mid, it is clear that the number of rainy days and

the frequency of non-extreme precipitation events (≤ 10 mm/day) have increased

significantly (about 10-15%) over the southwest and intermountain west, which is

less apparent between mid and end. On the contrary, the frequency of non-extreme

precipitation has decreased significantly over the northwest region and the eastern

areas of the Montana, Wyoming and Oregon (by about 10%). The increase in the

frequency of these non-extreme precipitation events explains the observed change

to mean precipitation exhibited in Figure 4.5, and are mainly associated with

warm-season mesoscale storm systems.

For the extreme precipitation events (10 mm/day ≤Pr< 40 mm/day), when

comparing mid to end, there is a clear and significant increase over the northwest

coast (∼20-30%), eastern flank of the Cascades (> 40%) and part of the intermoun-

tain west. This result is consistent with the result of Dominguez et al. (2012), who

observe a robust increase in winter precipitation extremes toward the latter half

of the 21st century with an ensemble of RCMs. The increase in the northwest is

128



Figure 4.7. Differences of precipitation indices Pr (mm/day), SDII and R∗mm
between hist, mid and end average. Areas with statistically significance differ-
ences are marked with stippling.
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accompanied by a decrease in non-extreme precipitation days, indicative of drying

over the warm season.

For the most extreme precipitation events (Pr > 40 mm/day), there is a sta-

tistically significant increase along the northwest coast (≥ 60%), the Cascades (∼

50%) and Northern Rockies (≥ 60%) by end-of-century. Significant increases are

also apparent along the Klamath range in California of about 20-40% from hist to

end. With a projected increase of temperatures in this region of 4-5 K over the

cool season, this increase is more than 7% per degree change that would be antic-

ipated from the C-C relationship. In this case, the probable cause of this excess is

due to the intensification of the storm track along the coast discussed in section

4.74.7.1. Changes in accumulated precipitation for these events (see Figure 4.8)

are consistent with the change in their frequency.

Notably, our results show no significant changes in mean precipitation or pre-

cipitation extremes are predicted for California except the increase of the most

extreme precipitation events along the Klamath range. In fact, the precipitation

signal under a warmer climate is more ambiguous for California (Neelin et al.,

2013) in light of the extreme variability of the region on interannual time scales

(Dettinger , 2011) mainly caused by ENSO effect as discussed in section 4.74.7.4.

Kim (2005) found that under global warming, heavy precipitation events increase

in frequency in the mountainous regions of the northern California Coastal Range

and the Sierra Nevada for the 10-yr period of 20402049, using dynamically down-

scaled regional climate change signals. However, our results show a small decrease

in extreme precipitation over the Sierra Nevada (although the decrease is not sta-

tistically significant). This leads us to the likely conclusion (particularly in light

of VR-CESM’s biases in this region) that projections in this region are highly

dependent on model formulation and the forced SST dataset.

4.7.3 Regional precipitation frequency distributions

To further investigate the regional heterogeneity of changing precipitation, fre-

quency distributions of daily rainfall for rainy days are plotted in Figure 4.9 for
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(a) the Pacific northwest, including Washington and Oregon, (b) central and south-

ern California, (c) the intermountain west, including Nevada and Utah and (d) the

southwest, including Arizona and New Mexico. Frequency plots are developed us-

ing simulation outputs at all grid points within each region. Results here mirror

our earlier discussion. Over the northwest, precipitation intensity increases with

a shift towards a greater frequency of the most extreme precipitation days, espe-

cially by end-of-century, accompanied by a reduction in non-extreme precipitation

days. No significant shifts can be observed for the California region. Over the

intermountain west, there is a similar trend towards more extreme precipitation as

in the northwest, but with no reduction in warm season non-extreme precipitation

days. Finally, in the southwest, precipitation is more frequent, but the response is

weaker than that observed in the intermountain west.

4.7.4 Disentangling the direct climate signal from ENSO

and PDO

As discussed earlier, this study assumes a fixed pattern of SSTs that is consistent

across all ensemble members and incorporates certain assumptions on the character

of ENSO through the end-of-century that arise from the coupled model. The

phase of ENSO is well known to have important repercussions for precipitation

extremes (Larkin and Harrison, 2005; Allan and Soden, 2008; Maloney et al., 2014;

Yoon et al., 2015). In particular, Cai et al. (2014) found a significant increase

in extraordinary precipitation events through the eastern Pacific Ocean in the

21st century within the CMIP5 ensemble, associated with increasing frequency of

extreme El Niño events due to greenhouse warming. To better understand how

ENSO has impacted our results, we now turn our attention to understanding how

precipitation extremes behave in response to the phase of ENSO.

In our study, mean SSTs over the Niño 3.4 region are 26.83, 28.62 and 30.54◦C

for hist, mid and end respectively. Based on the ONI index values, the mean SST

anomalies over Niño 3.4 region are 1.38, 1.71 and 2.30 K during El Niño years,

and -1.16, -1.62 and -1.43 K during La Niña years, again for hist, mid and end.
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Figure 4.9. Frequency distribution of rainy days (Pr>=0.1mm/day) over the
three time periods from all simulations dataset in four regions (with logarith-
mic vertical scale). (Note: Region (a) to (d) cover Washington and Oregon;
California (except northern part, i.e. latitude no larger than 38◦); Nevada and
Utah; Arizona and New Mexico, respectively.)
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It is apparent that the magnitude of SST anomalies associated with ENSO has

intensified within this dataset. The spatial pattern of SST anomalies averaged

over the warm and cool phases of ENSO can be found in the Supplement Figure

S5. The calculated ONI index values suggest an increasing frequency of El Niño

through mid and an almost doubled frequency of La Niña during mid and end

compared to the hist (see the Supplement Figure S2).

Differences in mean precipitation and associated indices taken between the

warm phase (i.e. El Niño) and cool phase (i.e. La Niña) of ENSO are provided in

Figure 4.10 for the cool seasons from hist, mid and end. During the El Niño phase,

intensified mean precipitation is expected over California and the southwest (Ham-

let and Lettenmaier , 2007), accompanied by reduced precipitation intensity over

the northwest. In the La Niña phase, this pattern is reversed, with wetter condi-

tions in the northwest and a drier southwest. Consequently, ENSO is associated

with a northwest/southwest precipitation dipole, triggered by ENSO’s modifica-

tion of the storm track (Gershunov and Barnett , 1998; Leung et al., 2003b), along

with modulation of the enhanced precipitation variability (Cayan et al., 1999;

Kahya and Dracup, 1994). Strengthening storm patterns associated with ENSO

are also found by (Maloney et al., 2014) over California using CMIP5 output under

RCP8.5. This dipole is also apparent in the frequency of rainy days and extreme

precipitation events.

The impact of ENSO can also be seen in the IVT difference that arises between

El Niño and La Niña phases in each period (see Figure 4.11) and the accompanying

850 hPa wind patterns. During the El Niño phase, there is an increase in on-shore

moisture flux over California with a returning circulation through the northwest.

This suggests that understanding moisture flux regulation from ENSO is a critical

contributor to the character of future precipitation extremes.

Based on the above results, it is apparent that the magnitude of the effects

of ENSO is comparable or even higher than the impacts of climate forcing – that

is, shifts in the future character of ENSO would have more dire implications for
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Figure 4.11. Changes of IVT for simulations under different phases of ENSO of
wet season (October to March) over rainy days averaged yearly, with seasonal
mean wind patterns at 850hPa (unit: m/s) (Note: The minimum wind vector
is set to be 0.5 m/s, therefore, the wind less than 0.5 m/s is also plotted at the
minimum length for better visualization.)
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precipitation extremes than shifts in mean climatological forcing. To investigate

this further, linear regression has applied at each grid point using a simple linear

model that incorporates the phase of ENSO (using the Niño 3.4 SST anomaly)

and the underlying climate forcing yearly (from mean GHG concentration). The

precipitation indices are used as response variables. The significance of these two

factors was then obtained from ANOVA (analysis of variance) output (see the

Supplement Figure S6). The magnitude of the response associated with each factor

was also computed (see the Supplement Figure S7). As expected, the ENSO forcing

matches most closely with the difference between El Niño and La Niña (see Figure

4.11). Hence, we observe that ENSO is a major driver of precipitation character

through California, the intermountain west, and the southwest and does have an

impact on mean precipitation through the Cascades. In contrast, the impacts of

climate forcing are visually similar to the pattern of the difference between the

different time periods (see Figure 4.7), and primarily affects both extreme and

non-extreme precipitation in the northwest and intermountain west.

We have also assessed the impacts of the Pacific Decadal Oscillation (PDO)

on precipitation and observed only a weak correlation between the PDO pattern

and precipitation. That is, precipitation features did not change substantially

between the cool phase or warm phase of PDO when examining hist data. However,

when in phase with ENSO, PDO did have a visible impact over the northwest.

This coupled effect has been found by studies such as Gershunov and Barnett

(1998), who observed that ENSO and PDO could “reinforce” each other, with

PDO responding to the same internal atmospheric variability as ENSO (Pierce,

2002). In our simulations, there were roughly an equal number of positive and

negative PDO years in the data from each period. Since SSTs were fixed among

ensemble members, the 26 year simulation period might be insufficient to account

for the variability of PDO. Therefore, in this study, we draw no conclusions about

the impact of PDO.
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4.8 Discussion and Summary

In this study, ensemble simulations of each 26-year period have been conducted us-

ing VR-CESM with the finest local grid resolution of ∼0.25◦ to assess the changing

character of precipitation over the 21st Century in the WUS. Climate forcing for

future projections is prescribed under the RCP 8.5 “business-as-usual” scenario.

Evaluated against historical gridded observations and reanalysis data, VR-

CESM was found to accurately capture the spatial patterns of precipitation, includ-

ing precipitation frequency and intensity, although it exhibited an overestimation

of precipitation over the eastern flank of the Cascades, throughout California’s

Central Valley and along the Sierra Nevada. Nonetheless, there was a clear im-

provement in the representation of precipitation features when compared with

coarse 1◦ resolution simulations.

Both mean changes to precipitation and distributions of both non-extreme

and extreme events, projected by the VR-CESM model under climate forcing,

have been investigated. Although constrained by water influx and soil moisture,

changes to extreme precipitation are hypothesized to follow the C-C relationship

more closely than total precipitation amount (∼7% per degree K). In general, this

only seemed to be the case over the intermountain west; the northwest exhibited

an enhanced response from extreme precipitation (∼10% per degree K), whereas

California and the southwest observed essentially no response.

From the VR-CESM results, the warming response to the RCP 8.5 climate

forcing exhibited roughly uniform character, although warming was more pro-

nounced away from the coast and to the north. Future relative humidity (RH)

was observed to be constrained by competing increases in both temperature and

atmospheric water vapor content. RH tended to enlarge in regions where average

temperature increase was below ∼2 K, and decrease when average temperature

increase exceeded ∼2 K. This suggests that continental evaporation and oceanic

water vapor transport are insufficient vapor sources to maintain RH levels above

a certain threshold temperature. In response, mean precipitation increase is fairly
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inhomogeneous, with a more pronounced increase in the Northwest where vapor

transport is enhanced.

Over the intermountain west and southwest, an increase in warm season RH

through mid-century led to a statistically significant increase in precipitation and

non-extreme rainy days due to increased convection. This increase levels off

through end-of-century when increased temperatures are observed to drive a re-

duction in RH. Nonetheless, there is a significant increase in extreme precipitation

episodes (Pr > 10 mm/day) over the intermountain west which is not observed in

the southwest.

Over the northwest, there is a clear shift from non-extreme precipitation events

to extreme precipitation events associated with a moistening of the cool season and

drying through the warm season. Although the total number of annual precipita-

tion days remains relatively constant, there is a decrease in low-rained precipitation

days and an increase in heavy-rained precipitation days. In each case, the change

is on the order of 10 days/year. This change is driven by increased IVT over the

eastern Pacific, associated with atmospheric river (AR) episodes. Increased drying

over the warm season is driven by a reduction in RH. Increased cool season pre-

cipitation extremes in this region tend to result in high runoff events, which are in

turn associated with a greater chance of flooding, particularly from rain-on-snow

events.

Over California, except along the northernmost coast, there is no clear climate

signal apparent in the mean precipitation or extremes. This suggests more seri-

ous drought condition in the future with the intensified evaporation over land and

lower soil moisture. Interannual variability in this region associated with ENSO

dominates precipitation patterns throughout the historical period and the 21st cen-

tury. ENSO drives precipitation behavior by modulating the mid-latitudinal storm

track in this region. In particular, during the El Ninõ phase, there is an increase

in on-shore moisture flux over California with a returning circulation through the

northwest. The results over California highlight the importance of understand-
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ing the response of ENSO to climate change (which is still largely inconsistent

in CMIP5 climate models and so is a key source of uncertainty in our results),

since variations in the magnitude or structure of ENSO will have immediate con-

sequences for precipitation in this region.

The projected SSTs utilized for this study through end-of-century suggest that

SST anomalies associated with ENSO will intensify. The impacts of ENSO are

wide-reaching, with a statistically significant response observed in the character

of precipitation throughout California, the intermountain west, and the southwest

regions, as well as impacting mean precipitation through the Cascades. In contrast,

the significance of climate forcing (when compensating for ENSO) mostly matched

the differences observed between time periods and had its greatest impact on both

extreme and non-extreme precipitation in the northwest and intermountain west.
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4.10 Supporting Information

This supplement to this work includes:

1) The differences in Pr indices between each ensemble run and the ensemble

mean averaged annually for hist period.

2) The differences in Pr indices between each ensemble run and the ensemble

mean averaged annually for mid period.

3) The differences in Pr indices between each ensemble run and the ensemble

mean averaged annually for end period.
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4) The monthly ONI index values for each time period.

5) Mean precipitation and associated indices from CESM at the resolution of

1◦ and 0.25◦ respectively over the historical period, 1980-2005.

6) Differences of precipitation indices Pr and R∗mm between warm and cool

phases of ENSO over the historical period for VR-CESM and reference

datasets.

7) Spatial pattern of surface temperature anomalies when averaged over the

warm and cool phases of ENSO of each time period.

8) F-test significance of ENSO and GHG factors obtained from ANOVA output.

9) The magnitude of the linear fitted regression response for mean precipitation

and associated indices related with each factor.
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Hist

Figure 4.12. The differences in Pr indices between each ensemble run and the
ensemble mean averaged annually for hist period.
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Mid

Figure 4.13. The differences in Pr indices between each ensemble run and the
ensemble mean averaged annually for mid period.
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End

Figure 4.14. The differences in Pr indices between each ensemble run and the
ensemble mean averaged annually for end period.

144



Figure 4.15. The ONI index values for each time period based on the prescribed
SST dataset with detrending (in ◦C ).

145



CESM 1deg

CESM 0.25deg

Figure 4.16. Mean precipitation and associated indices from CESM at the
resolution of 1◦ and 0.25◦ respectively over the historical period, 1980-2005.
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Figure 4.17. Differences of precipitation indices Pr and R∗mm between warm
and cool phases of ENSO over the historical period for VR-CESM and reference
datasets.

147



K

Hist

Mid

End

Cold phase Warm phase

K

K

Figure 4.18. Spatial pattern of surface temperature anomalies when averaged
over the warm and cool phases of ENSO of each time period.
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Figure 4.19. F-test significance of ENSO and GHG factors obtained from
ANOVA output. The red colored area corresponds to the region where the
specific factor has significant effect at the level of 0.001.
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Figure 4.20. The magnitude of the linear fitted regression response for mean
precipitation and associated indices related with each factor.
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Chapter 5

Conclusions

Regional climate is not well captured by global climate models (GCMs) and global

reanalysis datasets which are employed at coarse resolutions. However, dynamic

processes at unrepresented scales are significant drivers of regional and local climate

variability, especially over complex terrain (Soares et al., 2012). In order to capture

fine-scale dynamical features, high horizontal resolution is needed to allow a more

accurate representation of fine scale forcing, processes and interactions, as former

studies have shown (Leung et al., 2003a; Rauscher et al., 2010). Also, improvements

in the representation of regional climate information can lead to effective action

for responses to climate change and mitigation of adverse impacts taken by local

stakeholders and policymakers.

To model regional climate at a higher spatial and temporal resolution over a lim-

ited area, downscaling methods have been developed including nested limited-area

models (LAMs) and variable-resolution (including stretched-grid) global climate

models (VRGCMs) (Laprise et al., 2008). LAMs are more commonly referred as

regional climate models (RCMs) when applying to climate scales. RCMs are forced

by the output of GCMs or reanalysis data and have been widely used (Christensen

et al., 2007; Bukovsky and Karoly , 2009; Caldwell et al., 2009; Mearns et al., 2012).

Nudging is employed in RCMs to overcoming the inability of representing large-

scale features (Laprise, 2008).

Over the past decade, variable-resolution global climate models (VRGCMs)
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have been introduced as an alternative way for studying regional climate and ap-

plications (Fox-Rabinovitz et al., 1997, 2006; Ringler et al., 2008; Skamarock et al.,

2012; Rauscher et al., 2013; Zarzycki et al., 2015). Compared with RCMs, a key ad-

vantage of VRGCMs is that they use a single, unified modeling framework, rather

than two separate models (GCM and RCM) with potentially different dynamics

and physics parameterizations. VRGCMs also provide a cost-effective method of

reaching high resolutions over a region of interest – the limited area simulations

in this study at 0.25◦ and 0.125◦ resolution represent a reduction in required com-

putation of approximately 10 and 25 times, respectively, compared to analogous

globally uniform high-resolution simulations.

This study has investigated the variable-resolution Community Earth System

Model (VR-CESM) for two-way dynamically downscaled climate modeling. VR-

CESM was evaluated for modeling California’s unique regional climate and com-

pared against gridded observational datasets, reanalysis data and the WRF model

(forced with ERA-Interim data at lateral boundaries). Based on 26 years of high-

resolution historical climate simulations (1980-2005), we analyzed the mean clima-

tology of California across its climate divisions in terms of both near-surface tem-

perature and precipitation. When compared with gridded observational datasets,

both VR-CESM and WRF adequately represented regional climatological patterns

with high spatial correlations (>0.94). Uncertainty between reference datasets is

apparent, and is statistically significant over some climate divisions, making it nec-

essary to utilize more than one high-quality observational product in the model

evaluation. Overall, we found that VR-CESM showed comparable performance to

WRF for regional climate modeling at spatial resolutions of 10-30 km.

In summary, VR-CESM demonstrated competitive utility for studying high-

resolution regional climatology when compared to a regional climate model (WRF).

Compared to regional models, variable-resolution models are more suitable for re-

gional climate studies where non-local processes are a significant influence, includ-

ing two-way interactions at the nested boundary and potential upstream impacts
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(Sakaguchi et al., 2015). Variable-resolution models are also useful for assessing

and tuning resolution dependence of physical parameterizations in global models,

and are also valuable for short-term weather prediction (Zarzycki and Jablonowski ,

2015). On the other hand, RCMs tend to have more sub-grid parameterization

choices that can be tailored for particular studies (e.g., Cassano et al. (2011)) and

tend to be more efficient, as the computational expense can be precisely targeted.

Deviations exhibited within these models are not indicative of deep underlying

problems with the model formulation, but one should nonetheless be aware of

these biases when using these models for climate studies. This study suggests that

VRGCMs are, in general, useful tools for assessing climate change over the coming

century. As the need for assessments of regional climate change increases, alter-

native modeling strategies, including VRGCMs will be required to improve our

understanding of the effects of fine-scale processes representation in local climate

regulation. Future work will focus on the capability of the variable resolution sys-

tem to correctly capture the features of discrete, extreme heat and precipitation

events.

VR-CESM is applied to understand the impact of irrigation on the regional cli-

mate of California. Irrigation is an important contributor to the regional climate

of heavily irrigated regions, and within the U.S. few regions are as heavily irrigated

as California’s Central Valley, responsible for 25% of domestic agricultural prod-

ucts (Wilkinson et al., 2002). However, irrigation effects are usually ignored in

climate models for several reasons: irrigation usually occurs over a relatively small

area (∼2% of the global land surface) and produces a seemingly negligible cooling

effect compared to global greenhouse warming (Boucher et al., 2004). Nonethe-

less, irrigation is a potentially important factor in regulating climate patterns at

regions scales, where there is a growing need for accurate climate assessments and

projections.

A flexible irrigation scheme with relatively realistic estimates of agricultural

water use is employed, and the impact of irrigation on mean historical climatol-
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ogy and heat extremes is investigated. We have found that the cooling effect

caused by the irrigation was apparent in the daily maximum temperature (Tmax)

field, which arose from the substantially increased latent heat flux associated with

daytime ground evaporation. With irrigation enabled, an exceptional warm bias

associated with a long forward tail of the frequency distribution of Tmax is al-

leviated, although a slight cold bias remained at higher elevations. Further, the

cooling effect associated with irrigation led to a reduction in length and frequency

of hot spells for about 20% and 30%, closely matched to observations, and a de-

crease in the heat stress frequency by about 22% for cropland. To summarize,

irrigation in the CV is an essential part of of the region’s surface energy budget

that must be parameterized in high-resolution climate models in order to correctly

simulate temperature statistics.

There is substantial and growing interest in understanding the character of pre-

cipitation within a changing climate, motivated mainly by its noticeable impacts

on water availability and flood management in both human and natural systems

(Hegerl et al., 2004; Kharin et al., 2007; Scoccimarro et al., 2013). Among past

studies addressing precipitation, extremes have been a major focus, particularly

drought and flood events (Seneviratne et al., 2012). Future climate projections,

particularly those addressing the frequency and intensity of rare events, are in-

evitably subject to large uncertainties. We have investigated the changing charac-

ter of precipitation frequency and intensity in the western United States (WUS)

over the 21st century, as predicted from long-term ensemble runs conducted with

VR-CESM with a fine grid resolution. The WUS is known to be particularly vul-

nerable to hydrological extremes, particularly floods and droughts (Leung et al.,

2003b; Caldwell , 2010), and hosts a variety of local features and microclimates

associated with its rough and varied topography. Simulations of the future cli-

mate are performed in accordance with the representative concentration pathway

(RCP) 8.5 scenario, which describes a “business-as-usual” projection for GHGs

(Riahi et al., 2011).
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Evaluated against historical gridded observations and reanalysis data, VR-

CESM was found to accurately capture the spatial patterns of precipitation, includ-

ing precipitation frequency and intensity, although it exhibited an overestimation

of precipitation over the eastern flank of the Cascades, throughout California’s

Central Valley and along the Sierra Nevada. Nonetheless, there was a distinct

improvement in the representation of precipitation features when compared with

coarse 1◦ resolution simulations. Both mean changes to precipitation and distribu-

tions of both non-extreme and extreme events, projected by the VR-CESM model

under climate forcing, have been investigated. Although constrained by water in-

flux and soil moisture, changes to extreme precipitation are hypothesized to follow

the C-C relationship more closely than total precipitation amount (∼7% per degree

K). It is found that continental evaporation and oceanic water vapor transport are

insufficient vapor sources to maintain RH levels above a certain threshold tem-

perature. In response, mean precipitation increase is fairly inhomogeneous, with

a more pronounced increase in the Northwest where vapor transport is enhanced.

The impacts of ENSO are wide-reaching, with a statistically significant response

observed in the character of precipitation throughout California, the intermountain

west, and the southwest regions, as well as impacting mean precipitation through

the Cascades.
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