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“One learns that the world, though made, is yet being made; that this is still the morning of creation;

that mountains long conceived are now being born, channels traced for coming rivers, basins hollowed for

lakes...”

John Muir
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Abstract

Jorge E. Guerra

A Development Framework for High Fidelity Non-hydrostatic

Simulations of Cross Mountain Flow

The development of weather and climate prediction models is steadily progressing toward a

unified state where multi-scale processes will be fully resolved on dense uniform, variable, or

adaptive meshes. However, we are currently in a transition period where advances in compu-

tation, numerical methods, and scientific understanding of detailed atmospheric dynamics are

converging and much work remains in all these areas to establish a new generation of operational

weather and climate forecasting. This thesis aims to put forth a process for advancing numerical

modeling of the atmosphere from formulation to implementation, design of numerical tests, and

validation by exploring the detailed dynamics of orographically forced gravity wave breaking.

We present a novel, efficient, and high-performance dynamical core, Tempest, and use it to create

high resolution non-hydrostatic simulations of wave breaking with the purpose of investigating

and informing on the behavior of a gravity wave drag parameterization currently in operational

use. We demonstrate the superior properties of the numerical scheme using a variety of tests span-

ning a wide range of length scales. We further present an extension of the classical linear theory

of mountain waves and use this solution in the design of fully nonlinear wave breaking simula-

tions leading to a detailed characterization of gravity wave drag as it is implemented in general

circulation models.
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Chapter 1. Introduction and Background

1.1 Non-hydrostatic vertical motion in numerical weather and climate

prediction

Numerical modeling of the atmosphere begins with a detailed examination of the governing equa-

tions of fluid motion in a stratified environment. Scaling arguments based on physical reason-

ing or observation have led to remarkable progress (Holton and Hakim, 2012) and the various

mathematical formulations have been made rigorous using variational techniques (Tort and Du-

bos, 2014). Ultimately, our goal is to find numerical solutions that preserve (as many or all) sym-

metries and invariant properties of the continuous equations in an accurate and efficient manner.

The hydrostatic approximation is one of the most important and ubiquitous simplifications

made due, primarily, to the observation that vertical to horizontal aspect ratio of the synoptic

atmosphere is very small. We consider the 2D vertical momentum equation in conserved Eulerian

form expressed in Cartesian xz local coordinates,

∂(ρw)

∂t
+

∂(ρuw)

∂x
+

∂(ρw2)

∂z
+

1
ρ

∂p
∂z

+ ρg = 0. (1.1)

where ρ is density, u is horizontal velocity, w is vertical velocity, p is absolute pressure, and g is the

body acceleration due to gravity. If we assume that the vertical column is static and divergence of

vertical momentum flux vanishes then only the following force balance remains in (1.1),

∂p
∂z

= −ρg. (1.2)

This is the textbook statement of hydrostatic balance. There are several important conse-

quences of enforcing this constraint:

1. All vertical motion depends on convergence/divergence of mass in and out of columns.

2. Vertical motion is diagnosed reducing the computational complexity of the system tremen-

dously.

2
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3. Vertical mixing is no longer possible and other nonlinear processes are neglected as well.

It cannot be understated how beneficial the hydrostatic approximation has been in both theo-

retical work over a wide range of phenomena spanning mid-latitude waves and instability through

quasi-geostrophy (Holton and Hakim, 2012) and large scale tropical dynamics (Majda and Biello, 2004).

However, computing hardware/software advances have partly motivated steady increases in

model resolution. Coupled with a pressing need to resolve weather phenomena at local scale,

most, if not all, dynamical core development worldwide is embracing the full non-hydrostatic

equations as de-facto for atmospheric modeling going forward. Ullrich (2012) provides a de-

tailed history of atmospheric model development including recent advances and trends for non-

hydrostatic model development.

1.2 Spatial discretizations for non-hydrostatic models

The spatial discretization of the governing equations (Euler, Navier-Stokes, etc.) applied to geo-

physical flow may be separated into horizontal (on surfaces parallel to Earth’s surface) and verti-

cal (aligned with gravity) directions. Therefore, numerical methods can be considered first with

respect to horizontal derivatives and typically developed for so-called Shallow Water and/or hy-

drostatic models. Prominent examples applied to non-hydrostatic models include the spectral

element method of Patera (1984) used by Guerra and Ullrich (2016) and Giraldo, Kelly, and Con-

stantinescu (2013a), finite volume discretizations by Ullrich and Jablonowski (2012), and the MPAS

model in finite differences by Skamarock et al. (2012).

For a given flow field, if horizontal resolution approaches the vertical scale height of the virtual

atmosphere, (typically 10 km or the depth of the troposphere) then non-hydrostatic effects are

expected to become significant and a question emerges: what is the most efficient AND accurate

discrete representation of vertical motion when combined with a given horizontal scheme?
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Again, for a given horizontal 2D scheme on some grid cell element (regular or deformed

quadrilateral, hexagon, icosahedron, etc.), a vertical discretization is essentially a 1D model com-

municating quantities through each level surface and supporting transport across columns i.e.

divergence. Here, a regular terrain surface following mesh of quadrilaterals connected by gravity

aligned column grids is considered. Two dimensional spectral elements are used in the horizontal

and a class of staggered elements (Guerra and Ullrich, 2016) deployed in the vertical column. This

construction, as shown in fig. 1.1, is among the simplest encountered, is easier to implement in

software, and enjoys a relatively longer history of verification and validation studies (Giraldo and

Restelli, 2008). Furthermore, finite element methods are well suited to parallelization and deploy-

ment on distributed computers as calculations can be mostly contained within elements or small

groups of elements.
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Chapter 1. Introduction and Background

FIGURE 1.1: Spectral element and staggered vertical column element discretization.
u, ρ, θ are horizontal velocity, density, and potential temperature at a model level,
and w is the vertical velocity at a model interface including top and bottom bound-
aries. D operators represent local derivatives projected from levels to interfaces Di

n
and interfaces to levels Dn

i .

The following set of criteria defining desirable properties of the combined spatial/temporal

numerical scheme are used as guidance in this work:

1. The discretization must be numerically stable, mathematically consistent with the continu-

ous equations, and be reliably accurate.

2. The resulting model must be fast. And execution performance must not compromise stabil-

ity, consistency, or accuracy.

3. The model must be implemented in a rigorous, neatly organized, and logical fashion. It must

facilitate the search for and resolution of problems as well as enable improvements readily.
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Chief among these concerns for atmospheric studies is that of mathematical consistency with

respect to mass and/or energy conservation in a virtual atmosphere. While, almost all discretiza-

tions in use for research or in operational settings lead to mass conservation, much work is being

currently done in search of discretizations that also conserve energy perfectly. Examples include

the work of Dubos and Tort (2014), Thuburn, Cotter, and Dubos (2014) and Eldred and Ran-

dall (2017) where discretization is applied directly to the invariant functionals describing total

energy. While there is still some debate as to the importance of energy conservation from a prac-

tical sense, this author believes such research to be significantly valuable in providing a definitive

accounting of implicit and explicit energy losses i.e. that which results from the overall combined

model implementation and that which is strictly a consequence of discretization error and/or dis-

sipation terms added onto the equations. In fact, a perfectly energy conserving scheme would

allow the model user to fully control any dissipation through parameterizations typically in the

form of diffusion or hyper-diffusion terms.

A second, but equally important concern in atmospheric simulations is the treatment of waves.

It is widely known that Earth’s atmosphere supports a variety of waves at every scale from plan-

etary and synoptic (Rossby and Kelvin waves) to meso and human scale (Bouyancy and sound

waves). In fact, waves constitute one of the primary mechanisms for energy, momentum, and

constituent transport in the atmosphere (Holton and Hakim, 2012). Therefore, a numerical model

most must have the ability to reproduce such wave action accurately over a spectrum of wave-

lengths as close to the grid scale length as possible. In this regard, a proposed model discretiza-

tion is initially analyzed and tested in the context of linearized equation sets (Ullrich, 2014b).

It has been shown, that prognostic variables cannot all be collocated on computational grid if

wave dispersion is to be computed correctly. This gave rise to staggered discretizations of various

forms along with discrete dispersion analyses indicating optimal configurations (Thuburn and

Woollings, 2005), (Thuburn, 2006), and previously (Arakawa and Moorthi, 1988).

This work is concerned with the simulation of orographically forced gravity wave breaking
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and thus utilizes a modeling system that produces internal gravity waves and follows their break-

down with high fidelity. Therefore, the numerical model used in these studies provides both

accurate wave dispersion properties, and is nearly completely energy conservative allowing for

a faithful representation of processes leading to unstable wave breakdown and the generation of

forced stratified turbulence over mountains.

1.3 Theoretical and computational study of mountain wave breaking

Theoretical considerations of the zonally averaged general circulation using the quasi-geostrophic

framework, most notably by Eliassen and Palm (1960) and also by Bretherton (1969b); Brether-

ton (1969a), along with numerical simulations such as those by Holton and Wehrbein (1980);

Holton (1983); Zhu and Holton (1987) indicate that divergence in wave/fluctuation mean mo-

mentum flux is responsible for broad scale drag forcing on the circulation. The mechanism for

such transports of momentum is the dissipation of wave energy through turbulent breakdown.

The linear steady state theory of mountain waves by (Smith, 1979; Smith, 1980), and more recently

reviewed by Teixeira (2014) is sufficient to establish dispersive properties of mountain waves and

give estimates for amplitude growth. Furthermore, convective instability conditions that deter-

mine the onset of overturning can be derived from the linearized equations allowing a detailed

understanding of the wave breaking process up to the moment instability takes place. More re-

cent numerical studies by (Chen, Durran, and Hakim, 2005; Chen, Durran, and Hakim, 2006)

have explored the transient and non-linear evolution of momentum flux profiles and their effects

on synoptic scale cross flows.

While significant progress continues in understanding the dynamics of gravity wave break-

ing under idealized conditions over various terrain forms, a significant gap remains when these

processes are incorporated into general purpose meso-scale and general circulation models. The

primary reason is a lack of grid resolution over steep terrain necessary to resolve turbulent trans-

port of breaking waves leading to drag forcing on the general circulation. Thus, this process is
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parameterized mechanistically based on a solution of the 2D compressible Euler equations, cast

into a single variable form known as the Taylor-Goldstein equation, linearized about a mean back-

ground flow and static stratification (Nappo, 2012).

As of this writing, the Community Atmosphere Model (Neale et al., 2010) employs an Oro-

graphic Gravity Wave Drag (OGWD) parameterization based on the work of Lindzen (1981) fol-

lowed by McFarlane (1987) and Palmer, J., and R. (1986). This model, as seen in fig. 1.2, enjoys

several decades of testing and validation and benefits from a simple and accurate construction.

However, as with any parameter scheme, there are pivotal assumptions made in the formula-

tion: 1) the hydrostatic approximation is made in the perturbation equations, 2) input terrain is

sinusoidal, and 3) incompressibility allows for velocity fields to be derived from a displacement

stream function giving a precise prediction of propagation/nonpropagation regimes based on

background wind and bouyancy frequency. A central question for this work is what happens to

the parameterization as mean model resolution decreases from hydrostatic to nonhydrostatic scale

(less than 10 km)?
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FIGURE 1.2: Schematic of the McFarlane (1987) parameterization scheme also show-
ing turbulent stress at the base of a computational column. The equation shows
the relationship between zonal mean horizontal wind ū and vertical gradient of
zonal mean momentum flux covariance u′w′ subject to the Boussinesq approxima-

tion where only the background variation in density ρ0 is considered.

One consequence of increased model resolution is the emergence (in terms of importance) of

related but different forms of drag occurring at low level near the terrain boundary as depicted in

fig. 1.3. At larger scales these processes manifest as evanescent modes that do not propagate but

rapidly decay with height, however at much higher resolution, these modes become richer and

produce local turbulent form drag in an increasingly well resolved boundary layer. The OGWD

scheme has been augmented to incorporate some of these lower level processes by way of defin-

ing an enhanced roughness length akin to what is done in aerospace flow dynamics (Lott and

Miller, 1997; Beljaars, Brown, and Wood, 2004). A detailed accounting of all the processes that
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determine the distribution of drag throughout the atmosphere is still not present in current oper-

ational global modeling and significant time remains before resolution increases by the order of

magnitude needed to explicitly include terrain drag in a general manner.

FIGURE 1.3: Schematic of dynamical processes expected as a current of air encoun-
ters moutainous terrain.
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1.4 Outline of the thesis

The primary objective of this thesis is to introduce a novel numerical method for non-hydrostatic

models and design test experiments to investigate the simulated behavior of breaking mountain

waves at high resolution. Using detailed high-fidelity simulations of orographic waves, we then

make an evaluation of an operational gravity wave drag parameterization scheme in the context

of increasing model resolution. We seek to advance the detailed understanding of gravity wave

breaking and inform the modeling community on appropriate development of more complete

parameterization schemes that will be needed for some time to come.

The remainder of this thesis is organized as follows. In Chapter 1 we describe a novel dis-

cretization for vertical non-hydrostatic motion as part of the Tempest research dynamical core.

This model combines the spectral element method on regular quadrilaterals over terrain follow-

ing surfaces with a generalized arbitrary-order staggered finite element method that works with

mixed polynomial spaces to achieve vertical staggering. With the numerical model implemented

and tested, we proceed in Chapter 2 to design numerical experiments in the context of breaking

mountain waves under general atmospheric conditions. The objective is the produce simulations

that capture flow features in detail for both waves and, crucially, the transition from waves to

stratified turbulence.

In Chapter 3 we present a high-fidelity simulation study of cross mountain flow using real

terrain data from the Equatorial Andes. We show direct measurements of drag forcing and test

the OGWD parameterization scheme at high resolution. Finally, we present conclusions from this

work and future directions for this research including extending such studies to 3D with moisture

and suggest other small scale phenomena related to terrain interactions that may be explored in a

similar framework.
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Chapter 2. The Staggerend Nodal Finite-Element Method

2.1 Introduction

The accurate representation of vertical wave motion is essential for models of the atmosphere.

The vertical coordinate for the non-hydrostatic fluid equations has traditionally been discretized

in the Eulerian frame via a second-order Charney-Phillips (Charney and Phillips, 1953) or Lorenz

grid (Arakawa and Moorthi, 1988), or via Lagrangian layers, such as in Lin (2004). However,

little work has been undertaken to develop high-order vertical discretizations due to a number

of outstanding issues. First, higher-order generalizations must somehow incorporate the no-flux

boundary conditions at the model bottom and top without loss of accuracy, especially near the

surface where accurate treatment of dynamics is paramount. Second, as observed by Thuburn

and Woollings (2005), Thuburn (2006) and Toy and Randall (2007) the choice of vertical coordi-

nate (whether height-based, mass-based or entropy-based) implies an optimal vertical staggering

of prognostic variables for maintaining correct behavior for wave motions relevant to the atmo-

sphere. Third, unstaggered discretizations (that is, discretizations where all prognostic variables

are stored on model levels) possess stationary computational modes which represent gross errors

in the dispersion properties of the solution (Melvin, Staniforth, and Thuburn, 2012; Ullrich, 2014c).

As in the horizontal, unstaggered FEM leads to waves with zero phase speed in the limit as the

wavelength tends to 2∆x, where ∆x is the average grid spacing between degrees of freedom.

However, unlike the horizontal, these wave modes can be dramatically enhanced by an implicit

treatment of the vertical at high Courant number.

This paper describes a new discretization for the vertical that combines the accuracy of fi-

nite element methods with the desirable wave propagation properties of staggered methods.

This method of vertical discretization was originally described in Ullrich and Guerra (2015), but

tested using a modified set of equations and validated with a single test case. Here we extend

this approach, referred to as the Staggered Nodal Finite Element Method (SNFEM), in a similar

framework. Notably, this formulation is sufficiently general to be compatible with essentially any

form of the fluid equations. The SNFEM discretization can be easily composed in differential
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form using interpolation and differentiation operators built in accordance with the discontinuous

Galerkin and spectral element discretizations that arise from the flux reconstruction method of

Huynh (2007) (see Table 2.1).

Our staggered method is similar to the mixed finite element formulations of Cotter and J. (2012)

and Cotter and J. (2014) where different functional spaces are used on the prognostic fields in order

to achieve desirable wave propagation and conservation properties. The SNFEM utilizes different

polynomial spaces based on continuous and discontinuous grids to achieve staggered configura-

tions. The use of SNFEM is natural for vertical discretizations, as no-flux conditions are easily

imposed on top and bottom boundaries in the general finite element framework (Zienkiewicz,

Taylor, and Zhu, 2005) without loss of accuracy. Further, SNFEM inherits the mimetic properties

of the spectral element method so the vertical operator will automatically conserve both mass and

discrete linear energy. The objectives of this paper are as follows:

1. To introduce our approach for the construction of a generalized, staggered, variable order-

of-accuracy, finite element vertical discretization. We emphasize discretization of the non-

conservative differential form of the Navier-Stokes equations (in vector invariant or so-called

Clark form), which is independent of coordinate system.

2. To validate the implementation of this discretization within the Tempest framework using a

selection of test cases in Cartesian geometry through a range of horizontal scales from 1 to

1000 km.

3. To determine the qualitative and quantitative effect of vertical order of accuracy on solutions

by conducting validation experiments at coarse resolutions relative to finer reference solu-

tions. We consider the effects of Lorenz (LOR) and Charney-Phillips (CPH) staggering both

in the interior flow and at the lower boundary.

4. To determine whether a high-order vertical discretization greatly improves the simulation

quality, and consequently to recommend whether there is an optimal order-of-accuracy that
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provides the best tradeoff between accuracy and computational cost.

To assess the performance of SNFEM, this discretization has been implemented in the spec-

tral element Tempest model (Ullrich, 2014a) and run through a suite of mesoscale test cases.

The test cases are as follows: Baroclinic instability in a 3D Cartesian channel of Ullrich, Reed,

and Jablonowski (2015), uniform flow over the mountain of Schär et al. (2002), the density cur-

rent of Straka et al. (1993), and rising thermal convective bubble tests as given in (Giraldo and

Restelli, 2008). While not exhaustive, this validation suite is intended to show the treatment of

waves, non-linear vertical transport, and near boundary dynamics corresponding to a high-order

vertical coordinate with and without the influence of topography. Therefore, the objectives of this

paper are as follows:

We will show that a high-order vertical discretization at coarse resolution more accurately

approximates the reference solution relative to the low vertical order alternative when total count

of degrees of freedom is kept constant. Since the interpolation and derivative operators in the

finite element approach are easily expressed as linear matrix operators, there is minimal cost in

adjusting the order-of-accuracy. We will present control experiments 2.4 where only the resolution

and vertical order-of-accuracy vary. We leave the rigorous analysis of staggered wave modes and

discrete energy conservation using the interpolation/differentiation operators for a subsequent

work.

The remainder of this manuscript is as follows: Section 2.2 describes the non-hydrostatic equa-

tions of fluid motion on an arbitrary coordinate frame. Section 2.3 describes the discrete form of

these equations, including the spectral element horizontal discretization, the operators used by

the SNFEM vertical discretization and the time-stepping scheme employed. In section 2.4, we

describe the test case suite and discuss the corresponding model results. The summary and con-

clusions follow in section 2.5.
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2.2 The non-hydrostatic equations of fluid motion

In an arbitrary coordinate frame (α, β, ξ), the vector velocity can be written as

u = uαgα + uβgβ + uξgξ , (2.1)

where gi (i ∈ {α, β, ξ}) are the local coordinate basis vectors and ui are the contravariant velocity

components. The associated covariant components are

uα = u · gα, uβ = u · gβ, uξ = u · gξ . (2.2)

Covariant components can be obtained in terms of contravariant components via contraction with

the covariant metric gij = gi · gj,

ui = giαuα + giβuβ + giξuξ . (2.3)

The reverse operation uses the contravariant metric gij, defined as the matrix inverse of the co-

variant metric. Contraction of the covariant components with the contravariant metric returns the

contravariant vector components,

ui = giαuα + giβuβ + giξuξ . (2.4)

The volume element J is computed in terms of the covariant metric as

J =
√

det gij. (2.5)

Using covariant horizontal velocity components, vertical velocity, potential temperature θ and
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dry air density ρ as prognostic variables, the Euler equations with shallow-atmosphere approxi-

mation can be written an arbitrary coordinate frame as

∂uα

∂t
= − ∂

∂α
(K + Φ)− θ

∂Π
∂α

+ (η× u)α , (2.6)

∂uβ

∂t
= − ∂

∂β
(K + Φ)− θ

∂Π
∂β

+ (η× u)β , (2.7)(
∂r
∂ξ

)
∂w
∂t

= − ∂

∂ξ
(K + Φ)− θ

∂Π
∂ξ

+ (η× u)ξ (2.8)

∂θ

∂t
= −uα ∂θ

∂α
− uβ ∂θ

∂β
− uξ ∂θ

∂ξ
, (2.9)

∂ρ

∂t
= −1

J
∂

∂α
(Jρuα)− 1

J
∂

∂β
(Jρuβ)− 1

J
∂

∂ξ
(Jρuξ). (2.10)

The vertical velocity w is closely related to uξ via

w = |gξ |−1uξ , (2.11)

The specific Kinetic energy is

K =
1
2

(
uαuα + uβuβ + uξuξ

)
, (2.12)

while the geopotential function Φ is given by the product of gravitational acceleration (constant)

with the elevation coordinate r(ξ).

Π = cp

(
p0

p

)Rd/cp

= cp

(
Rdρθ

p0

)Rd/cv

. (2.13)

Here p0 denotes the constant reference pressure, Rd is the ideal gas constant and cv and cp refer

to the specific heat capacity at constant volume and pressure, respectively. The absolute vorticity

vector is given by

η = ζ + ω, (2.14)
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where the relative vorticity vector is

ζ =
1
J

[(
∂uξ

∂β
− ∂uβ

∂ξ

)
gα +

(
∂uα

∂ξ
− ∂uξ

∂α

)
gβ +

(
∂uβ

∂α
− ∂uα

∂β

)
gξ

]
, (2.15)

and, under the shallow-atmosphere approximation, the planetary vorticity vector is

ω = f (∂r/∂ξ)−1gξ . (2.16)

Consequently, the rotational terms in the equation of motion take the form

(η × u)α = J
[
uβ(ωξ + ζξ)− uξζβ

]
, (2.17)

(η × u)β = J
[
uξζα − uα(ωξ + ζξ)

]
, (2.18)

(η × u)ξ = J
[
uαζβ − uβζα

]
. (2.19)

Note that this formulation does not specify a coordinate system. Consequently, these equa-

tions can be used for either Cartesian or spherical geometry. To account for topography, terrain-

following σ-coordinates are imposed by defining the radius r = r(α, β, ξ) so that r(α, β, 0) is coin-

cident with the surface. For example, Gal-Chen and Somerville (1975) coordinates arise from the

choice

r(α, β, ξ) = ξ
[
rtop − rs(α, β)

]
+ re + rs(α, β), (2.20)

where rtop denotes the model height and rs(α, β) denotes the surface elevation from the mean

Earth radius re. In Cartesian coordinates r simply maps to the elevation z while neglecting the

mean radius re in (2.20). The symmetric covariant and contravariant metric tensors in the (α, β, r)
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Cartesian system are written as

gij =



1 0 −
(

∂r
∂ξ

)−1 (
∂r
∂α

)
1 −

(
∂r
∂ξ

)−1 (
∂r
∂β

)
(

∂r
∂ξ

)−2
[

1 +
(

∂r
∂α

)2
+
(

∂r
∂β

)2
]


: i, j = (α, β, ξ) (2.21)

and

gij =



[
1 +

(
∂r
∂α

)2
]

∂r
∂α

∂r
∂β

∂r
∂α

∂r
∂ξ[

1 +
(

∂r
∂β

)2
]

∂r
∂β

∂r
∂ξ(

∂r
∂ξ

)2

 : i, j = (α, β, ξ) (2.22)

We note that in this framework, the discretization is decoupled from the grid definition. As

such, Tempest is designed to target flows on the sphere and in Cartesian domains simultaneously

with or without terrain. This is convenient in the analysis, implementation, and validation of the

numerical techniques that follow. We focus our validation on Cartesian cases and will address

test cases on the sphere in a subsequent publication based on the same discretization framework.

Lastly, derivatives of the vertical coordinate in α and β are evaluated using the discrete derivative

operators developed in the next section while the vertical gradient of coordinate surfaces can

easily be obtained analytically from (2.20).

2.3 Discretization

2.3.1 Horizontal Discretization

The horizontal discretization of (2.6)-(2.10) follows the continuous element formulation of Ull-

rich (2014a), which is analogous to earlier efforts with spectral elements (Giraldo and Rosmond, 2004;
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Taylor and Fournier, 2010; Dennis et al., 2011; Giraldo, Kelly, and Constantinescu, 2013b) with co-

ordinate information completely contained in the definition of the metric tensors (2.21) and (2.22).

2.3.2 Vertical Discretization

Each vertical column consists of nve nodal finite elements, indexed a ∈ {0, . . . , nve − 1}. Through-

out this manuscript, all vertical indices are assumed to increase with altitude. Within each el-

ement, levels are placed at the nvp Gaussian quadrature nodes and interfaces at nvp + 1 Gauss-

Lobatto quadrature nodes, leading to a staggering of levels and interfaces. With vertical coor-

dinate ξ, the location of model levels denoted ξa,k with k ∈ {0, . . . , nvp − 1} and model inter-

faces denoted ξ̃a,k with k ∈ {0, . . . , nvp}. Each finite element is then bounded within the interval

[ξ̃a,0, ξ̃a,nvp ] with two associated sets of basis functions – one over model levels, denoted by the set

φa = {φa,j|j = 0, . . . , nvp − 1} that includes characteristic polynomials of degree nvp − 1, and one

over model interfaces, denoted by the set φ̃a = {φ̃a,j|j = 0, . . . , nvp − 1} that includes character-

istic polynomials of degree nvp. A depiction of the vertical staggering associated with levels and

interfaces is given in fig. 2.1, along with basis functions in each case. A scalar field q(ξ, t) can then

be written approximately, either as a linear combination of basis functions on levels,

q(ξ, t) ≈
nve−1

∑
a=0

nvp−1

∑
j=0

qa,j(t)φa,j(ξ), (2.23)

or on interfaces,

q(ξ, t) ≈
nve−1

∑
a=0

nvp

∑
j=0

q̃a,j(t)φ̃a,j(ξ). (2.24)

For the remainder of this manuscript we will use script n to denote variables stored on model

levels and script i to denote variables stored on interfaces.
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FIGURE 2.1: (a) Vertical placement of (left) Gauss-Lobatto nodes and (right) Gauss
nodes within a vertical element with nvp = 3. (b) Basis functions φ̃a,k for Gauss-
Lobatto nodes within element a. (c) Basis functions φa,k for Gauss nodes within ele-

ment a.

Interpolation Operators

Note that (2.23) and (2.24) are not equivalent discretizations since (2.23) cannot represent polyno-

mials of degree nvp and (2.24) cannot represent fields that are discontinuous at element interfaces.

Nonetheless, we can define interpolation operators between these fields via In
i , representing in-

terpolation from levels to interfaces, and I i
n, representing interpolation from interfaces to nodes.

First, interpolation from interfaces to levels is defined as

(I i
nq̃)a,k =

nvp

∑
j=0

q̃a,j(t)φ̃a,j(ξa,k). (2.25)

To define the interpolant from levels to interfaces, a two-step procedure is employed. Since

basis functions on levels are discontinuous, we define the left and right interpolants at element
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boundaries as

(In
L q)a,0 =

nvp−1

∑
j=0

qa,jφa,j(ξ̃a,0), (In
Rq)a,nvp−1 =

nvp−1

∑
j=0

qa,jφa,j(ξ̃a,nvp−1) (2.26)

and then define the total interpolant as

(In
i q)a,k =



nvp−1

∑
j=0

qa,jφa,j(ξ̃a,k) if 0 < k < nvp,

1
2 (In

Rq)a−1,nvp−1 +
1
2 (In

L q)a,0 if k = 0,

1
2 (In

Rq)a,nvp−1 +
1
2 (In

L q)a+1,0 if k = nvp.

(2.27)

These interpolation operators can also be obtained from equivalence via the variational (weak)

form. At model interfaces, the accuracy of (2.27) degrades for unequally spaced finite elements.

For the case of stacked finite elements with unequal thickness ∆ξa = ξ̃a,nvp − ξ̃a,0, a more accurate

formula can be obtained from

(In
i q)a,0 =

∆ξ
nvp
a (In

Rq)a−1,nvp−1 + ∆ξ
nvp
a−1(In

L q)a,0

∆ξ
nvp
a + ∆ξ

nvp
a−1

, (2.28)

which arises on noting that the one-sided interpolant has error O(∆ξ
nvp
a ).

Differentiation Operators

Differentiation is required for all combinations of model levels and interfaces: Di
i represents dif-

ferentiation from interfaces to interfaces, Di
n represents differentiation from interfaces to levels,

Dn
n denotes differentiation from levels to levels and Dn

i denotes differentiation from levels to in-

terfaces. A depiction of the behavior of these derivative operators is shown in fig. 2.2.
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Di
n

Dn
i

⇠̃a,0
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⇠a,1

⇠a,2

⇠a,3

⇠̃a,0

⇠̃a,1

⇠̃a,2

⇠̃a,3

FIGURE 2.2: A depiction of the derivative operators Di
n and Dn

i , which remap from
interfaces to levels and levels to interfaces, respectively. The gray line depicts a typ-
ical field variable within element a that emerges from the expansion (left) (2.24) or

(center) (2.23).

Differentiation from interfaces to levels is obtained by simply differentiating (2.25),

(Di
nq)a,k =

nvp

∑
j=0

q̃j
∂φ̃j

∂ξ
(ξa,k). (2.29)

This works in practice as there is an exact mapping from derivatives of the continuous polynomial

space (over interfaces) to the discontinuous polynomial space (over levels).

Differentiation from levels to levels is computed via the composed operator

Dn
nq = Di

nIn
i q, (2.30)

where boundary conditions, such as the no flux condition (uξ = 0) at the top and bottom, are

enforced after application of the interpolation operator.
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Differentiation from interfaces to interfaces requires averaging the one-sided derivatives at

element interfaces, but is otherwise simply the derivative of (2.25) on the element interior,

(Di
iq)a,k =



1
2

(
nvp

∑
j=0

q̃a,j
∂φ̃a,j

∂ξ
(ξ̃a,k) +

nvp

∑
j=0

q̃a−1,j
∂φ̃a−1,j

∂ξ
(ξ̃a,k)

)
if k = 0,

nvp

∑
j=0

q̃a,j
∂φ̃a,j

∂ξ
(ξ̃a,k) if 0 < k < nvp,

1
2

(
nvp

∑
j=0

q̃a,j
∂φ̃a,j

∂ξ
(ξ̃a,k) +

nvp

∑
j=0

q̃a+1,j
∂φ̃a+1,j

∂ξ
(ξ̃a,k)

)
if k = nvp.

(2.31)

Differentiation from levels to interfaces (Dn
i ) should not be defined via the composition Di

iIn
i

since this procedure would introduce a non-zero null space that can trigger an unphysical com-

putational mode in the discrete equations. Instead we define Dn
i using the robust differentiation

technique discussed in Ullrich (2014a), based on the flux reconstruction methods of Huynh (2007).

This strategy leads to the discrete operator

(Dn
i q)a,k = (D̂n

i q)a,k +
1
2

dGR

dξ
(ξ̃a,k) [(In

L q)a+1,k − (In
Rq)a,k]

+
1
2

dGL

dξ
(ξ̃a,k) [(In

Rq)a−1,k − (In
L q)a,k] , (2.32)

where

(D̂n
i q)a,k =



1
2

(
nvp−1

∑
j=0

qa,j
∂φa,j

∂ξ
(ξ̃a,k) +

nvp−1

∑
j=0

qa−1,j
∂φa−1,j

∂ξ
(ξ̃a,k)

)
if k = 0,

nvp−1

∑
j=0

qa,j
∂φa,j

∂ξ
(ξ̃a,k) if 0 < k < nvp,

1
2

(
nvp−1

∑
j=0

qa,j
∂φa,j

∂ξ
(ξ̃a,k) +

nvp−1

∑
j=0

qa+1,j
∂φa+1,j

∂ξ
(ξ̃a,k)

)
if k = nvp,

(2.33)

and GL and GR are the local flux correction functions, which are chosen to satisfy

GL(ξa,0) = 1, GL(ξa,nvp−1) = 0, GR(ξa,0) = 0, GR(ξa,nvp−1) = 1, (2.34)
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and otherwise approximate zero throughout [ξa,0, ξa,nvp−1].

There is some flexibility in the discretization that depends on the specific choice of flux cor-

rection functions. Huynh (2007) gives a family of flux correction functions on the interval [−1, 1]

denoted by Gk for k = 1, 2, . . .. In particular, we are interested in G1 (the Radau polynomials)

and G2, which have the special property that dG2/dx = 0 at all Gauss-Lobatto points. Although

either choice of flux correction function leads to a valid discretization for nvp > 1, when nvp = 1

a consistent differential operator is recovered only with G2. Hence, for the remainder of this text

we will adopt the flux correction function G2. For this choice, the flux correction function satisfies

∂G2

∂x
=

(nvp + 1)
[

Pnvp+1(x)− xPnvp(x)
]

2(x− 1)
, . (2.35)

where PN(x) is the Legendre polynomial of order N. In the limit as x approaches the boundaries

of the reference element, a simplified expression emerges:

lim
x→+1

∂G2

∂x
= nvp(nvp + 1). (2.36)

On the interval [ξ̃ j,0, ξ̃ j,nvp−1] we have

∂GR

∂ξ
(ξ) =

1
∆ξa

∂G2

∂x

[
2(ξ − ξ j,0)

∆ξa
− 1
]

,
∂GL

∂ξ
(ξ) = − 1

∆ξa

∂G2

∂x

[
2(ξ j,nvp−1 − ξ)

∆ξa
− 1

]
. (2.37)

Second Derivative Operators in the Vertical

The second derivative operators are used in viscosity and hyperviscosity calculations. They are

obtained as approximations to the equation

L(ν)q ≈ ν
∂2q
∂ξ2 , (2.38)
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subject to Neumann (no-flux) boundary condition

∂q
∂ξ

= 0 at ξ = 0 and ξ = 1. (2.39)

For the viscous operator from interfaces to interfaces, the discretization is obtained from the

variational (weak) formulation. Specifically, from (2.38) and integration by parts,

∫ 1

0
(Li

iq)b,nφ̃a,kdξ =
∂q
∂ξ

φ̃a,k

∣∣∣∣1
0
−
∫ 1

0

∂q
∂ξ

∂φ̃a,k

∂ξ
dξ. (2.40)

Then using (2.24), (2.39) and the assumption of orthogonality of basis functions φ̃ under quadra-

ture,

(Li
iq)a,k = −

1∫ 1
0 φ̃2

a,kdξ

nve−1

∑
b=0

nvp

∑
n=0

q̃b,n

∫ 1

0

∂φ̃a,k

∂ξ

∂φ̃b,n

∂ξ
dξ. (2.41)

For model interfaces on Gauss-Lobatto nodes, the integral is discretized via Gauss-Lobatto quadra-

ture.

The viscous operator from levels to levels is derived in a similar manner, although the non-

differentiability of q at interfaces in the discontinuous basis means that we must rely on differen-

tiation via (2.32). Consequently, the weak form

∫ ξ̃a,vnp

ξ̃a,0

(Li
iq)b,nφa,kdξ =

∂q
∂ξ

φa,k

∣∣∣∣ξ̃a,vnp

ξ̃a,0

−
∫ ξ̃a,vnp

ξ̃a,0

∂q
∂ξ

∂φa,k

∂ξ
dξ. (2.42)

then leads to discrete operator

(Ln
nq)a,k =

1∫ ξ̃a,nvp

ξ̃a,0
φ2

a,kdξ

[
(L̂n

nq)a,k + (Dn
i q)a,vnp φ(ξ̃a,vnp)− (Dn

i q)a,0φ(ξ̃a,0)
]

, (2.43)
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where

(L̂n
nq)a,k = −

nve−1

∑
b=0

nvp−1

∑
n=0

qb,n

∫ ξ̃a,nvp

ξ̃a,0

∂φa,k

∂ξ

∂φb,n

∂ξ
dξ. (2.44)

For model levels on Gauss nodes, the integral is discretized directly via Gaussian quadrature.

Note that the boundary condition implies that we must impose

(Dn
i q)0,0 = 0 and (Dn

i q)vne−1,vnp = 0. (2.45)

Flow-dependent vertical hyperviscosity

The basic spectral element method is an energy conservative scheme (Taylor and Fournier, 2010)

that allows for the accumulation of energy at the shortest wavelengths. Following Ullrich (2014a)

and Dennis et al. (2011), we impose explicit dissipation in the horizontal using a constant coef-

ficient hyperviscosity. In the vertical, a constant coefficient hyperviscosity would have a rapid

and adverse affect on hydrostatic balance in the absence of a hydrostatic reference state (Giraldo

and Restelli, 2008). Consequently, in this paper we apply a localized hyperviscosity in the vertical

column that is weighted by the contravariant vertical flow velocity uξ ,

∂q
∂t

= · · ·+ νz|uξ | ∂
2kq

∂ξ2k , (2.46)

where q ∈ {uα, uβ, w, θ, ρ} and k is a positive integer. The motivation for using uξ stems from the

observation that advective transport in the vertical occurs with speed uξ , and so this would be the

corresponding wave speed that would enter into, for example, the Rusanov Riemann solver in the

context of discontinuous Galerkin or finite volume methods. In this sense, the flow-dependent

hyperviscosity is a generalization of advective up-winding if applied simultaneously with the

vertical advective operator. The Riemann solver interpretation also yields an appropriate estimate
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for the value of νz,

k = 2 : νz = (1/2)(∆ξ)−1,

k = 4 : νz = −(1/12)(∆ξ)−3, (2.47)

k = 6 : νz = (1/60)(∆ξ)−5,

where ∆ξ = 1/(anvp) is the average spacing between nodes in the vertical direction.

The Staggered Nodal Finite Element Method (SNFEM)

The interpolation and differentiation operators given in the previous sections provide a frame-

work for constructing staggered vertical grids in the context of the nonlinear system (2.6)-(2.10).

Furthermore, the SNFEM allows for discretizations of arbitrary order-of-accuracy via adjustments

in nvp. For the present work, we investigate unstaggered (on interfaces), Lorenz (LOR) (u, v, ρ, θ

on levels, w on interfaces), and Charney-Phillips (CPH) (u, v, ρ on levels, w, θ on interfaces) con-

figurations. The two key diagnosed variables, Π and uξ are co-located with ρ and w respectively.

Table 2.1 provides a reference nomenclature for the various discrete derivative operators that arise

in the SNFEM corresponding to the terms treated implicitly. In general, we will use subscripts and

superscripts i and n denote quantities computed on “interfaces” or “levels” respectively. When

needed, the contravariant α and ξ velocity are computed via

(uj) = gjα(uα) + gjβ(uβ) + gjξ |gξ |w, (2.48)

where j ∈ {α, ξ} and all covariant velocities are first interpolated to levels or interfaces (whereever

uj is needed) prior to evaluation.

For example, applying the discrete derivative operators with Lorenz staggering to (2.6)-(2.10)

and neglecting flow in the β direction gives:
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∂(uα)n

∂t
= −Dα(Kn + Φn)− θnDα(Πn)− (uξ)n

[
Dn

nuα −DαI i
n(uξ)i

]
, (2.49)(

∂r
∂ξ

)
i

∂wi

∂t
= −Dn

i (Kn + Φn)− In
i θn (Dn

i Πn) + (uα)iDi
nuα − In

i

[
(uα)nDαI i

n(uξ)i

]
(2.50)

∂θn

∂t
= −(uα)n (Dαθn)−

[
I i

n(u
ξ)i

]
(Dn

nθn), (2.51)

∂ρn

∂t
= − 1

Jn
Dα [Jnρn(uα)n]−

1
Jn
Di

n[Ji(In
i ρn)(uξ)i]. (2.52)

Here the vertical interpolation operators are defined in section 2.3.2, the derivative operators are

defined in section 2.3.2, and the horizontal derivative operator Dα represents the standard co-

located spectral element derivative operator.

It is important to note the great deal of flexibility available in the computation of spatial terms

in eqs. (2.49) - (2.52). In particular, covariant/contravariant velocity components (needed in the

advection of θ) and the specific kinetic energy K may be composed with different interpolation

sequences and preliminary experiments have suggested that stability of the method may depend

on such variations, particularly in the presence of steep topography.
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Choice of Staggering

Variable Term SE (ρi, θi, wi) SNFEM-LOR (ρn, θn, wi) SNFEM-ChP (ρn, θi, wi)

u, v Π Πi(ρi, θi) Πn(ρn, θn) Πn(ρn, I i
nθi)

θ uξ ∂θ

∂ξ
(uξ

i )Di
iθi (I i

nuξ
i )(Dn

nθ) (uξ
i )(Di

iθi)

w θ
∂Π
∂ξ

θiDi
iΠi (I i

nθn)(Dn
i Πn) θi(Dn

i Πn)

ρ
1
J

∂

∂ξ
(Jρuξ)

1
Ji
Di

i(Jiρiu
ξ
i )

1
Jn
Di

n

[
Ji(In

i ρn)u
ξ
i

] 1
Jn
Di

n

[
Ji(In

i ρn)u
ξ
i

]

TABLE 2.1: Composition of interpolation I and differentiation D operators for
several choices of staggering, including co-located spectral elements (SE), SNFEM
with Lorenz staggering (SNFEM-LOR) and SNFEM with Charney-Phillips stagger-
ing (SNFEM-ChP). Script i denotes variables defined on interfaces (Gauss-Lobatto
nodes) and n represents variables defined on model levels (Gauss nodes). For opera-
tor I and D, the subscript denotes the target (i or n) and the superscript denotes the

origin.

2.3.3 Temporal Discretization

Many options are available for the temporal discretization of the semi-discrete equations, includ-

ing several fully explicit and implicit-explicit schemes (Ascher, Ruuth, and Spiteri, 1997). One

simple temporal discretization is investigated here, which utilizes Strang splitting for the dynam-

ics and operator splitting for the hyperviscosity. The equations (2.6)-(2.10) are written in the form

∂ψ

∂t
− f (x, ψ) = g(x, ψ), (2.53)

where f (x, ψ) denotes terms associated with non-stiff modes, i.e. horizontally-propagating modes

and vertical advection of horizontal velocity. The function g(x, ψ) denotes geometrically stiff terms

associated with all vertical derivatives except for vertical advection of horizontal velocity. The

model follows the approach of Ullrich and Jablonowski (2012) by treating non-stiff terms using

an explicit temporal operator and stiff terms using an implicit operator. For the current study,

30



Chapter 2. The Staggerend Nodal Finite-Element Method

the terms highlighted in red in eqs. (2.49) - (2.52) are treated implicitly in order to avoid timestep

limitations due to vertically propagating sound waves.

For the first time step, an implicit update is applied,

ψ(0) = ψn + ∆t
2 (I − ∆t

2 DG(ψn))−1G(ψn), (2.54)

where G(ψn) represents the discretization described in section 2.3.2 and DG(ψn) = ∂G/∂ψn. For

later time steps, the implicit update is instead obtained from a stored tendency,

ψ(0) = ψn + ∆t
2 ψ. (2.55)

Explicit terms are evolved using a Runge-Kutta method which supports a large stability bound

for spatial discretizations with purely imaginary eigenvalues. This particular scheme is based on

Kinnmark and Gray (1984b); Kinnmark and Gray (1984a) and takes the form

ψ(1) = ψ(0) + ∆t
5 f (ψ(0)),

ψ(2) = ψ(0) + ∆t
5 f (ψ(1)),

ψ(3) = ψ(0) + ∆t
3 f (ψ(2)), (2.56)

ψ(4) = ψ(0) + 2∆t
3 f (ψ(3)),

ψ(5) = − 1
4 ψ(0) + 5

4 ψ(1) + 3∆t
4 f (ψ(4)).

Hyperviscosity is then applied in accordance with Ullrich (2014a), with scalar hyperviscos-

ity used for all scalar quantities and vector hyperviscosity used for the horizontal velocity field.

Mathematically, the update takes the form,

ψ
(6)
s = ψ

(5)
s + ∆tH(ν)H(1)ψ(5)

s , (2.57)

u(6) = u(5) + ∆tH(νd, νv)H(1, 1)u(5), (2.58)
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where ψs ∈ {θ, w, ρ}.
When active, Rayleigh friction is applied via backward Euler to relax all prognostic variables

to a specified reference state,

ψ(7) = γψ(6) + (1− γ)ψref, (2.59)

where γ = [1 + νr(x)∆t]−1 is in terms of the Rayleigh friction strength νr(x).

In accordance with Strang splitting, a final implicit update is applied,

ψ = (I − ∆t
2 DG(ψ(7)))−1G(ψ(7)), (2.60)

ψn+1 = ψ(7) + ∆t
2 ψ. (2.61)
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2.4 Validation

In this section we present a set of test cases with the purpose of investigating the performance of

the SNFEM for mesoscale atmospheric modeling. Our emphasis is on a wide range of resolutions

from the global scale (200 km) to the large eddy scale (5 m). These scales transition from hydro-

static to scales where all non-linear terms in the equations (2.6) - (2.10) become significant. For our

experiments we will hold the following components of the computations constant:

(1) The horizontal discretization is kept as a standard 4th order spectral element formulation for

all simulations, as outlined in section 2.3.1.

(2) The time integration scheme is based on Strang-split IMplicit EXplicit (IMEX) outlined in

section 2.3.3.

(3) Vertical terms ∂
∂z are integrated implicitly using the generalized minimal residual method

(GMRES) with no preconditioner. Efforts are underway to determine the most efficient pre-

conditioner for this system. We have also implemented an analytical Jacobian for the vertical

solve, which appears to be the most computationally efficient option.

(4) Reference solutions employ consistent 4th order vertical and horizontal discretizations at a

resolution at least twice as fine as experiments

(5) The total number of vertical levels in each test is kept constant. Only the vertical order

of accuracy is changed and consequently the distribution of grid spacing according to the

locations of element nodes.

For these tests, we investigate the effect of a relatively high-order nvp = 10 vertical coordinate

on flow results at resolutions coarser than the reference solutions. Our hypothesis is that flow

structures and measures of interest will be better approximated using the high-order discretiza-

tion. We consider the properties of our arbitrary order methods in the context of meshes with
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mixed grid resolutions such as static and adaptive variable resolution experiments. A primary

benefit of using the higher order SNFEM is improved accuracy even with a coarser vertical grid.

Reference results are computed with a consistent spatial (horizontal and vertical) discretization

or order “O4”. Experiments done at coarser resolutions with varying vertical order of accuracy

are titled “VO#”.

2.4.1 Steady-state geostrophically balanced flow in a channel

The first test represents steady-state geostrophically balanced flow in a channel and is based on

a new test case defined by Ullrich, Reed, and Jablonowski (2015). The domain is a channel of

dimensions Lx × Ly × Lz with periodic boundaries in the x direction and no-flux conditions at all

other interfaces. In this case we choose Lx = 30000 km, Ly = 6000 km and Lz = 30 km. The shorter

zonal width compared with that of Ullrich, Reed, and Jablonowski (2015) was chosen for reasons

of computational efficiency and did not affect the final solution. The initial flow is comprised of

a zonally-symmetric mid-latitudinal jet, defined so that the wind is zero at the surface and along

the y-boundary. Hyperviscosity is applied in the horizontal and vertical at 4th order as well as a

Rayleigh layer at the top and longitudinal boundaries. The Rayleigh layers are used to prevent

the accumulation of standing wave reflections in the flow. This formulation can either be on an

f -plane or β-plane, which have Coriolis parameters

f = f0, and β = f0 + β0(y− y0), (2.62)

respectively, where f0 = 2Ω sin ϕ0 and β0 = 2a−1Ω cos ϕ0 at latitude ϕ0 = 45◦N. Here, the radius

of the Earth is a = 6371.229× 103 m, its angular velocity is Ω = 7.292× 10−5 s−1 and y0 = Ly/2 is

the center point of the domain in the y-direction.

The simulation is performed for the original β-plane configuration outlined in Ullrich, Reed,

and Jablonowski (2015) where the jet is perturbed directly by a “bump” in the zonal wind that is
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vertically uniform where up = 1.0 m s−1 centered at xc = 2000 km and yc = 2500 km.

u′(x, y) = up exp

[
−
(
(x− xc)2 + (y− yc)2

L2
p

)]
(2.63)

The grid spacing for the reference solution is ∆x = 50 km, ∆y = 50 km, ∆z = 0.75 km and

∆t = 30 s. Experiments are conducted at vertical order 2, 4 and 10 at a resolution of ∆x = 200 km,

∆y = 200 km, ∆z = 1.5 km and ∆t = 240 s. The 4th order scalar and vector (vorticity and

divergence separately) diffusion coefficients are given by

νscalar = 1.0× 1014
(

∆x
Lref

)3.2

m4s−1, (2.64)

νvorticity = 1.0× 1014
(

∆x
Lref

)3.2

m4s−1, (2.65)

νdivergence = 1.0× 1014
(

∆x
Lref

)3.2

m4s−1. (2.66)

where ∆x is the element length in the x direction and Lref = 11.0× 105 m is the reference length

used for this test case. For this test, vertical flow-dependent viscosity is disabled since it did not

have a clear impact on the solution.

The baroclinic instability is a primary mechanism for the development of mid-latitude storm

systems and so it is important that an atmospheric modeling platform reproduce these phenom-

ena accurately. We present a reference solution of the baroclinic wave shown in fig. 2.3 that is

approaching the transition into the non-hydrostatic regime. We are interested in estimates of ver-

tical motion where the reference solution shows maxima on the order of 2 cm s−1. Regions of

strong vertical motion correspond to strong horizontal gradients in the vorticity and temperature

fields and we expect that non-hydrostatic effects will be locally significant.

The reference solution for temperature and vorticity at 500m elevation shown here can be com-

pared at day 10 with the original results from Ullrich, Reed, and Jablonowski (2015) produced with

MCore Ullrich and Jablonowski (2012) to verify that Tempest is computing a consistent solution.
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In particular we expect that vertical motion will be under-predicted in coarser models at a given

order of accuracy.

The vorticity field at coarse resolution (fig. 2.4) is largely unaffected by changes in vertical

order. However, the vertical velocitiy (fig. 2.5), and by association the horizontal divergence (not

shown), shows a substantial increase in magnitude as order increases. This increase aligns the

vertical velocity more closely with the reference solution magnitiude (greater than 1 cm s−1) using

the 10th order vertical coordinate as shown in fig. 2.5. We conclude that although the higher

order vertical coordinate does not substantially impact the horizontal character of the solution, it

does better capture the magnitude of vertical velocity, particularly in frontal regions. We note that

the coarse resolution chosen here is nearly double that of current operational climate modeling

systems and well within the hydrostatic regime.
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FIGURE 2.3: Baroclinic wave in a 3D Cartesian channel at the reference resolution
∆x = 100 km, ∆y = 100 km, ∆z = 1 km at vertical 4th order accuracy (VO4). From
top to bottom, temperature, vorticity, vertical velocity, and divergence are shown at
day 10 (left) and 15 (right) and at an elevation of 500 m. Contour intervals: Tem-
perature 2K, Vorticity 1.0× 10−5s−1, Divergence 5.0× 10−6s−1, and vertical velocity

2.0× 10−3m s−1.
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FIGURE 2.4: Baroclinic wave in a Cartesian channel at vertical orders 2, 4 and 10.
Vorticity at 500 meters on days 10 and 15 at the resolution ∆x = 200 km, ∆y =

200 km, ∆z = 1.5 km. Contour interval: 1.0× 10−5s−1

FIGURE 2.5: Baroclinic wave in a Cartesian channel at vertical orders 2, 4 and 10.
Vertical Velocity at 500m on days 10 and 15 at the resolution ∆x = 200 km, ∆y =

200 km, ∆z = 1.5 km. Contour interval: 2.0× 10−3m s−1
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2.4.2 Schär mountain

Atmospheric flows are strongly influenced by the lower boundary, where topographically-induced

waves transport momentum and energy vertically. Schär et al. (2002) describes a uniform zonal

flow field over orography that leads to the generation of a stationary mountain response, consist-

ing of a linear combination of hydrostatic and non-hydrostatic waves. The atmosphere is initially

under uniform stratification with constant Brunt-Väisälä frequency N = 0.01 s−1. The tempera-

ture and pressure are p0 = 1000 hPa and T0 = 280 K at z = 0 m. To trigger the standing waves, an

initial uniform mean flow of u = 10 m s−1 is prescribed over the topographic profile given by

hT(x) = hc exp

[
−
(

x
ac

)2
]

cos2
(πx

λ

)
, (2.67)

with parameters hc = 250 m, λ = 4000 m and ac = 5000 m. The simulation domain is (x, z) ∈
[−30, 30] × [0, 25] km with a no-flux boundary specified along the bottom surface. Free-flow

boundary conditions are prescribed at the top and lateral boundaries with a Rayleigh layer 10 km

wide along the lateral boundaries and 10 km deep at the model top. Note that the domain bounds

differ from Schär et al. (2002) to minimize the effect of the Rayleigh layers on the flow interior.

Also, the Rayleigh layer is applied to progressively and smoothly increase in strength up to the

boundaries. The simulation is run to t = 10 h, when the solution has reached a quasi-steady state.

For these simulations, no explicit dissipation is applied in either the horizontal or vertical and

Coriolis forcing is set to zero throughout.

To validate that Tempest produces the correct mountain wave response, the Schär mountain

test was performed until t = 10h with a relatively fine resolution of ∆x = 100 m, ∆z = 100 m and

∆t = 0.2 s. As shown in fig. 2.6 (left) Tempest accurately reproduces the vertical velocity field at

the reference resolution (for comparison with another numerically derived solution, see Giraldo

and Restelli (2008)). We also show the analytical solution based on linear mountain theory follow-

ing Klemp, Skamarock, and Fuhrer (2003); Smith (1979) overlaid in dotted contours. As pointed

out by Klemp, Skamarock, and Fuhrer (2003), an inconsistent treatment of the topographic metric
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terms in this formulation can lead to the generation of spurious waves which is not observed in

this case.

FIGURE 2.6: Schär flow at steady state (10 hours) vertical velocity in (m/s) at VO4.
Reference resolution shown compared to the analytical solution (dotted contours)
from linear mountain wave theory. ∆x = 100 m and ∆z = 100 m. Contour interval:

0.1m s−1

As discussed in Thuburn and Woollings (2005) and Thuburn (2006), staggering is necessary

to eliminate stationary computational modes that arise in collocated discretizations. To better

understand the impact of staggering, fig. 2.7 demonstrates the use of the collocated or unstaggered

configuration which shows a highly-oscillatory stationary mode that pollutes the solution relative

to the Lorenz configuration at the same resolution. The plots show errors in the vertical velocity

near the bottom boundary condition and errors throughout the flow field due to the vertical mode.

This artifact is conspicuously absent from both LOR and CPH runs.
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FIGURE 2.7: Schär flow at steady state (10 hours). Collocated method (all variables
on column levels) result compared to staggered (Lorenz) solution at the same spatial
order and resolution. ∆x = 200 m and ∆z = 200 m. Contour intervals: vertical

velocity 0.1m s−1 and vertical velocity difference versus reference 0.0125m s−1
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FIGURE 2.8: Still atmosphere experiment over Schär mountain profile at vertical
orders 2, 4, and 10 showing errors in vertical velocity. ∆x = 500 m and ∆z = 500 m.

Contour interval: 2.0× 10−5m s−1.

As discussed in Thuburn and Woollings (2005) and Thuburn (2006), staggering is necessary

to eliminate stationary computational modes that arise in collocated discretizations. To better

understand the impact of staggering, fig. 2.7 demonstrates the use of the collocated or unstaggered

configuration which shows a highly-oscillatory stationary mode that pollutes the solution relative

to the Lorenz configuration at the same resolution. The plots show errors in the vertical velocity

near the bottom boundary condition and errors throughout the flow field due to the vertical mode.

This artifact is conspicuously absent from both LOR and CPH runs.
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Because our model makes use of a terrain-following coordinate, it is expected that a hydro-

statically balanced rest state is not exactly preserved over topography. Imbalance will arise as a

consequence of inexact cancellation of the terrain-following and vertical pressure gradient terms

in the discrete equations. Experiments carried out with zero background flow in the presence of

topographic features shown in fig. 2.8 indicate that errors in vertical velocity are dominated by the

horizontal discretization. We note that improvements with vertical order of accuracy are appar-

ent when going from 2nd order to 4th order, but differences are small at higher orders of accuracy.

These errors can be removed completely with a vertical reference state (Giraldo and Restelli, 2008),

but such a state is difficult to utilize for global simulations and so may not be desirable in practice.

FIGURE 2.9: Schär flow at steady state (10 hours) vertical velocity in (m/s) at var-
ious vertical orders of accuracy (2, 4, 10, and ST) where “ST” stands for single col-
umn element spectral transform (nve = 1) with Lorenz (LOR) vertical staggering.
Colored contours from Tempest compared to dotted contours for the analytical so-

lution. ∆x = 500 m and ∆z = 500 m. Contour interval: 0.1m s−1
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FIGURE 2.10: Schär flow steady state (10 hours). Vertical velocity difference with
respect to the reference solution (fig. 2.6, left). Results are interpolated to a regular
z coordinate with ∆z = 500 m in experiments and reference solution for differenc-
ing. Computations performed at ∆x = 500 m and ∆z = 500 m. Contour interval:

0.0125m s−1
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FIGURE 2.11: Schär mountain vertical profile of momentum flux for all experiments.
The flux profiles are computed by

∫ X
−X {[ρ̄ + ρ′] [ū + u′]w′} dx at t = 10hours where

overbars indicate initial condition values and primes are departures thereof. Results
are interpolated to a regular z coordinate with ∆z = 500 m in experiments and refer-
ence solution to compute the integral flux.Results are normalized to the value at the

surface in the reference solution.

Experiments are conducted at vertical order 2, 4, 10, and 40 (in the limit where the polyno-

mial order is equal to the total number of levels, denoted ST) at a relatively coarse resolution of

∆x = 500 m, ∆z = 500 m and ∆t = 0.4 s. Results are depicted in fig. 2.9 and the difference

against the reference solution in fig. 2.10. The 2nd order results show substantial disagreement

with the reference solution that is enhanced at altitude. This result appears to be associated with

an overestimation of the vertical wavelength of the mountain response that arises from the lower

order discretization. At 4th order the upper atmosphere does not show substantial errors, and

most differences are instead constrained to the near-surface. These near-surface errors generally

show consistent improvement as the vertical order-of-accuracy is increased. The discrepancy that
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appears at the highest peak of the Schär mountain (x = 0) is associated with slight differences in

resolving the topography at coarser horizontal resolution than the reference solution.

We further compare the resulting profiles of momentum flux for all experiments in the Lorenz

configuration (Fig.2.11). We observe that the flux profile for the 2nd-order method has the great-

est error, as expected from dispersion errors typical of low-order centered schemes (particularly

in the upper atmosphere and near the surface). The higher-order methods show improvements

in the structure and magnitude of the profiles (especially at the near-surface, when compared to

the reference profile in black), but again appear to be influenced by the lower-order horizontal

discretization. Furthermore, the results are strongly influenced by the Rayleigh layer showing a

pronounced deviation in the flux profiles throughout the domain. The Rayleigh layer approxima-

tion to a free-flow boundary condition clearly introduces deficiencies that are exacerbated in the

flux provides.

2.4.3 Straka density current

The density current test case of Straka et al. (1993) considers a cold bubble that sinks and spreads

across the bottom boundary, driving the development of Kelvin-Helmholtz rotors. The original

experiments by Straka et al. (1993) sought a converged solution through the use of 2nd order uni-

form diffusion applied to all prognostic variables. A value of ν = 75 m2 s−1 was chosen so that a

horizontal resolution of ∆x = 25 m was sufficient for convergence. No-flux conditions are applied

on all boundaries and Coriolis forcing set to zero.

The initial state consists of a hydrostatically balanced state with a uniform potential tempera-

ture of θ = 300 K. A standard pressure of p0 = 1000 hPa is assumed. The cold bubble perturbation

is applied to the θ field and is given by

θ′ =

 0 if r > 1.0,

− θc
2 [1 + cos (πr)] if r ≤ 1.0,

(2.68)
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where θc = −15 K and

r =

√(
x− xc

xr

)2

+

(
z− zc

zr

)2

. (2.69)

The domain is an enclosed box (x, z) ∈ [−25600, 25600]× [0, 6400] m with t ∈ [0, 900] s. The cold

bubble is initially located at (xc, zc) = (0, 3000) m with radius (xr, zr) = (4000, 2000) m.

The 4th order horizontal hyperdiffusion coefficients for all fields are given by

νscalar = 5.0× 1012
(

∆x
Lref

)3.2

m4s−1, (2.70)

νvorticity = 2.0× 1014
(

∆x
Lref

)3.2

m4s−1, (2.71)

νdivergence = 2.0× 1014
(

∆x
Lref

)3.2

m4s−1, (2.72)

where ∆x is the element length in the x direction and Lref = 51200.0 m is the reference length used

for this test case.

For the experiments with vertical flow-dependent hyperviscosity, the viscous coefficients are

given by (2.47). The uniform Laplacian diffusion requires further stabilization via the addition of

4th order scalar hyperviscosity in the horizontal and 4th order vertical flow-dependent diffusion

on all variables. This added diffusivity is necessary to control a horizontal stationary mode in the

scalar fields and fast moving vertical modes that are a consequence of sound waves accumulating

energy at the grid scale. However, the highly scale-selective nature of the high degree operators

does not significantly affect the structure of the reference solution as shown in fig. 2.12.

The grid spacing for the reference solution is ∆x = 25 m and ∆z = 25 m with ∆t = 0.01 s.

Experiments are further conducted at vertical order 2 and 10 at a resolution of ∆x = 200 m and

∆z = 200 m with ∆t = 0.01 s.
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FIGURE 2.12: Straka Density Current test reference solutions at vertical order 4 in
two staggering configurations LOR and CPH. Converged resolution of ∆x = 25 m
and ∆z = 25 m shown. Vertical flow dependent diffusion in of order 2 and 4 (rows 2
and 3) is compared with the reference solution where an explicit 2nd order diffusion

with ν0 = 75 m2s−1 is used (top row). Contour interval: 1.0K
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Method-Stagger Vertical Order @ Resolution Diffusion Method Wave Front (km)

SNFEM-LOR 2 @ ∆x = 190 m Reference Damping 14.21

SNFEM-LOR 2 @ ∆x = 190 m Up-wind Order 2 14.59

SNFEM-LOR 2 @ ∆x = 190 m Up-wind Order 4 15.68

SNFEM-LOR 4 @ ∆x = 190 m Reference Damping 14.18

SNFEM-LOR 4 @ ∆x = 190 m Up-wind Order 2 14.58

SNFEM-LOR 4 @ ∆x = 190 m Up-wind Order 4 15.47

SNFEM-LOR 10 @ ∆x = 190 m Reference Damping 14.22

SNFEM-LOR 10 @ ∆x = 190 m Up-wind Order 2 14.61

SNFEM-LOR 10 @ ∆x = 190 m Up-wind Order 4 15.33

FD-Colocated 2 REFC @ ∆x = 25 m Explicit ν0 = 75 m2s−1 15.53

SNFEM-LOR 4 (REF) @ ∆x = 25 m Reference Damping 15.20

SNFEM-LOR 4 (REF) @ ∆x = 25 m Up-wind Order 2 15.77

SNFEM-LOR 4 (REF) @ ∆x = 25 m Up-wind Order 4 15.68

TABLE 2.2: Cold wave front position (θ′ = −1.0 K) for all orders of accuracy and
diffusion methods. Reference damping is uniform 2nd order diffusion on all prog-
nostic variables such that ν = 75 m2s−1 combined with horizontal hyperdiffusion on
scalars and vertical 4th order up-wind diffusion. The reference solution wave front
position (finite difference method at 25 meter resolution) by Straka et al. (1993) is

shown in bold (REFC) compared to the equivalent result from Tempest.
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FIGURE 2.13: Straka Density Current test at vertical order 2, 4 and 10. Coarse, eval-
uation resolution of ∆x = 190 m and ∆z = 160 m shown. Vertical flow dependent
diffusion of order 2 and 4 (rows 2 and 3) is compared with the reference solution
where an explicit 2nd order diffusion with ν0 = 75 m2s−1 is used (top row). Results

for Lorenz (LOR) staggering shown. Contour interval: 1.0K
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FIGURE 2.14: Straka Density Current test at vertical order 2, 4 and 10. Coarse, eval-
uation resolution of ∆x = 190 m and ∆z = 160 m with explicit 2nd order diffusion
with ν0 = 75 m2s−1 compared at 1200 m with the reference solution (∆x = 25 m and

∆z = 25 m). Results for Lorenz (LOR) staggering shown.
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FIGURE 2.15: Straka Density Current test at vertical order 2, 4 and 10. Coarse, eval-
uation resolution of ∆x = 190 m and ∆z = 160 m shown. Vertical flow dependent
diffusion of derivative order 2 and 4 compared at 1200 m with the reference solution

(∆x = 25 m and ∆z = 25 m). Results for Lorenz (LOR) staggering shown.

For the density current, we emphasize results from the Lorenz (LOR) staggering. Under

Charney-Phillips (CPH) staggering, the vertical advection term for potential temperature (see
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Table 2.1) on the bottom-most and top-most interfaces is exactly zero within our formulation.

Consequently, within our formulation there is no mechanism to transport θ vertically from these

interfaces leading to the development of a discontinuity in θ along the lower boundary. These

gradients then enhance vertical heat fluxes above the surface, slowing the propagating cold pool

as momentum is transported vertically. This inconsistency is counteracted by the application of

uniform diffusion, which provides a mechanism by which θ can be exchanged with the bottom

interface. However, flow-dependent vertical diffusion, which is weighted by |uξ |, does not permit

exchange with the interface and so leads to inconsistency between the LOR and CPH staggerings.

In fig. 2.12, the CPH staggering with flow-dependent diffusion leads to a relatively slow density

current that is more convective near the boundary. Nonetheless, a better choice of flow-dependent

coefficient could be made to mitigate this issue. Note that this issue with CPH can be counteracted

by rewriting the vertical advection term as

uξ ∂θ

∂ξ
=

∂

∂ξ
(uξθ)− θ

∂uξ

∂ξ
, (2.73)

although this form tends to be more unstable in practice

We often desire diffusion to be as weak as possible while still preserving the stability of the

underlying method. However, as can be seen here, the structure of the density current is also

strongly dependent on the dissipation mechanisms employed in the simulation. Here we present

the reference solution equivalent to Straka et al. (1993) at the converged resolution. We also com-

pare solutions with different diffusion mechanisms in fig. 2.12 with corresponding cross sections

in fig. 2.14. The 1200 m cross sections indicate that experimental coarse resolutions are not con-

verged in the case of reference uniform damping. In Table 2.2 it is apparent the reference solutions

are sensitive to diffusion and differ significantly in structure, but the wave front positions com-

pare with good precision to the solution given by Straka et al. (1993). This would indicate that

momentum fluxes are comparable, but close inspection of the eddy structure suggests significant

differences exist throughout, as noted above, and with the appearance of detached eddies when
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the high-order flow-dependent viscosity is used exclusively.

From Table 2.2 it is apparent our coarse-resolution experimental solutions are slow with ref-

erence damping and 2nd order flow-dependent viscosity, but are closer to the reference solution

with 4th order diffusion. Both low- and high-order simulations show wave front positions that

accurately approximate the reference results. However, the structure of the Kelvin-Helmholtz ro-

tors changes significantly with vertical order-of-accuracy and dissipation method shown in fig.

2.13. The more scale-selective 4th order flow-dependent viscosity shows greater detail in the struc-

ture of the rotors. In general, it is not recommended to use hyperdiffusion with a higher order

than the dynamical discretization (bottom left) since more derivatives would be required than the

polynomial space allows.

The use of flow-dependent hyperviscosity in 2nd and 4th derivative order changes the structure

of coarse experiments tending toward a 3-rotor flow field shown in the reference solution as shown

in fig. 2.15. Curiously, the 10th order vertical discretization with 4th order flow-dependent viscosity

produces a flow that more closely approximates the reference solutions at a resolution that would

otherwise be considered too poor for the dynamical features considered. However, the authors

have not found a dynamical reason for correlation involving high-order vertical discretization

coupled with high-order dissipation schemes and the reference solution with uniform damping.

Moreover, fig. 2.15 indicates that magnitudes are significantly different for high-order dissipa-

tion cases. Wave front position at the−1.0 ◦C contour further given in 2.2 confirm that momentum

fluxes are also captured more accurately as these are associated to the propagation speed of the

wave front.

2.4.4 Rising thermal bubble

Thermal bubble experiments have become a standard in the development of non-hydrostatic

mesoscale modeling systems. At very fine resolutions (< 10 m) we test the ability to reproduce

the simplest form of convection. This is a precursor to simulations of real atmospheric phenomena

such as thunderstorms and other convective systems. A positive, symmetric perturbation to the
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potential temperature (buoyancy imbalance) causes a vertical acceleration that moves the bubble

upward. Subsequently, shearing and compensating subsidence leads to two primary symmetrical

eddies that further break down as the simulation progresses. We are interested in the evolution of

the flow in terms of structure and conservative properties on θ.

We present two flow scenarios: a) the bubble rises and is allowed to interact with the top and

lateral boundaries and b) the so-called Robert smooth bubble experiment (as outlined in Giraldo

and Restelli (2008)) that are a variation of the experiments of Robert (1993). In the former, the

bubble will meet the boundaries and develop shear instabilities and in the Robert bubble, shear

instabilities develop in the interior of the flow. For these experiments, 4th order viscosity is applied

in the horizontal and vertical to the potential temperature and horizontal velocity fields. Further-

more, at finer resolutions we observe more fine-scale features of the thermal bubble, including

tighter winding of the trailing edges at later times and sharper spatial gradients. Nonetheless, our

comparisons for this test case are purely qualitative but remain consistent with previous results.

The background consists of a constant potential temperature field θ = 300 K, with a small

perturbation of the form

θ′ =

 0 for r > rc,

θc
2

[
1 + cos

(
πr
rc

)]
for r ≤ rc,

(2.74)

where

r =
√
(x− xc)2 + (z− zc)2. (2.75)

Here we choose the amplitude and radius of the perturbation to be θc = 0.5 K and rc = 250 m,

respectively. The domain consists of a rectangular region (x, z) ∈ [0, 1000] × [0, 1000] m for the

thermal bubble and (x, z) ∈ [0, 1000]× [0, 1500] m for the Robert bubble with t ∈ [0, 1200]s. The

center-point of the bubble is located at xc = 500 m and zc = 350 m for the thermal bubble and

zc = 260 m for the Robert bubble. The boundary conditions are no-flux over all boundaries. No

Rayleigh layer is used, and Coriolis forces are set to zero.
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The reference grid spacing is ∆x = 5 m and ∆z = 5 m respectively with ∆t = 0.005 s. This

is considered the reference resolution following Giraldo and Restelli (2008). Experiments are con-

ducted at a relatively coarser resolution of ∆x = 10 m and ∆z = 10 m with ∆t = 0.01 s. The 4th

order scalar and vector (vorticity and divergence separately) diffusion coefficients in are given by

νscalar = 1.0× 106 m4s−1, νvorticity = 1.0× 106 m4s−1, νdivergence = 1.0× 106 m4s−1. (2.76)

The 4th order scalar and vector (vorticity and divergence separately) diffusion coefficients in

are given by

νscalar = 1.0× 106
(

∆x
Lref

)3.2

m4s−1, (2.77)

νvorticity = 1.0× 106
(

∆x
Lref

)3.2

m4s−1, (2.78)

νdivergence = 1.0× 106
(

∆x
Lref

)3.2

m4s−1. (2.79)

where ∆x is the element length in the x direction and Lref = 1000.0 m is the reference length used

for this test case.

FIGURE 2.16: Rising thermal bubble potential temperature reference solution at ver-
tical order 4. Reference resolution ∆x = 5 m and ∆z = 5 m. Flow at 700 and 1200

seconds. Contour interval: 0.05K
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FIGURE 2.17: Rising Robert bubble potential temperature reference solution at ver-
tical order 4. Reference resolution ∆x = 5 m and ∆z = 5 m. Flow at 800 and 1200

seconds. Contour interval: 0.05K

Rising bubble experiments show the non-linear dynamics of dry 2D convection. The classic

thermal bubble test shown in fig. 2.16 shows potential temperature being advected conservatively

throughout the domain at the reference resolution. These results use a dissipation mechanism

that combines 4th order hyperdiffusion of θ for horizontal modes and scale-adaptive 4th order

flow-dependent hyperviscosity of θ for vertical modes. In this case, no diffusion is needed in the

velocity or density fields to obtain a stable simulation.

The rising thermal bubble experiment is typically carried out and compared at 700 seconds

precisely before the convective bubble interacts with the top boundary of the domain. We present

this result for comparison with previous results in fig. 2.18. However, it is also important to eval-

uate the conservative properties of the method and we carry out the simulation to 1200 seconds.

Since (2.9) is a strict statement of constant potential temperature following fluid parcels, the re-

sults of fig. 2.18 compared to fig. 2.16 demonstrate that our method is stable and approximates

conservation of θ closely when a high-order vertical discretization is used.
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FIGURE 2.18: Rising thermal bubble potential temperature at vertical orders 2, 4 and
10. Convection bubbles at 700 and 1200 seconds. Coarse, resolution ∆x = 10 m and

∆z = 10 m. Extrema in θ shown. Contour interval: 0.05K

The Robert smooth bubble experiment extends the vertical domain allowing for the onset of

Kelvin-Helmholtz instabilities in the flow. The solution at the reference resolution is shown in

fig. 2.17. The exact time and manner in which the instabilities arise is strongly dependent on the

vertical order and dissipation method used in the simulation. In the reference solution, the onset

of unstable eddies begins at approximately 900 s with the flow transitioning into vigorous mixing

in the region of the primary rotors.
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FIGURE 2.19: Rising Robert bubble potential temperature at vertical orders 2, 4 and
10. Convection bubbles at 800 at 1200 seconds. Coarse, evaluation resoution ∆x =

10 m and ∆z = 10 m. Extrema in θ shown. Contour interval: 0.05K

High-order vertical discretizations are typically associated with strong oscillations (Gibbs ring-

ing) that can induce perturbations that can amplify turbulence, particularly if stabilization (such

as upwinding or diffusion) is weak. The net effect is that a high-order vertical discretization, given

the same horizontal discretization, changes the local mixing characteristics of the flow. This effect

is seen clearly in fig. 2.19. The 10th order simulation has a structure that more closely approxi-

mates the reference result in fig. 2.17. In the context of studies that seek to represent convective

processes, we would expect entrainment fluxes to be improved at a coarser resolution with the

higher-order vertical discretizations.
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2.4.5 Numerical Characteristics of the Method

We briefly characterize the combined discretization strategy (horizontal spectral element, vertical

SNFEM, and Strang IMEX) described in section 2.3.3. We use the rising thermal bubble test (sec-

tion 2.4.4) to show that, overall, our method converges at 2nd order in space and time consistently

across different vertical orders of accuracy as shown in fig. 2.20. Theoretically, the maximal con-

vergence rate for this test is at most 2nd order in space since the θ perturbation is only continuous

in its first derivative. Nonetheless, we observe sub-2nd order convergence for the VO2 scheme ap-

plied to this test, driven by a loss of one-order of accuracy from the use of vertical flow-dependent

hyperviscosity (see section 2.3.2).

A numerically computed estimate of the CFL condition (maximum Courant number) as a func-

tion of grid spacing and element aspect ratio is given in Table 2.3 using the time integration tech-

nique outlined in section 2.3.3. These results indicate a maximum Courant number of 1.95 at low

order that degrades at higher aspect ratios and with higher vertical order. Moreover, all 2-D tests

show a maximum Courant number of 1.95 while the 3-D Baroclinic wave test has a Courant num-

ber of 1.45. The theoretical CFL conditions for the spectral element discretization with temporal

discretization (56) are 2.12 and 1.49 for 1-D and 2-D scalar advection, respectively. These results

indicate that the operator split method as shown in eqs. (2.49)-(2.52) combined with Strang inte-

gration allows 90 to 95% of the maximum time step possible using a consistent 4th order space

discretization. However, a more comprehensive evaluation of the theory underlying this CFL

condition will be pursued in a future work due to changes observed with aspect ratio and vertical

order of accuracy.
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Maximum Courant Number Aspect Ratio ∆x : ∆z

Vertical Order 1 10 100

2 1.95 1.95 1.95

4 1.95 1.95 1.86

10 1.61 1.14 0.14

TABLE 2.3: Numerically computed estimates of the Courant-Friedrichs-Lewy con-
dition (maximum Courant number) using Thermal Bubble tests over a wide range
of horizontal : vertical aspect ratios. The maximum wave speed corresponds to the
speed of sound given by c =

√
γRdT where γ = 1.4, Rd = 286.07, and T = 300.5K.

Computation Time (s) # Cores

Vertical Order 1 2 4

2nd 0.117 0.070 0.061

4th 0.163 0.102 0.082

10th 0.248 0.143 0.106

TABLE 2.4: Thermal bubble test (∆x = 20 m) average processor time taken per time
step in seconds. Intel Core i7 4000 series under Linux with 4 compuational cores on
die (no interconnect hardware present). Results show relative scalability for Tempest
using MPI architecture and IMEX partitioning with variable vertical order of accu-

racy. The implicit equations are solved using the GMRES with no preconditioner.

Furthermore, we show preliminary parallel performance scaling in Table 2.4 on a limited mul-

ticore system. These results indicate a cost associated with denser element operations as vertical

order of accuracy increases. However, more controlled experiments using a distributed platform

will be conducted as our parallel implementation is optimized.

Plots of the normalized change in mass and energy, along with integrated zonal and vertical

momentum from the Robert smooth bubble test (section 2.4.4) are given in fig. 2.21. As expected,

total mass is conserved to near-machine precision. Total energy is not explicitly conserved by this

method, so we observe small oscillations of total energy about its initial value. Note that although
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total energy is not nonincreasing, it does not show exponential growth that would be characteristic

of a linear instability, and remains bounded over the duration of the simulation. To ensure this

result held for long-term simulations, the rising thermal bubble experiments were carried out to 1

hour, and revealed no sign of instability.

Further investigation of this issue seems to suggest roots in the way the stabilization mecha-

nism interacts with the lateral boundaries, since the purely advective scheme with no stabilization

shows nearly flat total energy. Consequently, we hypothesize this result may be associated with

the inverse energy cascade from 2d turbulence theory drawing energy from the unresolved scales

in a limited manner. Note that the stabilization mechanisms described by this work (horizontal

and vertical hyperviscosity), which work directly on the u and θ fields, do not act to explicitly

diffuse energy; the strategy is intended to emphasize flow features. A more aggressive diffusion

strategy could be implemented to ensure that energy does not increase at the cost of increased

diffusive errors.
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FIGURE 2.20: Spatial (left) and temporal (right) self convergence at various vertical
orders of accuracy. Thermal bubble test at 200 s. Spatial resolution for temporal
convergence is 10 m with reference ∆t = 0.001s. Reference spatial resolution is ∆x =

2m.
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FIGURE 2.21: Observed normalized change in mass and energy (top row), along
with zonal and vertical momentum (bottom row) using the Robert Bubble experi-
ment in section 2.4.4. The reference solution corresponds to fig. 2.17 with 5 m res-
olution. Evaluation experiments use variable vertical order (VO) SNFEM at 10 m
resolution corresponding to fig. 2.19. Total normalized mass and energy change are

computed as (Qt −Qinitial) /Qinitial .

For a horizontally symmetric test such as the rising thermal bubble (anti-symmetric in u), one

would expect that total zonal momentum is equal to zero over the duration of the simulation.

However, we clearly observe deviations from symmetry by the end of the simulation. These vio-

lations of symmetry are associated with how the spectral element method is updated in the hor-

izontal: since horizontal derivatives are computed in an inherently asymmetric manner, namely

in the direction of increasing x, small differences on the order of machine epsilon appear between

the solution x < 500 m versus x > 500 m. The oscillatory signal in the vertical momentum is
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attributed to strong vertically propagating sound waves that emerge from the initial perturbation

being reflected by the no-flux boundary condition at the top and bottom of the model grid. Note

that it is not expected that vertical momentum is conserved due to the presence of gravitational

forcing.

2.5 Conclusions

The idea of separating the vertical and horizontal dynamics in atmospheric modeling systems has

roots in the scale differences that characterize atmospheric flows. This principle has been fully

exploited in the development of global and mesoscale models, along with the application of the

hydrostatic approximation. This paper adds to the modern literature on modeling atmospheric

dynamics by analyzing a novel discretization technique for achieving high-order accuracy in the

vertical while maintaining the desirable properties of staggered methods. We refer to this tech-

nique as the Staggered Nodal Finite Element Method (SNFEM).

The test suite we present in this work is not exhaustive, but it is intended to evaluate the per-

formance of the numerical schemes under conditions of near hydrostatic synoptic scale flow in

section 2.4.1, linear, mesoscale, non-hydrostatic flow with topography in section 2.4.2, and fully

nonlinear, non-hydrostatic, Large Eddy Simulation (LES) scale, flow in section 2.4.3 and section

2.4.4. As global models progress into into the regime of non-hydrostatic flows, real flow cases will

be characterized by one or more of the properties mentioned, and likely in combination when vari-

able or adaptive meshing methods are used. More importantly, we expect that uniform or mixed

grids being prepared in research will begin to span the scale range that includes the transition to

non-hydrostatic dynamics and on to large-eddy flows.

In general, we postulate that a higher-order method based on finite elements will be more

accurate at a given resolution with minimal computational cost relative to a low-order method.

Our results demonstrate that a high-order vertical coordinate approximates well resolved, refer-

ence results at coarser resolutions that would be otherwise considered poorly represented. Our
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experiments nonetheless are constrained by the order of horizontal and temporal discretizations.

Therefore, we restrict our recommendation to the use of 4th order SNFEM as optimum for the

tests given here. In general the combined spatial order of accuracy should be consistent to maxi-

mize the effect of increased accuracy. The high-order approximation provides an improvement to

the vertical dynamics and so reduces the need for higher vertical resolution. This benefit would

prove effective when variable-grid methods are considered and nesting mesh levels can be saved

by employing the SNFEM at high-order. The use of staggering in conjunction with high-order has

further benefits, in particular the avoidance of stationary computational modes that are known to

persist with co-located methods.

However, there are some trade offs when increasing the vertical order: 1) for a vertically im-

plicit method, fewer high-order elements lead to a dense matrix structure that is more expensive to

invert, 2) the oscillatory nature of the polynomial functions that make up the interpolants within

an element have physical consequences (involving nonlinear processes) at the smallest scales, and

3) higher-order spatial discretizations often require smaller time steps or higher order temporal

discretizations. Fig. 2.4 shows the times required for computations of varying vertical order and

processor scaling. The results confirm that the relative cost in moving to 4th order is indeed modest

relative to the use of higher orders.

The first point can be addressed in the construction of the software where parallelization and

correct use of hardware resources minimizes the dense operations that high-order elements imply.

We saw in fig. 2.19 that oscillations associated with high-order interpolants helped to approximate

fine scale structures, but these oscillations can also be harmful depending on the flow condition.

While vertical order of accuracy can be increased up to the total number of vertical levels, e.g. re-

sults from the Schär cases in fig. 2.9, increasing computational expense indicates that intermediate

orders of accuracy will generally be most effective. In this study, many of the results at 4th order

sufficiently improve solutions relative to low-order alternatives.

Furthermore, when physical instabilities arise, a consistent, high-order, and scale selective dis-

sipation strategy is necessary. In this regard, finite element methods allow for the construction of
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diffusion operators for this purpose e.g. section 2.3.2.We can experiment with different combina-

tions of diffusion operators including coefficients that are variable in space. While scale-selective

4th order operators with some grid resoltuion dependence are sufficient for this work, we intend to

explore a wider range of strategies based on polynomial filtering, variational multiscale methods,

etc. with the goal of eliminating the tuning procedure associated with user-provided coefficients.

The numerical dissipation strategy implemented here serves two primary goals: 1) stabiliza-

tion of the computations and 2) as a form of closure for the Euler equations solved on a truncated

grid. The methods we employ allow for the construction of derivative operators of various orders

in a consistent manner. Tempest features a system that allows for diffusion to be applied in a

selective manner on variables that is split according to the time integration scheme.

Further experiments are necessary to test the extent of the third point above. For this work,

we used a 2nd order Strang time integration scheme (section 2.3.3) that was sufficiently robust to

carry out all of the experiments up to 10th order without overly restricting time step size relative

to the 2nd order simulations.

The authors conclude the following based on the experiments conducted and properties of the

SNFEM:

1. Staggering has been generalized to finite element methods combining continuous and dis-

continuous formalisms. The result is a method that closely parallels the behavior of stag-

gered finite differences eliminating stationary modes. This is strictly true for the lowest

order finite elements and we restrict ourselves to observe that consistent behavior extends

to high-order staggered elements pending a formal wave analysis.

2. Variable order of accuracy is an effective strategy that can compensate for limitations in grid

scale resolution. However, the effects at very high order must be understood and controlled

with appropriate stabilization methods. In general, “intermediate” orders (about 4th order)

are recommended with consideration for consistency in overall spatial order given an IMEX

partitioned architecture
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We emphasize that, while the equations are formulated in a coordinate-free manner, the results

given all correspond to regular Cartesian coordinates as defined by the metrics in eqs. (2.22) and

(2.21). Experiments corresponding to small planet and global domains are left for a subsequent

work. However, any curved geometry with a terrain-following surface topography can be applied

to the equations since all grid information is held in the metric terms described in section 2.2. As

such, the effects of curved geometry and variable vertical order-of-accuracy are only addressed

here in the Schär and Baroclinic wave cases (using the β plane approximation). From a design

perspective, metric terms are precomputed and derivative operators are built in the natural, local

coordinate frame when any grid is used.

Tempest is constructed to provide a unified multi-scale platform for atmospheric simulation.

Experiments can be carried out readily at all scales of importance from long-term climate sim-

ulations to high-resolution weather prediction. Development is underway to include moisture

transport and phase transformations as well as to further improve time integration performance.

Coupled with highly accurate, efficient, and robust methods to compute dynamics, Tempest will

evolve to produce reliable precipitation forecasts as well as long-term climate simulations as part

of the greater effort to understand the impending challenges brought on by rapid climate change.
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3.1 Introduction

The next generation of global and regional climate/weather models incorporate many advances

in computational, mathematical and numerical methods that will guide our study of the Earth

system in an accurate and robust manner. Atmospheric models based on approximated equa-

tions (linear, hydrostatic, shallow water, boussinesq, etc.) benefit from analytical solutions used

to establish their characteristics, virtues and limitations. Here we propose a hierarchical approach

based on the linear theory of mountain waves, basic fluid dynamic analysis, and properties of

the numerical integration to validate the performance of a modern dynamical core in reproducing

orographic waves. Our objective is to leverage and extend the linear theory in order to design

numerical experiments efficiently under linear and nonlinear conditions.

Despite the usefulness of classical linear theory of mountain waves (Smith, 1979; Smith, 1980),

there is a significant gap in applicability to modern high-resolution numerical simulations that in-

corporate fewer assumptions and simplifications, but incompatible boundary conditions. Results

from linear analytical models can only be compared, quali to numerical model output under very

specific conditions; uniform stratification with constant wind (Schär et al., 2002), multilayer atmo-

spheres with piecewise linear shear and stratification (Klemp and Lily, 1975), and various stud-

ies where WKB solutions are invoked under slowly varying background fields (Teixeira, 2014).

Computational studies of mountain wave interaction with large scale flows have been done suc-

cessfully by Chen, Durran, and Hakim (2005) and Chen, Durran, and Hakim (2006) for example,

using idealized geometries, but always in reference to the classical Boussinesq linearized theory.

These specialized modeling efforts have established the value of numerical integrations in ad-

dressing transient, nonlinear phenomena that must also be captured accurately by general pur-

pose modeling systems. Our objective is to present a robust methodology to conduct mountain

wave experiments using advanced numerical models. Our method is composed of the following:

1) a reference solution suitable for direct comparison with numerical model output under gen-

eral background conditions, and 2) an efficient way to design boundary conditions in truncated

68



Chapter 3. Linear Reference Model

domains minimizing the number of iterations.

In this work we present a novel method of computing linear solutions for 2-D mountain wave

simulations using terrain-following coordinates. The method is semi analytic in that derivatives

are treated as truncated global basis expansions in Hermite functions (horizontal) and Legen-

dre polynomials (vertical). The Hermite function basis is chosen to approximate infinite lateral

boundaries with grid clustering where terrain features are specified. Reference solutions are then

possible for more complicated background states including finite shear and nonuniform without

any restriction on the magnitude of the variations. Our reference solution is thus an extended

variant of the classical theory applicable to a more general class of problems.

In order to demonstrate our methodology, we use the Schär Mountain profile (Schär et al., 2002)

as prototype topography and extend the classical test case to include directional shear and a

piece-wise continuous thermodynamic background. We note that general terrain profiles may

be prescribed as well. We will focus on direct comparisons of vertical velocity and momentum

flux between high fidelity simulations (spatial resolution of 200 m and 4th order discretization)

and a semi-analytical treatment of the linearized non-hydrostatic, inviscid equations in terrain-

following coordinates.

The remainder of this paper is organized as follows: We introduce the governing equations

in section 3.2. Then, in section 3.3, we proceed to develop the semi-analytical reference solution

method, based on truncated global polynomial expansions, for the linear equation set at steady

state. Using the linear solution we develop a numerical test (section 3.4) of jet flow past a Schär

profile in a non-uniformly stratified background state. We show validation results in section 3.5 for

a peak mountain height of 10 m comparing the linear model with long term numerical solutions.

Lastly, we present a qualitative analysis of wave breaking simulations economically designed us-

ing the linear reference model.
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3.2 The 2-D linearized equations in terrain-following Cartesian coor-

dinates

In order to find a reference solution the Cartesian non-rotating equations (prior to linearization)

in terrain-following coordinates are cast as follows,

∂u
∂t

+ u
∂u
∂x

+ w
∂u
∂z

+
p
ρ

∂ ln p
∂x

= 0 (3.1)

∂w
∂t

+ u
∂w
∂x

+ w
∂w
∂z

+
p
ρ

∂ ln p
∂z

= 0

1
γ

∂ ln p
∂t

+
u
γ

∂ ln p
∂x

+
w
γ

∂ ln ρ

∂z
+

∂u
∂x

+
∂w
∂z

= 0

∂ ln θ

∂t
+ u

∂ ln θ

∂x
+ w

∂ ln θ

∂z
= 0

(3.2)

where by the Chain Rule,

∂

∂z
= σ

∂

∂ξ
, (3.3)

σ = H
∂ξ

∂z
,

∂ξ̂

∂x
= σ

∂z
∂h

∂h
∂x

.

and horizontal x derivative operators are expanded using the terrain-following horizontal coordi-

nate α as,

∂

∂x
=

∂

∂α
− ∂ξ̂

∂x
∂

∂ξ
(3.4)

represents the projection of flow components following terrain surfaces onto the Cartesian x
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direction. Here, H is the model top, u and w are the Cartesian velocity components, and ρ, p are

density and pressure respectively. The metric quantity in (3.3) is known from the elevation func-

tion h(x) and the decay of terrain features with height specified in the choice of vertical coordinate

mapping.

The total prognostic state is decomposed into background (over bar) and perturbation (primed)

components as follows:

u = ū(z) + u′(x, z, t), (3.5)

w = w′(x, z, t),

ln p = ln p̄(z) + (ln p)′ (x, z, t),

ln θ = ln θ̄(z) + (ln θ)′ (x, z, t).

where ū(z), ρ̄(z), and p̄(z) are the height dependent, steady background jet and thermodynamic

profiles. These may be continuous analytic or piecewise continuous functions where discontinu-

ous gradients are admissible by our solution method. Also, note that the decomposition of ther-

modynamic quantities applies to the natural logarithm of density and pressure in order to better

approximate the “small perturbation” assumption in the subsequent linearization.

We now substitute the decomposition (3.5) along with derivative expansions (3.3) and (3.4)

into equations (3.1) and applying the following for all background quantities q,

∂q̄
∂x

= 0. (3.6)

then,
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ū
∂u′

∂x
+ σ

∂ū
∂ξ

w′ +
p̄
ρ̄

∂ (ln p)′

∂x
= 0, (3.7)

ū
∂w′

∂x
+ gc

(
1− γ

γ

)
(ln p)′ − gc (ln θ)′ + σ

p̄
ρ̄

∂ (ln p)′

∂ξ
= 0,

γ
∂u′

∂x
+ γσ

∂w′

∂ξ
+ σ

∂ ln p̄
∂ξ

w′ + ū
∂ (ln p)′

∂x
= 0,

σ
∂ ln θ̄

∂ξ
w′ + ū

∂ (ln θ)′

∂x
= 0.

Therefore, it is possible to rearrange the system into a global differential operator L plus an alge-

braic operator B with a known forcing F depending on the thermodynamic background and the

vertical coordinate. Assuming a prognostic vector q =
[
u′ w′ (ln p)′ (ln θ)′

]T
, the interior system

may be written as

(L + B)q = 0, (3.8)

where

L + B =



ū ∂
∂x 0 p̄

ρ̄
∂

∂x 0

0 ū ∂
∂x σ

p̄
ρ̄

∂
∂ξ 0

∂
∂x σ ∂

∂ξ ū ∂
∂x 0

0 0 0 ū ∂
∂x



+



ν1(x, z) σ ∂ū
∂ξ 0 0

0 ν2(x, z) gc

(
1−γ

γ

)
(−gc)

0 σ
∂ ln p̄

∂ξ ν3(x, z) 0

0 σ ∂ ln θ̄
∂ξ 0 ν4(x, z)



, (3.9)
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It is essential that we impose a set of boundary conditions identical to what is used in a

general-purpose dynamical core. Reference solutions based on unbounded domains along with

the application of radiative boundary conditions (Klemp and Lily, 1975; Klemp, Skamarock, and

Fuhrer, 2003; Durran, 2010) present persistent discrepancies relative to simulation results that can

only be reconciled by implementing identical, if imperfect, boundary conditions. The combina-

tion of top/bottom boundaries and absorption layers is needed to perform validation studies of

nonlinear model output. Thus, in our linear reference solution for perturbation quantities ψ, this

implementation of an absorption layer corresponds to augmenting the tendency equations as:

∂ψ

∂t
= · · · − νψ (3.10)

This results in exponential decay of the perturbation field at a rate proportional to the absorp-

tion layer strength. This is directly analogous to implementations in numerical models where

fields are relaxed to an arbitrarily chosen reference state; typically the initialization of the evolu-

tion equations. Solving the linear system in this manner will be used to more efficiently design an

optimal absorption layer implementation with the purpose of minimizing boundary reflections

in wave breaking simulations. Our present approach is useful in determining a suitable set of

absorption layer parameters (depth, strength, and shape) and in finding a reference solution with

boundary conditions exactly like those used in numerical models with capped atmospheres.

An analysis of equations (3.7) by combining the thermodynamic equation algebraically into the

horizontal momentum equation reveals a constraint for the vertical variation of vertical velocity

as follows:

∂w
∂z

+

(
d ln θ̄

dz
+

d ln ρ̄

dz
− d ln ū

dz

)
w +

(
γRdT − ū

ū

)
∂ (ln p)′

∂x
= 0 (3.11)
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If we neglect the contribution from horizontal pressure gradients from (3.11), then a first order

ordinary differential equation in w remains:

∂w
∂z
≈
(
−d ln θ̄

dz
− d ln ρ̄

dz
+

d ln ū
dz

)
w (3.12)

If we consider only real exponential solutions to (3.12), then we see that vertical decreases in

mass and potential temperature produce wave growth, while background shear may be charac-

terized by wave growth where speed decreases and vice versa. Under stable, stratified condi-

tions supporting gravity waves, θ̄ is strictly increasing while ρ̄ decreases rapidly (nearly expo-

nentially) and is known to dominate linear wave growth. Our linear model captures stabiliz-

ing/destabilizing interactions due to background conditions in a more general sense.

3.2.1 A new vertical coordinate transformation with uniform smooth decay

The canonical example for a vertical transform given by Gal-Chen and Somerville (1975) with

linear decay of terrain features would result in

z(x, ξ) = ξ (H − h(x)) + h(x), (3.13)

and terms in (3.3) become

∂ξ

∂z
=

1
H − h

(3.14)

∂z
∂h

= 1− ξ (3.15)

However, for the purpose of this work and subsequent studies we seek a coordinate trans-

formation that aggressively eliminates terrain features from coordinate surfaces away from the

boundary corrugation profile. The purpose of such a terrain decay function is to minimize the

influence of deformed coordinate surfaces in the interior of the flow. In particular, we avoid this
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influence in the region roughly 2 kilometers above the mountain, and in the vicinity of the absorp-

tion layers. Therefore, we introduce a new coordinate characterized by the decay function:

∂z
∂h

= e(−
P
Q ξ)
[
cos

(π

2
ξ
)]P

+ Aξ(1− ξ) (3.16)

where parameters P = 20, Q = 5 and A = 1.0× 10−3 are chosen.

The function (3.16) has vertical gradient controlled by P and Q at ξ = 0, A at ξ = 1, and is

therefore monotonically decreasing, but terrain features decay more rapidly with height compared

to (3.13). A comparison of the standard coordinate and that given here is shown in Figure 3.1. The

derivative ∂ξ/∂z is available by applying implicit differentiation (shown in Appendix B) on the

following relation that defines a linear vertical coordinate transformation

z(x, ξ) = Hξ +
∂z
∂h

h(x). (3.17)

The vertical coordinate transformation maps the physical terrain following z to a uniform, nor-

malized (by H) computational coordinate ξ ∈ [0 1] by way of an invertible, monotone relationship.

If we consider the general form of the metric term σ given the derivative,

dξ

dz
=

{
H + h(x)

[
d

dξ

(
dz
dh

)]}−1

(3.18)

where details are defined in Appendix B. Here H is the model top, then we see that the influence

of the terrain following metric behaves as H−1 and thus vanishes when H → ∞. This is consistent

with results for unbounded domains in the vertical.

We note that other coordinate surface definitions with nonlinear decay of terrain features may

be used such as those introduced by Schär et al. (2002) where different exponential decay rates

where applied to individual components of the terrain spectrum. We implement a simpler solu-

tion based in the physical space in order to be consistent with what is done in general purpose

modeling systems. Our reference solution allows for the implementation and verification of any
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FIGURE 3.1: Comparison of terrain decay functions. The coordinate of Gal-Chen
and Somerville (1975) left and (3.16) right showing decay of terrain features near

boudary terrain.

choice of vertical transform (in physical space) intended for computational use.

3.3 Semi-analytic reference solution of the perturbation equations

The solution strategy for the system defined in equations (3.9) involves finding a suitable spec-

tral transformation for x and z derivatives in L and computing all the quantities in B and F from

known data using analytical expressions where possible. In this study, the thermodynamic back-

ground will be based on a piecewise temperature profile resulting in analytical expressions for

vertical gradients of pressure and density by way of the hydrostatic assumption. Our zonal jet

will be prescribed as an analytical function of height with a corresponding vertical gradient pro-

file. We note that considerable freedom exists in defining these quantities from observational data

and computing gradients in any approximate manner.
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Derivative operators in L are converted to dense matrices using global Hermite Functions in

the α direction and Legendre polynomials in ξ. In particular, the Hermite function expansion

is chosen in the horizontal direction as this incorporates a good approximation to inflow-outflow

lateral boundaries. The Legendre basis used in the vertical is chosen to include Dirichlet boundary

conditions on the vertical velocity field i.e. terrain forcing and model top conditions.

Projection of derivatives onto orthogonal polynomials is a common discretization strategy and

the foundation of spectral element methods applied on sub-domains. Here we use a global basis

of Hermite Functions and Legendre polynomials in order to arrive at a global spectral deriva-

tive operator for L that, combined with sampled versions of B and F result in a linear system of

equations with a large, non symmetric, dense coefficient matrix.

Given a discrete set of nodes xi ∈ −L, L for i = 1, N where N is a positive integer, xi are the

zeros of Hermite Functions up to order N − 1. Then, following Shen, Tang, and Wang (2011), the

horizontal derivative matrix operator is:

∂

∂α
= Dx = Dij =



ĤN(xi)

ĤN(xj)

(
1

xi−xj

)
: i 6= j

0 : i = j

(3.19)

where Ĥ are the Hermite Functions up to order N computed in recursive fashion. The implemen-

tation is accomplished with the derivative matrix package of (Weideman and Reddy, 2000).

For the domain interval−L, L the nodes and derivative matrix (3.19) are scaled by L as needed

in the Hermite weight function e
−x2
2L .

Similarly, with a set of discrete nodes zk ∈ [0 H] for k = 1, N where N is a positive integer,

zk are the Chebyshev nodes up to order N distributed over the given interval. Again, following
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Shen, Tang, and Wang (2011), the vertical derivative matrix operator is:

∂

∂ξ
= Dz = Dkj =



L′N(xk)
L′N(xj)

(
1

xk−xj

)
: k 6= j

xk
1−(xk)2 : k = j

(3.20)

where L′ are the derivatives of Lagrange basis polynomials up to order N computed in recursive

fashion. Again, we implement this discrete derivative with the matrix package of (Weideman and

Reddy, 2000).

The derivative matrices (3.19) and (3.20) are not suitable for computational purposes, but are

known to represent the respective partial derivatives with very high accuracy well beyond that of

a true numerical method. Function expansions and nodal values are collocated giving a grid-scale

defined by the highest order function included over the extent of the domain. For our purposes,

with a horizontal extent of 100 km and heights up to 40 km, it is sufficient to retain 120 modes in

the horizontal and 100 in the vertical to produce an accurate truncation.

3.3.1 Boundary conditions and terrain forcing

The free-slip condition at the terrain surface is imposed by stating that the component of the

velocity normal to the terrain must vanish. That is,

~u · n̂ = ~u ·
~∇φ

| ~∇φ|
= 0, (3.21)

where φ = z− h(x) = 0 is the level set representation of the terrain surface.
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If the gradient of φ in Cartesian geometry is ~∇φ = − ∂h
∂x î + k̂, then following (3.21) the kine-

matic boundary condition is stated as

w′ − u′
dh
dx

= ū
dh
dx

. (3.22)

Here, a further approximation may be taken where the term u′ ∂h
∂x is regarded as a product of

perturbation quantities and hence neglected. Thus the consistent linear terrain boundary condi-

tion is,

w′ = ū
dh
dx

. (3.23)

Applying the derivative matrix operators in (3.19) and (3.20) to the continuous system (3.9), we

arrive at a matrix equation Ax = b where A is non-symmetric and augmented with the boundary

equations (3.23) at the bottom z surface and w′ = 0 at the model top. The method of Lagrange

Multiplier augmentation is used by appending 2N unknown constraint forces corresponding to

the top and bottom boundary grid locations. Furthermore, evaluating (3.9) with (3.23) leads to

the following set of equations at the (bottom) boundary in Cartesian horizontal x and vertical z

coordinates,

ū
∂u′

∂x
+

p̄
ρ̄

∂ (ln p)′

∂x
= −∂ū

∂z
ū

∂h
∂x

, (3.24)

γ
∂u′

∂x
+ ū

∂ (ln p)′

∂x
= −γ

∂h
∂x

∂ū
∂z
− ū

∂ (ln p̄)
∂z

∂h
∂x

,

ū
∂

∂x

[
(ln θ)′ +

∂
(
ln θ̄
)

∂z
h

]
= 0.

where horizontal momentum and pressure equations may be algebraically combined to give,
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ū
∂

∂x

[(
ū− γ

p̄
ρ̄ū

)
(ln p)′ + h

∂ (ln p̄)
∂z

]
= 0, (3.25)

ū
∂

∂x

[
(ln θ)′ + h

∂
(
ln θ̄
)

∂z

]
= 0.

A similar analysis for the top boundary reveals that, given a specified vertical velocity, the top

and bottom boundaries must further be constrained to specified values in two of the remaining

three fields in order to fully determine the linear system. Equation (3.25) states (assuming u is elim-

inated from (3.24)) that total internal energy and entropy do not vary in the horizontal direction at

the terrain and model cap boundaries i.e. there is no horizontal transport of energy/entropy. Note

that the vertical momentum equation is eliminated at the top and bottom surfaces since it would

imply a static force constraint that is inconsistent at time invariant, impenetrable boundaries.

3.4 The sheared jet Schär Mountain test

The Schär Mountain test case given in Schär et al. (2002) has been used extensively in the de-

velopment of dynamical cores. It is valuable for testing vertical discretizations and to show the

wave dispersion properties of a particular model as in Giraldo and Restelli (2008) and Guerra

and Ullrich (2016) as examples. The primary simplifications are that the background flow is uni-

form and constant while the reference thermodynamic profile is uniformly stratified. Depending

on implementation details in a particular model, numerical results may be compared directly to

analytical solutions based on the 2-D Boussinesq equations as shown by Smith (1979) or Klemp,

Skamarock, and Fuhrer (2003). In this scenario the background stratification and flow fields allow

the constant coefficient equations to be reduced to a single second order system and transformed

to Fourier space closed solutions are attainable.

Here we present an extension to the classic Schär Mountain test case that allows for piecewise
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linear continuous background temperature fields and a sheared jet with arbitrary shape. The lin-

earized equations (3.7) applicable to such a situation are closer to more general unapproimated

systems employed in modern dynamical cores with strongly varying background fields in a ter-

rain following grid.

The topographic profile is given by

hT(x) = hc exp

[
−
(

x
ac

)2
]

cos2
(πx

λ

)
, (3.26)

with parameters hc = 100 m or a value less than Ū
N

∣∣∣
s

corresponding to streamline separatation at

the surface, λ = 4000 m and ac = 5000 m. The simulation domain is (x, z) ∈ [−56, 56]× [0, 30] km

with a no-flux boundary specified along the top surface and a free-slip condition along the terrain.

Free-flow boundary conditions for simulation use an absorption layer 10 km wide along the lateral

boundaries and 10 km deep at the model top.

3.4.1 Background jet

The background jet profile is modified from Ullrich and Jablonowski (2012) and used in Ullrich,

Reed, and Jablonowski (2015) to add a mean uniform wind:

ū(z) = −uj(ln η)e
− ln η

b2 + u0 (3.27)

where uj gives the amplitude of the jet core, b is a parameter that changes the amplitude and

location of the jet, and u0 is a constant wind. The variable η = p̄(Hξ)
p0

is a normalized pressure

coordinate determined from the thermodynamic background state in the terrain following coor-

dinate ξ. The parameters in (3.27) for this study are given in Table 3.1.

The resulting background flow has a speed of 10 m s−1 at ground level and grows to ap-

proximately 20 m s−1 at 7km elevation representative of a moderate mid-tropospheric jet with a

constant low level flow in conditions sufficient to launch mountain waves through the jet core.

81



Chapter 3. Linear Reference Model

FIGURE 3.2: Background wind and thermodynamic profiles. Dry atmosphere with
a prescribed sensible temperature distribution (top right).

Parameter Value

uj 16.822 ms−1

u0 10.0 ms−1

b 1.386

p0 1.0E5 Pa

TABLE 3.1: Background jet parameters.
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3.4.2 Thermodynamic and kinematic background initial state

The thermodynamic background fields are derived from a temperature profile with parameters

given in Table 3.2. The initial kinematic and thermodynamic conditions are shown in Figure 3.2.

Fields for pressure ln p̄(z) and density ln ρ̄(z) are calculated from hydrostatic balance and inte-

grated over each isothermal or constant lapse rate layer. We note that any number of layers may

be specified this way and the model also accepts discrete sounding data of any type. For a piece-

wise linear temperature profile in 3 layers, pressure, density, and their respective vertical gradients

are computed analytically by

ln p̄(z) = −gc
1

RdΓ
ln
(

T1 − Γz
T1 − Γz1

)
+ ln p1, (3.28)

∂

∂z
ln p̄ = −gc

1
Rd (T1 − Γz1)

(
T1 − Γz
T1 − Γz1

)−1

(3.29)

where Rd = 287.0 is the gas constant for dry air, T1 and z1 are the temperature and elevation at the

bottom of the layer. Note that Γ = − ∂T
∂z is used in direct proportion to the gradient of temperature

taken to be constant in each layer.

Similarly, the background pressure field in a layer with constant temperature change is given

as

ln p̄(z) = −gc
1

RdT
ln (z− z1) + ln p1, (3.30)

∂

∂z
ln p̄ = −gc

1
RdT

(3.31)

where T is the layer temperature taken from the layer below. The normalized pressure coordinate

η is thus readily obtained in computing the zonal jet from the pressure profile defined above.
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Layer (km) ∂T
∂z Km−1

z ∈ [0 11] −0.0065

z ∈ [11 20] 0.0 tropopause

z ∈ [20 H] +0.001

TABLE 3.2: Background thermodynamic parameters.

Relationships for background density are readily attained by use of the Ideal Gas Law,

ln ρ = ln
(

p
RdT

)
= ln p− ln T − ln Rd, (3.32)

and

∂

∂z
ln ρ =

∂

∂z
ln p− ∂

∂z
ln T =

∂

∂z
ln p− Γ

T
. (3.33)

3.4.3 Comparison to the classical theory

One of the primary differences in our reference solution and those derived from the classical the-

ory is the implementation of absorption layers in lieu of unbounded domains with radiation con-

ditions. We show a comparison of the of the two solutions in the original Schär mountain test

case (Schär et al., 2002) under uniform stratification in Figure 3.3 where differences due to the

change in boundary condition are readily apparent. The two solutions are quite similar up to

approximately 15km, but any comparison is necessarily qualitative. Furthermore, the governing

equations and boundary conditions of the classical theory are too far removed from numerical

model implementations to be used in validation studies. We note that both solutions are based

on a truncated polynomial expansion approach where the classical theory is facilitated by the Fast

Fourier Transform algorithm and our solution is subject to a sparse matrix inversion.
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FIGURE 3.3: The original Schär mountain test case computed by our reference solu-
tion as compared to the classical theory Fourier solution.

The strength and width of the lateral/top absorption layers determine the extent of reflection

noise. For the purpose of this study, our reference solution was used to tune a boundary with

the thinnest and weakest layer possible and used these values in our numerical experiments. Ab-

sorption layers introduce non-trivial interactions with the interior flow that often require many

iterations of a numerical model to optimize. In the case of orographic waves, two features are

especially important: wavelength and amplitude of vertical modes as they meet the top layer, and

strong trapped waves that may interact with the downstream lateral layer. While good estimate

can be obtained from the linear theory, our model allows these interactions to be visualized and

assessed quickly with the goal of minimizing the extent of the computational domain dedicated

to the far field boundary condition.

Our linear model allows the process of layer optimization to be greatly reduced. However,

we note that transient effects are not included and can dominate the numerical model response

particularly just after initialization.
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3.5 Numerical tests and results

Our goal is to demonstrate the validity of the model for conditions where purely analytical so-

lutions are not available. Thus, we progress from constant wind and uniform background to an

arbitrarily sheared wind in a background with discontinuous derivatives as a prototype for gen-

eral wind and sounding profiles.

Horizontal and vertical resolutions are 1000, 500, 250, and 125 m. We compare the vertical

velocity to the reference solution directly and compute the L2 norm of the difference. Furthermore,

we are interested in diagnosing momentum fluxes, and hence induced drag, using our linear

solution as a reference. Here, we expected the momentum flux to be divergence-free. Lastly we

evaluate the onset of shear and convective instability by computing the local Richardson number

and vertical gradient of potential temperature. The purpose of these diagnostics is to efficiently

design, given a set of general background conditions, numerical tests that will exhibit phenomena

predicted by the linear model.

Numerical integrations are performed using the Tempest dynamical core with horizontal Spec-

tral Element discretizaton and a Lorenz staggered FEM in the vertical as outlined in (Guerra and

Ullrich, 2016). Steady state is assumed after a long term (15 hours) simulation with an explicit

Runge-Kutta method. The tests are carried out without the use of any diffusion operators. How-

ever, some damping is required in the hyperbolic problem to remove transients borne of the impul-

sive initialization. Therefore, the model contains damping implicit to the time integration scheme

and localized damping due to the use of absorption layers.

While we observe excellent agreement in prognostic and composite fields as shown in Figure

3.4, our numerical tests and the linear reference solution are convergent up to finite error for a

given mountain height. This behavior is shown in the L2 norm of differences in density and ver-

tical momentum given in Figures 3.5 and 3.6. We note that the 3LAYER configuration initially

appears to converge at a faster rate due to numerical errors in capturing the piece-wise back-

ground. However, this is only the case at lower resolutions where discontinuous derivatives are
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most problematic. In contrast, we expect that smoothly varying (relative to the grid length) back-

ground fields would present uniform errors over the domain and result in a smaller error floor.

The reference solution based on the linearized equations (3.9) may be interpreted as the first

iteration of Newton’s Method applied to the full Euler equations where the initial Jacobian op-

erator is evaluated at the background state. As such, the solution to the linear problem implies

a residual with respect to the full non-linear equations. For the purpose analyzing the nonlinear

residuals we employ an equivalent linearization of the equations in conservation form outlined

in Appendix A. Therefore, if we assume that a nonlinear equilibrium solution exists and may be

found by a Newton iteration we have, in the first two iterations,

q′ − qNL = J̄−1 f (q̄)−
[
J̄−1 f (q̄) + J(q̄ + q′)−1 f (q̄ + q′) + · · ·

]
(3.34)

‖q′ − qNL‖ ≈ ‖J(q̄ + q′)−1 f (q̄ + q′)‖ = ‖USVT f (q̄ + q′)‖ ⇒

‖q′ − qNL‖ ≈ ‖S f (q̄ + q′)‖ =
[
∑

i

(
fi

λi

)2
] 1

2

≥ 1
λmax

‖ f (q̄ + q′)‖

where f represents the full Euler set evaluated at the current state q̄ + q′ and J is the Jacobian

operator initially evaluated at the background state. Also, λmax is the largest singular value of the

Jacobian matrix evaluated after the first iteration and the last result follows from orthogonality of

the right and left singular vector matrices U and V. The statement above indicates that there is a

lower bound on the error attained by the linear solution and this is proportional to the norm of

the residual in the full non-linear equations after one Newton iteration.

We now compute the nonlinear residual based on our linear solution to estimate the result

of (3.34) in table 3.3 for the 3LAYER configuration. We observe a linear convergence rate in the

reference solution model with respect to the fully nonlinear equations and furthermore have es-

timates for lower error bounds. The largest singular value of J̄ is approximately 80 and does not

vary with peak terrain height. Thus, we see that minimum errors at the converged resolution of
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FIGURE 3.4: Overlay of numerical results and linear reference solution. Dashed con-
tours represent the reference solution and filled contours correspond to numerical

results at various resolutions. Vertical Velocity (m s−1).

125m are proportional to the residual for vertical momentum. Density errors are, however, much

greater than the lower bound and this is directly attributed to the rate at which the underlying dis-

cretization resolves discontinuities in the background fields. The pattern of oscillation in density

is evident at 11km of elevation in figure 3.7.

While vertical momentum errors are on the order of a fraction of a millimeter per second,

the relatively greater density errors cause a distinct pattern of reflected waves in the momentum

field as shown in figure 3.8. This pattern is smooth and concentrated near the lateral and top

boundaries. The latter case is potentially problematic for a nonlinear solution where wave break-

ing is to be expected as such wave reflections may precipitate instabilities and lead to incorrect

structure in turbulent fields. We also notice significant errors within the lateral absorption layers

coming from the numerical model indicating a strong resolution dependence for these layers. The

linear reference solution serves a tool to minimize such errors by adjusting the domain size and

depth/strength of the absorption layers. However, in the context of a higher order discretization,
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Height (m) Residual ρ Residual ρw

10.0 5.9473× 10−7 8.5940× 10−4

1.0 5.9663× 10−8 8.5185× 10−5

0.1 5.9684× 10−9 8.5569× 10−6

TABLE 3.3: Nonlinear residuals in density ρ
(

kg m−3
)

and vertical momentum ρw(
kg m−2 s−1

)
in the 3LAYER configuration.

FIGURE 3.5: L2 error convergence of numerical integration with respect to the semi-
analytical reference solution. 10 m terrain height. Density (kg m−3).
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FIGURE 3.6: L2 error convergence of numerical integration with respect to the
semi-analytical reference solution. 10 m terrain height. Vertical Momentum

(kg m−2 s−1).

FIGURE 3.7: Difference in density for 3LAYER configuration with respect to simula-
tion. Scaling set to show structure in the error fields. Density (kg m−3).
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FIGURE 3.8: Numerical to reference solution difference. Scaling set to show structure
in the error fields. Vertical Velocity difference (m s−1).

the root cause of spurious reflection can only be remedied by increasing resolution, artificially

smoothing the background fields, and/or reverting to a lower order discretization.

3.5.1 Diagnostic instability parameters

We seek to understand the onset of shear and convective instabilities in our tests in order to predict

when and where our simulations will exhibit wave breaking. We use our reference solution to

make a prediction of wave instability with varying mountain height as the primary parameter and

consider all other initialization parameters to determine a particular test case. The first stability

metric we consider is the local Richardson number computed as,

Ri = N 2
(

σ
∂u
∂ξ

)−2

= gc

(
σ

∂ ln ρ

∂ξ

)(
σ

∂u
∂ξ

)−2

=
gc

σ

(
∂ ln ρ

∂ξ

)(
∂u
∂ξ

)−2

(3.35)

The linear theory of instability for stratified shear flows as outlined by Nappo (2012) originally

given by Miles (1961) and Howard (1961) states that a necessary (but not sufficient) condition for
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FIGURE 3.9: Local Richardson number and convective stability parameter for
3LAYER configuration. Reference solution with 10, 100 and 1000 m mountains from
top to bottom. Fields plotted in the vertical axis only to show vertical structure.

Dashed line indicates Ri = 0.25.

FIGURE 3.10: Convective stability parameter for 3LAYER configuration. Reference
solution with 10, 100 and 1000 m mountains from top to bottom. Fields plotted in

the vertical axis only to show vertical structure.
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instability is Ri < 0.25. We note that Ri may be sensitive to accuracy in the estimate of local shear

in a numerical model i.e. the discrete vertical derivative, since that factor is squared in (3.35).

As waves propagate vertically throughout the flow, the minimum value of the local Ri number

decreases with increasing terrain elevation as shown in figure (3.9) where the mean condition is

shown in red. For mountain heights near the instability limit, the Ri number decreases exponen-

tially with elevation particularly throughout the tropopause and lower stratosphere.

A second mode of instability corresponds to convective overturning. The condition for con-

vective instability is stated as follows:

T
θ

∂θ

∂z
= Tσ

∂ ln θ

∂ξ
< 0.0 (3.36)

The linear model predicts that instabilities may develop in layers above the jet maximum.

Figure 3.9 shows that shear and convective stability under stratification is strongly dependent

on terrain height and consequently initial wave amplitude. We note that convective instability

tends to precede shear instability as a function of mountain height as shown in figure 3.10. We

observe that convective instability is confined to discrete unstable layers bounded from above and

below by very stable air. Therefore, we conclude that unstable convection is the primary mode of

wave breaking followed (in elevation) by localized regions where shear instabilities will occur.

Our linear model predicts the onset of convection at 11 km, in the 3LAYER test, with subsequent

unstable layers at 18, 21, 24, and 27 km.

3.6 Nonlinear wave breaking simulations

The results from previous sections are now leveraged to set up numerical experiments to study dy-

namics of wave breaking. We simply raise the terrain height to 1 km sufficient to induce breaking

at a level adequately below the absorption layer. It is important to note that an explicit dissipa-

tion closure is needed in order to carry out this simulation. Without rigorous justification, but in

agreement with validation experiments done by Guerra and Ullrich (2016) at similar resolutions,
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we choose 4th order hyperdiffusion operators both vertical and horizontal. The coefficients are

constant in the horizontal and velocity weighted in the vertical. This closure model is stable and

“scale selective” in the sense that structures are preserved near the grid scale.

Simulation results, shown in figure and (3.11), suggest several important flow features:

1. Breaking is displaced downstream of the primary obstacle. We made no assumption about

waves being predominantly hydrostatic, therefore we expect this displacement as a conse-

quence of non-hydrostatic effects in the initial wave train.

2. The largest eddies resolved are approximately of the same size as a vertical wavelength.

This observation has implications on whether the wave structure of a flow is maintained

and under what conditions it is reasonable to assume so.

3. Wave breaking generates a turbulent wake that extends far downstream of the obstacle. In

fact, our simulations suggest that these regions may be as long as the several times the size

of the domain (100 to 200 km). This implies that regions of wave dissipation, and thus

momentum exchange, are much broader than regions immediately above a mountain.

4. Figure 3.11 (right panel) shows that the linear prediction for the lowest unstable layer in the

3LAYER configuration is quite good at approximately 12 km elevation.

3.7 Conclusions

We present a semi-analytical, high fidelity solution to the linearized non-rotating Euler equations

in the vertical plane. Our solution is closely related to classical transform methods with a specific

choice of expansion by Hermite functions in the horizontal and Lagrange polynomials in the verti-

cal. While the resulting dense derivative operator matrices are impractical in a true computational

setting, we exploit sufficient sparsity in the final operator to compute a solution efficiently. The

result is highly accurate and ideally suited to cross mountain flows over Cartesian domains of 100
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FIGURE 3.11: Wave breaking in the 3LAYER configuration. Potential temperature
deviation (K) field shown.

to 200 km in total length. An important limitation to the use of the Hermite function expansion

is that all partial derivatives in x become dense matrix operators. For larger domains, a more

traditional Fourier expansion of said derivatives may be employed making the solution process

much more efficient. However, the Fourier solution excludes the use of lateral absorption layers

and often requires a larger domain than necessary in order to account for the natural periodic

boundary condition especially in the presence of trapped waves that persist far downstream of

the mountain.

The objective is to use the linear reference solution to design numerical experiments in the con-

text of steady 2D mountain waves. This reference may then be used to validate fully non-linear

solutions run on general purpose dynamical cores. The classical theory of linear mountain waves

provides a variety of solutions under very specific conditions which are only qualitatively useful

when assessing the performance of a numerical model. Our linear model, how is able to incor-

porate more general background conditions without hydrostatic or incompressible/Boussinesq
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approximations. Furthermore, we include the use of Rayleigh absorption layers used to approxi-

mate radiation (top) and inflow/outflow (lateral) boundary conditions.

The dynamical core Tempest achieves a steady equilibrium via a long term (15 hours) integra-

tion. When comparing the simulations to our reference solution we find there is an error floor in

spatial convergence for a given forcing amplitude. We attribute this finite error to a fundamental

difference between the linear and non-linear equilibrium solutions and quantify it by evaluating

the residual of the inviscid Euler equations using the linear solution interpreted as the first itera-

tion in Newton’s Method. Our linear reference solution allows for direct validation of numerical

results from nonlinear models including error estimates for any mountain height. We do not at-

tempt to carry out the full Newton iteration, but instead use the linear solution as an economical

reference solution in the validation of numerical tests at quasi-steady state.

With the relationship between the linear model and non-linear simulations established, we

design wave breaking simulations by performing parameter search iterations in the linear model

only. Thus, we can establish background flow, boundary, and forcing conditions efficiently prior to

running expensive batch simulations. This benefit increases greatly when the model/simulations

are extended to 3D, especially for quasi-steady solutions requiring long integration times. The

result is a series of simulations where the transitions from wave-like to turbulent flow can be

studied in a systematic manner at reduced expense.
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4.1 Introduction

The linear theory of orographically forced mountain waves (Smith (1979), Eliassen and Palm (1960),

Klemp and Lily (1975), Bretherton (1969a), Lindzen (1981), McFarlane (1987), and many others)

introduced important results that allowed for robust sub-grid simulation of non-linear momen-

tum drag imposed by breaking waves in the atmosphere. If we consider atmospheric flow over

rough terrain with obstacles at every scale from synoptic (100 km) to cloud resolving (100 m), then

momentum transfer to the ground may be characterized by a single aggregate drag coefficient,

of which, breaking waves in the free stratified atmosphere is only one component (Garratt, 1977).

This orographic gravity wave drag (OGWD) is known to be an important small to large scale

phenomenon necessary for all studies of the general circulation including climate prediction.

The parameterization of orographic wave drag begins with linear constant-coefficient, plane

wave solutions to the Boussinesq, hydrostatic, Euler equations in a vertical slice. These solutions

provide estimates for the surface drag force due to terrain obstacles, amplitude change with ele-

vation for waves predicted to propagate vertically, and for criteria giving the necessary conditions

leading to unstable breakdown of waves. In the linear model, wave stress or correlated momen-

tum flux is constant with elevation, but it is the divergence of wave stress with elevation that

imparts a change in momentum as consequence of non-linear dissipative processes. Therefore,

the parameterization of McFarlane (1987) imposes two conditions: unstable breakdown is due to

convective motion i.e. vertical gradient of potential temperature is negative, and wave amplitude

is limited to the value where instability begins. As the wave is maintained at “saturation” through

a dissipation layer, stress is proportionately reduced. Each column of the parent numerical model

grid is then forced where divergence of stress is non-zero. Operational models have employed

such parameterized drag successfully over several decades. However, as modeling systems ap-

proach grid scales (locally or uniformly) where the hydrostatic approximation is no longer valid,

it is necessary to closely evaluate the performance of physics parameterizations originally for-

mulated in the hydrostatic context. In this work we perform such a re-evaluation of the OGWD
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parameterization currently operational in the Community Atmosphere Model (Neale et al., 2010)

using high fidelity limited area experiments over scales down to 100 m.

High resolution studies, relative to what is typically used in general circulation models, have

been performed under idealized conditions and for comparison against observational campaigns.

For example, Broad (1996) made numerical integrations with grid lengths of 1 km resulting in

good agreement with observations from the PYREX experiment cited in that work. Similarly,

Bacmeister and Schoeberl (1989) shows several numerical experiments in constant background

flow over a range or ridge heights demonstrating some of the characteristics of wave breaking

that diverge from assumptions typically made based on the linear theory and wave amplitude

saturation during breaking events. In particular Bacmeister and Schoeberl (1989) points out the

presence of waves generated from turbulent regions that propagate downward contributing to

transient episodes similar to what is observed in this work. However, as we will show, this reso-

lution is insufficient to truly resolve the fine structure of turbulence generated by mountain break-

ing. Also, while some effort has gone into incorporating 3D aspects of cross mountain flow, we

restrict ourselves to a 2D vertical slice so as to maintain reasonable run times as we perform our

simulations at 100 and 200 m uniform resolutions.

In this paper, we study the parameterization using input flow fields generated using a high

resolution numerical model Tempest. Tempest is designed to solve the dry non-hydrostatic equa-

tions in terrain-following height coordinates (Guerra and Ullrich, 2016) and stands as a limited-

area proxy for a next generation non-hydrostatic extension of the finite element dynamical core in

the Community Atmosphere Model. We explore the effect of varying levels of terrain filtering on

flow response at high (200 m) resolution where we find little to no influence of higher frequency

forcing components on predicted drag. Our results show that broad scale terrain features of suf-

ficient height induce very similar turbulent flow fields if the virtual atmosphere is fine enough to

support such a flow. Consequently, a smoothed-out terrain profile will produce nearly identical

drag forcing in the free atmosphere as will a full terrain spectrum.

We further explore coarser resolutions, in both forcing and grid, of 1, 5, and 25 km. This is
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precisely the resolution range recognized as the transition from hydrostatic to non-hydrostatic

flow and which will come into operational use in the coming years. Our results show that, for

an atmosphere with finite shearing and realistic stratification, model resolution at these scales

does not support wave breakdown and produces a quasi-steady flow field without dissipation or

internal drag forcing. Furthermore, the parameterization does not produce vertically propagating

wave modes for forcing components in this same resolution range giving a null contribution. The

result is that no drag is predicted under these conditions.

We conclude that model resolution is needed in regions of steep terrain variation, not only to

capture the complete forcing spectrum, but primarily to set up a virtual atmosphere capable of

reproducing the necessary turbulent cascade of energy needed to capture non-linear drag forcing.

Advanced parameterization schemes for low level (close to terrain where Surface Layer theory is

applicable) already exist and are being developed, (Lott and Miller, 1997; Beljaars, Brown, and

Wood, 2004) but a comprehensive gravity wave breaking parameterization in the free atmosphere

has not been attained as pointed out by (Teixeira, 2014) where many transient and nonlinear effects

have yet to be accounted for in a concise manner.

The remainder of this paper is organized as follows: In section 4.2 we summarize the drag

parameterization of McFarlane (1987) and how we implement it in this study. In section 4.3 we

outline the methodology for processing high resolution terrain data to generate input profiles for

both tests and parameterization. In section 4.4 we design our numerical experiments and make

preliminary predictions based on a linear steady model. Then in section 4.5 we present our results.

Discussion and conclusions follow in section 4.6.

4.2 Lindzen/McFarlane wave drag parameterization

4.2.1 Formulation

We follow the formulation of the sub-grid orographic drag parameterization given by McFar-

lane (1987) and currently implemented in the Community Atmosphere Model physics package
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(Neale et al., 2010). We summarize the formulation by considering the steady Euler equations in a

vertical slice under anelastic and hydrostatic approximations given as,

−Ū
∂

∂x

[
1
ρ̄

∂

∂z
(ρ̄Ūψ)

]
+ Ū

∂Ū
∂z

∂ψ

∂x
+

∂Π
∂x

= 0

∂Π
∂z

+ gcψ
∂ ln θ̄

∂z
= 0

where ψ is the streamline displacement function (which has been used to eliminate the continuity

and thermodynamic equations), Π is the Exner function, and all overbar quantities are zonally

symmetric and in hydrostatic balance. Assuming a purely sinusoidal, monochromatic ridge pro-

file, the following 2nd order equation results,

∂

∂z

[
Ū2

ρ̄

∂

∂z
(ρ̄ψ)

]
+N 2ψ = 0 (4.1)

where N is the mean Brunt-Väisäla frequency defined as,

N 2 = gc
∂ ln θ̄

∂z
(4.2)

The formulation then proceeds to find approximate solutions to (4.1). Background quantities

are assumed to vary “slowly” relative to wave field variations. The assumed solution for the

streamline displacement is,

ψ(z, x) = A(z) cos
[

µx +
∫ z

0
φ(z′)dz′

]
(4.3)

where A is an amplitude, and φ is a phase function both only dependent on elevation.

A consequence is that the primary growing mode in the solution (4.3) is assumed to vary at

the characteristic length for background fields. Most importantly, wave amplitude grows as the

inverse of mean density. Thus, further neglecting any 2nd order terms when (4.3) is substituted
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into (4.1) we may define a source level stress and amplitude function,

τ0 ≈ −
µh2

2
ρ̄0N0Ū0 A(z) = h

ρ̄0N0Ū0

ρ̄N Ū
(4.4)

where the 0 subscript indicates a quantity evaluated at the ground z = 0 for an inviscid model

with free-slip lower boundary, and µ is the spatial frequency related to terrain feature length by,

λ =
2π

µ
� N

U
(4.5)

for representative values of the BV frequency and mean wind typically chosen near the ground.

The quantities given by (4.4) provide a source stress as a function of low level wind and a

vertical amplification factor that scales with the inverse of background density. We note that we

use boundary values for all quantities with 0 subscript due to the free-slip condition. This will

differ from models where a boundary layer is possible in which case source quantities are taken as

integrated averages over some arbitrary height from the surface; typically on the order of terrain

height (Neale et al., 2010). The condition given by (4.5) then states the range of wavelengths

that will excite propagating modes in the hydrostatic model used here. Therefore, the value(s)

of λ are restricted and must be chosen as the union of the set defined by the condition (4.5) and

wavelengths that are excluded after filtering the input spectrum as we discuss in section 4.3.2. We

will see that this becomes a second mechanism through which the parameterization shuts off and

places a significant restriction on its use.

If propagating waves amplify with height, then at some finite elevation convective overtur-

ing will occur as a result of deformation in the potential temperature field. To capture this phe-

nomenon, McFarlane (1987) makes use of what is known as the “saturation hypothesis” (Lindzen, 1981;

Holton, 1982) by which waves are assumed to be amplitude-limited by diffusive transfers of heat

and momentum upon wave breaking. In the linear regime, stress in constant in the column result-

ing in amplification, but upon breaking, amplification becomes constant and a decrease in stress
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is necessary to account for energy dissipated in the process of turbulent breakdown.

In the saturation region, where diffusive transport is taking place, the amplitude function takes

the form,

A(z) =
Ū
N . (4.6)

where it becomes clear that waves are always assumed to propagate in stable stratified layers with

nonzero positive N even in regions where dissipation is taking place. Critical layers are captured

by imposing that wave amplitude vanish when background flow vanishes.

And the decrease in stress throughout the dissipation layer takes the form,

τ(z) = τ0

(
A(z)
A0

)2 ρ̄N Ū
ρ̄0N0Ū0

. (4.7)

A dissipation layer ends when wave amplitude falls below the value in (4.6) where the given

stress in (4.7) is then carried conservatively with growing amplitude (4.5) until breaking occurs

again at some higher elevation.

4.2.2 Implementation

Ultimately, the goal of the OGWD parameterization is to impose a vertical stress to the resolved

momentum equations in the following form,

∂u
∂t

= −1
ρ̄

∂τ(z)
∂z

(4.8)

where u is the component of the resolved component of velocity that is aligned to the cross-

mountain direction. The profile τ(z) is the vertical profile found by evaluating (4.7) in a given

column.

In the linear formulation above, this wind is the mean/background wind while in a 3D simu-

lation, this is the total wind magnitude at the base of the given grid column assumed to be fully
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directed onto the sub-grid orography. Therefore, a standing wave train develops in a medium

made up of the numerically resolved wind/thermodynamic field. Given our objective is to in-

vestigate how the parameterization performs as we approach input wavelengths that no longer

support propagation, include a transition into the non-hydrostatic regime, and may give rise to

features of fully resolved wave breaking we restrict its implementation to time-averaged input

fields under the assumption and requirement that our simulations approximate quasi-steady tur-

bulent states such that time averaging is reasonably well justified.

Thus, we do not apply the parameterization output in feedback with the dynamical model.

In general, a full implementation requires careful tuning of time step between the dynamics and

physics update and this lies beyond the scope of our present work and we focus on the right

hand side of (4.8) where the vertical gradient of stress is defined. This simplification will be suf-

ficient for our assessment and reflects an emphasis on structure of the simulated flow field as it

relates to assumptions inherent in the parameterization formulation. This study will then inform

the requirements for a next-generation OGWD parameterization and associated high-resolution

modeling efforts, as global models are pushed towards non-hydrostatic scales.

4.3 Methodology

In order to assess the performance of the Lindzen/McFarlane wave drag parameterization we be-

gin with a method of processing available terrain data to construct two inputs: 2D filtered height

profiles as the lower boundary for limited area high-resolution experiments, and corresponding

standard deviation values from the filtered mean profile as per-column input to the parameteri-

zation code. Filtering is performed using a simple moving average applied to the raw data which

differs from what is available to users of the Community Earth System Model as outlined by Lau-

ritzen et al. (2015) where propagating/non-propagating scale separation is assumed and a spectral

filter is used. In the global context, spectral filtering is much more accurate, however in our tests
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the moving average filter combined with appropriate processing is sufficient to investigate the ef-

fects of such coarsening on atmospheric response at resolutions below 1 km. Due to the relatively

high resolution of our data, the moving average filter is also preferable since it is monotonic and

does not cause spurious oscillations typical of spectral filters.

4.3.1 Elevation of the Tropical Andes

FIGURE 4.1: Digital elevation map of the equatorial Andes. Height in km. Domain
distances are specified relative to the South West corner of the data map at 82◦ West

and 6◦ South.

The bottom boundary is taken as an East-West section of the tropical Andes of Ecuador at a nor-

malized peak elevation of 1 km. A smooth and complete digital elevation map (800 × 800 km

area), at 30 m resolution, of the country of Ecuador was provided to the author by the “Instituto
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Geográfico Militar del Ecuador” (IGM) as a matter of public record with the express permission to

apply these data to atmospheric modeling studies (Jimenez, 2017). Selected profiles are analyzed

with standard signal processing techniques and applied directly to our terrain following model.

A sample contour of the terrain data is shown in fig. 4.1. The data is meticulously constructed

at a resolution of 30 m, is relatively compact (on the order of several hundred megabytes) and is

therefore well suited to spectral analysis and as a source of orographic forcing profiles in simula-

tions.

4.3.2 Terrain filtering and analysis

The current work is limited to a 2D vertical slice model and a single representative terrain pro-

file for all simulations. We make these choices to constrain computational overhead (from 3D

simulations), and to simplify our subsequent analysis of results with respect to the drag parame-

terization. We find that it is sufficient to examine longitude-height fields as the parameterization is

originally formulated in 2D and implemented in models by projecting wind components into the

cross mountain direction. We expect the vertical structure of wave trains and turbulent layers well

above the terrain to be consistently reproduced in 2D simulations for the purpose of the present

work.

106



Chapter 4. OGWD Parameterization Assessment

FIGURE 4.2: The normalized amplitude spectra for all horizontal cross sections as a
function of wavelength (in m). The dark black line denotes the average spectrum for

longitudinal cross sections. Dotted black line corresponds to the k−2 decay law.

FIGURE 4.3: Input terrain profile processing. Black curve denotes the circularly
shifted data, red curve is the 4th order Gaussian windowing function, and in blue

is the resulting input profile. Height is normalized to unity.
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We consider the amplitude spectra of all possible cross sections from the original data as shown

in fig. 4.2. We observe a tight clustering with respect to the solid black ensemble mean spectrum.

Departures, in any one cross section, from the mean in fig. 4.2 are at most 1%. With this result we

proceed to conduct our numerical experiments by choosing a single representative profile shown

in fig. 4.3 with a pre-processing detailed in Appendix B. While we note a significant difference

in the spatial domain, spectral characteristics are maintained. Careful consideration has been

taken to construct simulations that have sufficient overall length while supporting a representative

sample of the topography without leading to prohibitive computational costs.

Given the input profile in fig. 4.3, its spectral characteristics after the application of progres-

sively wider filters is shown in fig. 4.4 and for variance from filtered output in fig. 4.5. We observe

close correspondence with findings from other data sets presented in Lauritzen et al. (2015) and

Gagnon, Lovejoy, and Schertzer (2006) where spectral decay power law of -2 to short wavelength

was found. fig. 4.4 we see attenuation at small wavelengths of approximately an order of magni-

tude for each filter width. Figure 4.5 shows variance from the moving-average filtered data. Each

spectrum has a cut-off wavelength manifested as a global maximum to the left of which are terrain

components excluded from the resulting profile. We observe significant decay in the amplitude

spectra in fig. 4.5 with decreasing filter width showing that longwave components have much

greater amplitude than shortwave terrain features as expected. Lastly, based on the variance, we

compute the standard deviation as source input to the parameterization at a point (column base)

along the profile as,

σh =

√√√√ 1
2N

i+N

∑
i−N

(hi − h̄)2

where N, h, and h̄ are as defined in (B.10).
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FIGURE 4.4: The input terrain normalized amplitude spectra. Filter widths are 0.1
km (blue), 0.2 km (orange), 1.0 km (yellow), 5.0 km (purple), 25.0 km (green).

FIGURE 4.5: The input terrain normalized amplitude spectra. Filter widths are 0.1
km (blue), 0.2 km (orange), 1.0 km (yellow), 5.0 km (purple), 25.0 km (green).
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4.4 Numerical test design - 2D Wave breaking

We now describe the experiments designed for this study. Given the extent and height of the input

terrain, our simulated domain is a Cartesian 2D vertical slice rectangle 500 km wide and 40 km

deep. We pay close attention to sponge layers employed and attempt to minimize their thickness

(influence) while providing an adequate approximate outflow condition. Lastly, our numerical

model utilizes separate horizontal/vertical hyperviscosity operators (Guerra and Ullrich, 2016) as

a means of adding the necessary stabilization while emphasizing fine scale structures.

Bacmeister and Schoeberl (1989) uses three nondimensional parameters to characterize dif-

ferent regimes in a limited area model. While our tests differ significantly in the use of realistic

topography and variable stratification/wind profiles, the near surface conditions may be evalu-

ated as,

N h
U

= 1.0,
N L
U

= 100.0,
NH

U
= 10.0, (4.9)

where h = 1000 m, L = 100 km, H = 10 km, and U = 10 ms−1 at the terrain surface. We inter-

pret the flow to be predominantly in the hydrostatic regime as is typical of the real atmosphere

in such a situation given the overall extent of the domain and width of the tropical Andes, but

we note that ridge width L and buoyancy scale height H are variable in our study according to

the input spectrum of topography shown in section 4.2 and in the layered stratification profiles

shown in fig. 4.6. Thus we expect that nonhydrostatic (for shorter terrain wavelengths) and den-

sity variation (for abrupt changes in stratification) effects will become important locally and will

influence breaking in a realistic manner. Lastly, we drive the tendency for overturning by setting

the mountain height h to a value that brings the Froude number close to unity.
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4.4.1 Background atmospheric conditions

Numerical experiments are designed around a hydrostatically balanced atmosphere composed of

three layers with constant lapse rate representing a troposphere, tropopause, and lower strato-

sphere. The background flow field is made up of a vertically sheared jet with peak amplitude at 8

km. Flow at the boundary is a constant 10 ms−1 wind applied a long the bottom terrain surface.

The initialization profiles are shown in fig. 4.6 where corresponding density and pressure profiles

are given.

FIGURE 4.6: The background wind and thermodynamic profiles as a function of
geometric height. Vertical profile and gradient details and parameters specified in

Chapter 2.

The background state we have chosen is intended to represent a typical stable atmosphere

with finite shear. As such, we expect evanescent and propagating waves refracted and reflected

by shear and the prescribed discontinuous changes in temperature lapse rate. In particular, we

expect significant trapping/ducting through the troposphere (elevations below 10 km).
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4.4.2 Discrete setup and initialization

We consider a limited-area Cartesian domain in X-Z space such that x ∈ [−200 300] km and

z ∈ [0 40] km with a peak height of 1000 m centered at x = 0. Figure 4.7 shows the initialization

and control volume used to evaluate (4.13) in the region where wave breaking is expected. The

equations are solved numerically using a 4th order spectral element method in the terrain follow-

ing direction, the staggered (vertical velocity at boundaries) method of Guerra and Ullrich (2016)

at 3rd order in the vertical, and integrated in time explicitly with a Strong Stability Preserving

Runge-Kutta method of 3rd order. Horizontal (constant coefficient) and vertical (flow-weighted)

hyperviscosity is employed again following Guerra and Ullrich (2016).

For nonlinear wave breaking simulations, the hyperviscosity operators, applied to all prognos-

tic fields, serve as the subgrid closure model necessary for turbulent flows and have been used in

previous numerical studies of stratified turbulence (Herring and Métais, 1989). As the operators

involve fourth derivatives of the mean fields with anisotropic, time dependent coefficients, we do

not define/analyze an equivalent eddy diffusivity, but limit our model be an analog for the use

of a properly formulated turbulence closure scheme. However, we will see from the results, that

hyperviscosity used in this manner maintains stability and preserves flow structures in a scale

selective manner as desired.
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FIGURE 4.7: Schematic diagram of initial horizontal flow field and orographic forc-
ing for numerical tests. Dashed black lines indicate the position of the sponge layers.
The solid black rectangle shows a control volume boundary to evaluate net drag as

given by (4.13). Terrain profile has been magnified for visualization in this figure.

Boundary conditions are such that flow at the terrain surface follows the bottom contour and

vertical velocity vanishes at the model top. These conditions are augmented by top and lateral

absorption layers 15 km deep, 40 km wide at the inflow (left) boundary, and 80 km wide on the

outflow (right) boundary. The absorption layer parameters are found through an iterative process

with the following criteria:

1. Minimize reflection artifacts from a semi-analytical linear solution to the given problem. Re-

quires solving the steady linearized system about a background identical to the initialization

prescribed to the model including absorption layers.
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2. Using estimates from the linear solution, change the layer thickness and strength in order to

attain stable long term (50 hours) solutions with minimal reflection transients.

All simulations fix a maximum peak height of 1000 m. This value is chosen as it is sufficiently

large to allow for non-linear wave breaking, but is also sufficiently small so as to control the mag-

nitude of impulsive transients that would require a larger domain and thicker absorption layers

in order to achieve stable, smooth, long-term integrations at a reference resolution of 100 m.

4.4.3 Stratified turbulence metrics

In the interest of understanding the structure of turbulence generated by these waves, we compute

the specific kinetic energy power spectra at several elevations, over the horizontal dimension.

The objective is to characterize the vertical structure of confined turbulence we expect to find

and determine how these layers constrain effective model resolution to values where the OGWD

parameterization is completely ineffective. The horizontal and vertical components of specific

kinetic energy are defined as,

KEh =
1
2
(u′)2, (4.10)

KEv =
1
2
(w′)2.

where u′ and w′ are the time fluctuating horizontal and vertical velocities defined as,

u′ = u(x, z, t)− 1
T

∫ T2

T1

u(x, z, t)dt, (4.11)

w′ = w(x, z, t)− 1
T

∫ T2

T1

w(x, z, t)dt.
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and a time average from T1 = 10 to T2 = 50 hours has been removed from the numerical model

output. Furthermore, we will consider only the vertical component of kinetic energy as defined in

the second term on the right-hand-side of (4.10).

In our computations, model output is generated every 3 minutes. At each time level t ∈
[T1, T2], we compute power spectral density of (4.10) as,

Q(kx) =
1

Nx
|FFT x(q)|2 (4.12)

where q is the field being processed, Nx is the number of sample data points in the x direction,

kx is the spatial frequency, and FFT x refers to the spatial Fast Fourier Transform of Cooley and

Tukey (1965). Lastly, we compute the ensemble (time) average for all power spectra generated by

(4.12) and present the result as a single set of spectra at various height levels.

4.4.4 Transient drag force comparison metrics

As depicted in fig. 4.7, our primary metric for comparison is the integrated net drag force in a

given rectangular region of flow. We proceed by considering a static control volume spanning a

rectangular region and computing the following boundary integral that emerges from conserva-

tion of linear momentum,

FD(t) =
∫ xR

−xL

ρuw|zT
dx +

∫ zT

−zB

ρu2∣∣
xR

dz−
∫ xR

−xL

ρuw|zB
dx−

∫ zT

−zB

ρu2∣∣
xL

dz. (4.13)

where ρ, u, and w are density, horizontal wind, and vertical wind respectively. The subscripts L,

R, B, and T designate the Left, Right, Bottom, and Top of the control volume, giving the corre-

sponding integration limits and the locations where each integrand is evaluated.

The definition of the drag force in (4.13) only takes into account changes in momentum flux

and neglects any other external force contributions. This is consistent with an inherent assumption

of the parameterization that forces are due to wave momentum flux divergence in the vertical
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column. Furthermore, simulation output is not decomposed into mean/wave components but

each field is evaluated completely into the integrands of (4.13).

4.4.5 Test configurations

With the use of a fully nonlinear unsteady numerical model we carry out the following two sets

of numerical experiments:

1. Model resolution held at 200 m in the vertical and horizontal directions. Terrain forcing

varies by moving average filter width at 0.2, 1.0, 5.0, and 25.0 km. Hereafter, this is referred

to as the “FINE” configuration.

2. Both model resolution and terrain filtering vary at 0.2, 1.0, 5.0, and 25.0 km. Hereafter, this

is referred to as the “COARSE” configuration.

3. Reference simulation with uniform resolution of 100 m in model grid and forcing filter width

to study the spectral characteristics of the turbulence generated in our simulations.

For each configuration, a single flow field is generated as input to the drag parameterization

code by computing a time average from 20 to 30 hours (using 3 minute outputs). Over this period,

the flow is considered quasi-steady and fully developed without any initial transients. There is a

significant difference in flow response at the reference 100 m resolution and the test configurations

outlined above at 200 m. In section 4.5.2 we will show that, in the reference test, a broad instability

develops in the background jet leading to strong vertical mixing manifested as a strong variation

in net drag over regions spanning troposphere and tropopause layers. The unstable mode in the jet

is transitory and persists from hour 20 to 35 in the simulations. In contrast, our test configurations

do not exhibit this jet feature in the same time period as will be discussed in section 4.5.3. Thus,

for the purpose of evaluating the parameterization, we will consider the time period T ∈ [20, 30]

hours to be at quasi-steady turbulent equilibrium and carry out averaging procedures for that

record.
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4.5 Results

In this section we present results starting with predictions of stability parameters: Richardson

number, convective stability, and Froude number based on a linear steady model under the ex-

act conditions of sections 4.4.2 and 4.4.1. We use these results to establish local length scaling for

regions where unstable (nonlinear) wave breaking may be expected. We then show and discuss

results from a high resolution (uniform 100 m) simulation with the goal of understanding quali-

tative structure and quantifying flow response in terms of mean drag forcing. Lastly we discuss

numerical tests in the FINE and COARSE configurations, defined in section 4.4.5, and test the

response of the Lindzen/McFarlane OGWD under these conditions.

4.5.1 Linear steady-state predictions

As part of the process for validating our numerical results, a linear steady state model for moun-

tain waves in a 2D, Cartesian, non-rotating domain was developed. An application of the linear

theory of mountain waves provides us with a first estimate for both vertical length scale as a func-

tion of wavenumber, and wave growth potentially leading to instability at a given elevation. As

we are invoking a linearization of the equations, we restrict this portion of the analysis to a peak

terrain height of 100 m. These estimates are important in determining the vertical resolution nec-

essary to capture the wave train resulting in an upper bound for the grid necessary to then resolve

any turbulent breakdown. This model is an extension of the classical linear theory (Nappo, 2012)

(and references therein), where the linearized inviscid equations are solved using a collocated hor-

izontally Hermite, vertically Lagrange expansion of solution fields. This approach is analogous to

the use of discrete Fourier transforms to solve the constant coefficient Taylor-Goldstein equation,

but allows for arbitrary variation in the coefficients i.e. no restriction on background atmospheric

profiles is assumed. The goal is to produce fast solutions with terrain inputs of finite amplitude

with initialization and boundary conditions equivalent to numerical tests and make predictions of

wave instability regions prior to running costly, non-linear simulations. This model is described
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in Appendix B. The parameters of interest for determining instability are the Richardson number

Ri and the static stability parameter Sp. These are defined by

Ri = N 2
(

∂u
∂z

)−2

= gc

(
∂ ln ρ/ρ0

∂z

)(
∂u
∂z

)−2

, (4.14)

where u is the horizontal wind speed, ρ is density, and gc = 9.80616 ms−2 is the gravitational

constant, and

Sp =
T
θ

∂θ

∂z
= T

∂ ln(θ/θ0)

∂z
K m−1 (4.15)

where T, and θ are total dry sensible and potential temperature respectively. Density and potential

temperature in (4.14) and (4.15) are normalized to surface reference values of ρ0 = 1.16 kg m−3

and θ0 = 300.0 K. Thus, the necessary condition for shear instability in a stratified environment

is Ri < 0.25 while free convection occurs when Sp < 0.0 (Nappo, 2012). Both instability modes

are known to be associated with topographically induced wave breaking. We will use the linear

steady solution, under nearly identical initial and boundary conditions as the non-linear tran-

sient simulations, to estimate the vertical structure of unstable layers that may develop as the

peak terrain height is increased to 1000 m. However limited to the linear regime, our solution

incorporates variations in the background fields without approximation, does not neglect density

perturbations, and is formulated in the terrain following system exactly matching what is done in

the complete numerical model. Our objective is to bring the linear steady approximation as close

as possible to the fully non-linear solution for input terrain of finite amplitude.
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FIGURE 4.8: Vertical scatter plots of Richardson number (4.14) and convective stabil-
ity (4.15) criteria computed from the linear solution with 1000 m peak terrain height.
Dashed black lines indicate the stability thresholds. Markers corresponds to each
grid value plotted by amplitude-Z. Red curves denote Ri and Sp evaluated with

initial conditions.

We also evaluate a local estimate of the Froude number defined as,

Fr =
2π|u|
N `h

(4.16)

where |u| is the absolute value of the total horizontal velocity and `h = 5000m. We employ a modi-

fied form of the definition for the Froude number (4.16) given by Riley and deBruynKops (2003). In

particular, we use the total horizontal velocity from the linear solution in order to capture changes

in Fr due to orographic waves. We also fix the vertical length scale to `h = 5000m as a represen-

tative estimate of vertical wavelength in the flow were turbulence is expected to occur. Figure 4.8

shows the two primary modes of instability as a function of elevation as predicted by a purely
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linear solution. The pattern of oscillation above 10 km in figure 4.8 indicates that layers where

convective overturning is likely (Sp < 0.0) will be trapped between increasingly stable air leading

to turbulence that is vertically confined In particular we note that convectively unstable layers are

predicted by the linear solution to be 2 to 3 km deep alternating with strongly stratified layers

above and below. Our estimate for the local Froude number shown in figure 4.9 is likewise con-

sistent with instability modes in figure 4.8 in revealing alternating layers of potentially unstable

air. The effect of the waves is to lower the Froude number below unity (particularly above 15 km)

where we expect wave breaking turbulence to be significantly influenced by stratification.

FIGURE 4.9: Vertical scatter plot of local Froude number from (4.16) computed from
the linear solution with 100 m peak terrain height. The red curve indicates pro-
file based on initial conditions. Markers corresponds to each grid value plotted by

amplitude-Z.

Therefore, the linear model alone suggests a vertical model resolution much less than the depth
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of each unstable layer is required to sustain a truncated turbulent cascade within these alternating

unstable layers. Given an effective model resolution assumed to be 4∆z, then in order to resolve

eddy features contained in the unstable layers of depth 2500m we estimate that a grid spacing of

∆z <= 750m is necessary to model the wave breaking process explicitly.

The linear solution computed over the horizontal Fourier spectrum shows a generally variable

vertical response as shown in figure 4.10. This is the analog to the dispersion relation derived

from our linear solution admitting arbitrarily variable background fields. Thermodynamic and

mass fields follow a similar behavior to horizontal velocity show limited response in the non-

hydrostatic range of the input spectrum. Vertical velocity has a concentrated response, in terms of

vertically propagating waves, for terrain features of 9 km in width indicating forcing in the non-

hydrostatic regime. We observe from figure 4.10 that linear response in this atmosphere is greatly

limited to input wavelengths near or greater than 10 km . This result indicates, that despite the rich

continuous spectrum of inputs available (see figure 4.3) only a relatively narrow set of components

project onto atmospheric response and supports the hypothesis that low level drag dynamics are

decoupled from the contribution of breaking waves in the free atmosphere.
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FIGURE 4.10: Linear solution frequency response map. Horizontal (top log axis)
and vertical velocity (bottom linear axis) response as a function of horizontal spatial

frequency k. Response amplitude is normalized to unity.

4.5.2 High-resolution reference

The reference solution is run at a uniform (vertical and horizontal) resolution of 100 m with a

corresponding terrain filter window also set to 100 m. Figures 4.11 and 4.12 shows snapshots of

the simulation just before and hours after the onset of turbulence in the model. We first see the

initial impulsive disturbance as it propagates downstream and is consumed by lateral absorption

layers as well as the height variable standing wave train that will eventually break locally. Hor-

izontal velocity shows evidence of accelerated downslope winds at 14 hours with a subsequent

low level reversal at 28 hours. There is also clear evidence of downward propagating waves in the

tropospheric layer.
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A key feature of the turbulent flow is a wake that extends several hundred kilometers down-

stream of the terrain while maintaining a marked layered structure corresponding to the back-

ground environment. This wake is a mixture of wave-like and vortex flow where we will search

for the presence of turbulent drag using (4.13) over distinct regions directly above and down-

stream of the mountains. This feature of our simulations is consistent with observations of highly

anisotropic layered stratified turbulent flow as described by Billant and Chomaz (2001) and refer-

ences therein from numerous numerical and physical experiments. As the flow develops further,

we observe transient effects (upstream modes and evidence of downward waves caused by the

primary breaking layer near 10 (km) elevation) that will give rise to changes in drag estimates.

If we consider that the OGWD model was designed to augment hydrostatic models, at a typ-

ical resolution of 100 km, then figure 4.11 shows that, remarkably, much of the turbulent field is

indeed contained within a horizontal dimension of that size with perhaps some transient unstable

regions advecting down and upstream in the flow. Therefore, it is quite reasonable to assume that

a parameterization acts in a column that represents an equivalent area. However, work is now

underway to assess performance of global atmospheric models (including CAM) at 0.25◦ and

finer global resolution without significant modification to their parameterization suite (Haarsma

et al., 2016) To that end, we now look toward global model resolution in this range, and into the

non-hydrostatic regime.

If we consider each individual (at a given time step) spectrum as a realization of the turbulent

field, we can then take an ensemble (time) average over the entire history and evaluate (4.12) for

each component of the local specific kinetic energy. We present the results as a function of Brunt-

Väisälä frequency at several elevations in figure 4.13. Theoretical work by Lilly (1983) followed by

Métais et al. (1996) suggest that 3D stratified turbulence develops an inverse cascade of energy, but

an opposing hypothesis by Lindborg (2006) suggests that, while a power law of k−5/3 is applicable

in an inertial range, the energy cascade is strictly forward into smaller scales.

Stratified turbulence caused by breaking waves in a 2D vertical slice model has been addressed

by Bouruet-Aubertot, Sommeria, and Staquet (1995) indicating that the onset of turbulence is
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achieved by local overturning at a length scale corresponding to the local vertical wavenumber.

Therefore, we interpret the energy spectra shown in figs. 4.13 and 4.14 as a flow forced at frequen-

cies apparent from peaks with a forward dissipative cascade with a power law close to k−3 and

an inverse cascade range (appropriate for the 2D slice equations solved here) with a rate close to

k−5/3, but flattened at elevations where dissipation strongly effects any larger scale (horizontal)

motions driven by the inverse cascade. It remains for subsequent work to confirm and compare

these findings with similar experiments in 3D.

FIGURE 4.11: Potential temperature departure (K) from initial state before (2.5 hours
top plot) and after (14 hours middle plot) wave breaking in the reference simulation.

Bottom plot shows response at 28 hours.
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FIGURE 4.12: Horizontal velocity departure (ms−1) from initial state before (2.5
hours top plot) and after (14 hours middle plot) wave breaking in the reference sim-

ulation. Bottom plot shows response at 28 hours.

The response characteristics shown in figs. 4.13 and 4.14 are significant because turbulent

decay transitions from a damped inertial range into a steeper dissipative range at wavelengths

from 1 to 10 km also showing strong forcing signatures in this range. Thus, a model resolution on

the order of 1 km would likely underestimate the impact of gravity wave drag without the need

for a parameterization. We observe this behavior in our COARSE numerical tests by inspection

as simulated response tends to a quasi-steady state rather than developing any instability and an
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associated turbulent breakdown.

FIGURE 4.13: Horizontal component of kinetic energy power spectra as a function
of elevation over wavelengths 200 to 1.0E5 m. Values of N correspond to the initial

background conditions at the specified elevation.

126



Chapter 4. OGWD Parameterization Assessment

FIGURE 4.14: Vertical component of kinetic energy power spectra as a function of
elevation over wavelengths 200 to 1.0E5 m. Values of N correspond to the initial

background conditions at the specified elevation.

If we look at the vertical component of the kinetic energy (w term in equation (4.10)) shown in

figure 4.14 we can make an estimate for the cut-off wavelength/resolution where the model can

support band-limited turbulence. The largest wavelengths, on the order of 5 to 10 km, occur in the

troposphere layer whereN is small. Areas in the upper layer where stratification is strongest have

a cut-off wavelength of 2 to 3 km. From these observations we hypothesize that these effects do

not manifest until a model resolution less than 1km is reached. Measurements from the reference

simulation are consistent with estimates from the steady linear solution in section 4.5.1. This

overall structure of discrete turbulent layers superimposed on vertical wave field controlled by

a strongly stratified environment validates the vortical/wave flow decomposition proposed by

Lilly (1983) and used in the analysis of stratified turbulence (Riley and deBruynKops, 2003).

We now evaluate the integral in equation (4.13) over the control boundary shown in figure 4.7

to compute the net drag force in that region over the 50 hour record. The results are shown in
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Figures 4.15 and 4.16 for several control volumes with differing upper/lower boundaries. Based

on qualitative inspection of figure 4.11, we also look at separate contributions of drag directly

above the terrain and farther downstream (figure 4.17) in order to determine if drag is indeed

distributed downstream of a terrain feature.

The initial impulsive transient is purely an artifact of the initialization. Subsequently, from 3 to

24 hours, a quasi-steady drag of approximately -150 kNm−1 is maintained in figure 4.15. The blue

curve representing a region that includes the jet core and stratosphere shows greater drag in the

first 24 hours but is punctuated by an abrupt change to positive forcing from 24 to 34 hours. We

postulate that this change is due to an instability in the broader scale jet capable of inducing mixing

throughout the test domain for that 10 hour period manifesting as a large (time scale) fluctuation

in drag forcing. We note that the jet also exhibits an oscillation with a 3.5 hour period evident in

the 1-hour mean plots. As the lower surface of the control volume is raised so as to exclude the jet

feature in figure 4.15, the broader influence of the jet is lost and we see a steadier, more uniform

drag forcing on the order of -75 kNm−1. We then define the wave breaking region with bounds:

[-100 250] km by [15 25] km. Figure 4.17 the shows that the majority of the drag force does indeed

occur directly over the mountain despite the presence of turbulence extending far downstream.

This result suggests that column wise parameterization approaches remain useful at very high

resolution.
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FIGURE 4.15: The net drag force with the bottom surface of the control volume
changed from Z1 = 5 to 15 km elevation. The control volume region is given by
[-100 250] km by [Z1 25] km in the vertical, with Z1 = 5km (blue), Z1 = 10km (red),
and Z1 = 15km (black). Results from the reference resolution simulation at 100 m

horizontal and vertical resolution.

FIGURE 4.16: The net drag force comparison for wave breaking region (blue) and
jet core region (red). The control volume regions are given by [-100 250] km by [15
25] km (wave breaking) and [05 15] km (jet core) in the vertical. Results from the

reference resolution simulation at 100 m horizontal and vertical resolution.
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FIGURE 4.17: The net drag force comparison for wave breaking region directly above
terrain (blue), in the turbulent wake (red) and the combined region (black) over the
same depth. The control volume regions are given by [-100 100] km by [15 25] km
(blue) and [100 250] km by [15 25] (red). Results from the reference resolution simu-

lation at 100 m horizontal and vertical resolution.

We now compare the drag response of the wave breaking and jet core regions in figure 4.16.

Flow in the jet region is characterized by stronger modes with longer periods with increased drag

but capable of fluctuations with net acceleration. In contrast, the wave breaking region main-

tains a quasi-steady drag dominated by turbulence induced by convective wave overturning and

confined to vertically narrow layers as a consequence of strong background stratification.

4.5.3 Transient drag forces - Test configurations

We compare the transient drag produced by the FINE configuration tests in order to determine

the effect of terrain filtering. In all of these tests, model resolution is held constant at 200 m in both

dimensions.
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FIGURE 4.18: The net drag force comparison for wave breaking region in FINE con-
figuration tests. The control volume region is given by [-100 250] km by [15 25] km.

FINE test resolution 200 m with input filter widths of 1.0, 5.0, and 25.0 km.

FIGURE 4.19: The net drag force comparison for wave breaking region in COARSE
configuration tests. Control volume region: [-100 250] km by [15 25] km. COARSE

test resolutions matching filter widths 1.0, 5.0, and 25.0 km.

There are two characteristics we note from figure 4.18: First, at a given resolution sufficient

to support the necessary turbulence, all filtered inputs produce near identical mean drag and,

second, the effect of the unstable jet feature is not evident in the chosen time period. The first

point is explained by the fact that only the largest input modes are needed to excite the virtual
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atmosphere and subsequently result in similar response. Once these primary modes break, subse-

quent turbulent breakdown will involve all modes within layers defined by the resonant vertical

wavenumber. We conclude that, under the atmospheric conditions chosen, averaged response is

practically insensitive to input wavelengths below 25 km. Second, at the FINE model resolution

of 200 m, the signature of larger scale unstable jet is not visible in figure 4.18 as we have identified

that its influence manifests in drag at lower levels.

We note that COARSE configurations showed a qualitatively different behavior in that no

breaking was evident at 1.0, 5.0, and 25.0 km resolutions and therefore drag estimates are sig-

nificantly underestimated and in some cases may suggest acceleration rather than drag as shown

in figure 4.19. The computation of drag based on 4.13 relies on evaluating discrete integrals ad-

mitting greater error at coarser resolution given the same control volume. This estimate is much

more reliable at the reference resolution. Also, the limited area model (particularly at 25 km) suf-

fers from spurious reflections near the lateral absorption layers as a consequence of decreased

resolution. A natural solution to these limitations is to conduct these experiments on a spherical

domain, but this would greatly expand computational requirements. Nonetheless, the COARSE

experiments are characterized by a flow that does not support the necessary turbulent cascade

that results in an accurate direct estimate of drag and we generally observe drag on the order of

25% of what is expected from figure 4.18. Under these conditions we would expect that a param-

eterization scheme would make up this drag deficit even in the absence of any turbulent features.

4.5.4 Parameterization input fields

In order to explore how the parameterization physics will produce drag tendencies within a model

simulation, we construct time averaged input fields for total horizontal velocity U and ln θ. The

parameterization begins by checking the assumption of vertical propagation from obstacle fre-

quencies well below the model resolution at a given column. For the background conditions
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defined in our simulations we have,

2π
U0

N0
= 2000.0π ≈ 6400.0m (4.17)

where the subscripts 0 indicate surface values of background wind and bouyancy.

Following McFarlane (1987), we assume that propagation is only possible for terrain inputs

broader than the value given in (4.17). We see immediately that filtered inputs, at 0.2, 1.0, and

5.0 km, for both FINE and COARSE configurations will result in null parameterization response

if we follow the typical guidance that propagating modes correspond to terrain features “much

greater” in length than the value computed in (4.17).

We focus on the FINE and COARSE configurations at 25 km in order to characterize the per-

formance of the parameterization scheme. This is a pertinent choice since propagating modes are

allowed according to (4.17) and because current global modeling efforts are approaching or have

reached this resolution level. Figure 4.20 shows total horizontal velocity in FINE and COARSE

configurations. We note the presence of reversed flow layers in the FINE test indicative of over-

turned flow. These features are notable in the tropospheric layer just in the lee of the mountain

and at several altitudes in the stratospheric layer. The parameterization scheme will capture re-

gions where a “critical layer” is present, i.e. where total flow velocity vanishes and impose that

all parameterized stress vanishes across such a layer. This results in maximum dissipation and

drag without the possibility of any wave energy to continue propagating above said critical level.

Thus, we expect drag to be overestimated locally in the FINE configuration due to detection of

critical layers. We emphasize that enabling drag parameterization in an operational setting at the

FINE resolution would be inappropriate with respect to the assumptions in the original parameter

model derivation (see section 4.2.1). We use these results to show an extreme bounding case of

what can be expected from such a scheme if a model is run at finer resolution.
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FIGURE 4.20: The ensemble (time) averaged total horizontal velocity with (left) FINE
resolution and (right) COARSE resolution simulations with 25 km terrain filtering.

FIGURE 4.21: The ensemble (time) averaged total ln θ with (left) FINE resolution and
(right) COARSE simulations with 25 km terrain filtering.

Alternatively, in the COARSE test where flow resolution matches terrain filtering, no such

critical layers are evident as seen in figure 4.20 right. In fact, truly coarse simulations under the
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background conditions chosen will tend to approach a quasi-steady state rather than producing

turbulent layers. This result is consistent with spectra from the reference simulation (Figs. 4.13 and

4.14) where turbulent cascades are only possible at length scales below 10 (km). With the presence

of critical layers from the resolved field, we expect the parameterization to underestimate drag in

the COARSE configuration.

The wave amplitude function in (4.4) also requires that the local Brunt-Väisälä frequency be

evaluated. Waves are required to propagate in stable layers only sinceN must be real and positive.

Figure 4.21 shows the ln θ input fields in the FINE and COARSE configurations. We note the

presence of convective instabilities where isentropes are distorted and negative vertical gradients

are possible. These layers coincide with overturned flow evident in figure 4.20 left. Again, we

expect the parameterization to be biased in detecting critical layers and imposing maximum stress

dissipation. In contrast, the COARSE configuration shows no evidence of overturned flow, but

with the same general wave pattern as the FINE tests. In this case we expect the parameterization

to proceed in amplifying waves, imposing saturation, and dissipating stress accordingly rather

than overwriting with detection of critical layers.

4.5.5 Parameterized drag

Applying the static input fields given in section (4.5.3), we compute parameterized drag for the

FINE and COARSE configurations. We concentrate on the tests at 25 km filtering and resolution

since no drag is given in the other tests as a consequence of non-propagation at those scales. As

predicted from the formulation of the parameter scheme, figure 4.23 shows stress profiles heavily

influenced by the presence of reverse flow in the input field which is interpreted by the scheme

as a critical layer and therefore shows a concentrated layer of drag between 10 and 15 km above

the mountain. This behavior effectively negates the ability to capture any breaking layers above

this level. We can expect this behavior under conditions where resolution is sufficient to produce

explicit breaking, but the parameterization is left on. We also compare the total volume integrated

drag based on acceleration data on the right in figs. 4.23 and 4.24 where the COARSE configuration
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gives a total of approximately 47 kNm−1 approximately matching values shown in figure 4.18.

However, we note that the FINE configuration represents a limiting case where turbulent breaking

is well resolved (200 m grid scale) and no parameterization scheme would be needed. The total

parameterized drag of 81 kNm−1 confirms that this scheme will tend to overestimate drag based

critical layer detection in a well resolved flow.

The COARSE configuration is much more representative of a computation done on a global

model at a native resolution (in both terrain and grid scale) of 25 km. The behavior of the pa-

rameterization is distinctly different as seen in figure 4.24. In particular we see that wave stress

divergence only takes place in layers above 15 km and the pattern in the stress profiles corresponds

to saturated waves that are partially consumed but survive to grow and dissipate at higher eleva-

tions. The structure of the wave pattern is consistent with our reference simulations in the vertical,

but, by construction, all wave action is confined to columns directly above the terrain. We saw in

the reference results of figure 4.11 that turbulent wakes extend downstream several times the char-

acteristic width of the mountain. In this regard, the parameterization scheme fails to capture such

flow response. However, a user could compensate by increasing the source input height as in

figure 4.22.

FIGURE 4.23: The parameterized stress and deceleration drag for the FINE configu-
ration. Total drag estimate in [-100 250] km by [15 25] km region: 80.6 kNm−1.
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FIGURE 4.22: The spatial distribution of standard deviation for each filtering level.
Filter widths are 0.1 km (blue), 0.2 km (orange), 1.0 km (yellow), 5.0 km (purple),

25.0 km (green).

FIGURE 4.24: The parameterized stress and deceleration drag for the COARSE con-
figuration. Total drag estimate in [-100 250] km by [15 25] km region: 46.9 kNm−1.

4.6 Conclusions

Our work indicates that the classical sub-grid wave stress parameterization will either be null or

provide incorrect drag tendencies at global model resolutions below 25 km. Furthermore, predic-

tion of wave induced drag at near and non-hydrostatic scale (below 10 km) is dominated by trun-

cated turbulent cascades that require resolution well below 1 km. The parameterization scheme
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of Lindzen (1981) and McFarlane (1987) was designed for global circulation models well in the

hydrostatic regime. As model resolution approach the range (1 to 10 km) where orographically

induced gravity wave trains are more fully resolved but breaking is not explicitly captured, a

problem arises where neither model nor the parameter scheme predict any drag. In this situation

no admissible input wavelengths (per (4.5))) are available to the parameterization from the sub-

grid domain as these are now being resolved by the model. However, we confirm that a column

wise parameterization scheme remains applicable at high resolution. This represents a significant

simplification despite the need to represent more processes throughout a column in addition to

wave amplitude saturation.

Advanced parameterization schemes have been devised to treat low-level (elevation less than

10 km as extensions of surface shear layer turbulent theory with roughness length parameters

associated with the underlying terrain spectra. Recent examples include the work of Beljaars,

Brown, and Wood (2004) which extended that of Wood and Mason (1993) by incorporating real

terrain spectra to a low level turbulent drag scheme. Scinocca and McFarlane (2000) made sev-

eral improvements to the basic parameterization studied here by incorporating a more complete

source stress that takes into account blocking and near surface dynamic forcing. In essence, such

schemes cover small scale dynamics in the lowest layers based on classical turbulence theory. Our

study shows that a proper representation of similar turbulent layers characterized by fixed verti-

cal extent related to background stratification is necessary to capture drag produced in the upper

troposphere and stratosphere type layers. Furthermore, a scheme applicable below 10 km reso-

lution should be formulated to correct partially resolved waves for amplitude with application

of a localized turbulence model to account for purely nonlinear effects occurring at the sub-grid

scale. One straightforward way of accomplishing this is to employ variable resolution over, but

not necessarily downstream, of terrain although this approach may be limited by computational

cost and added complication in carrying output fields over an irregular grid. The author also has

reservations about static variable resolution in the presence of propagating signals from fine to

coarse resolutions where significant distortions can take place.
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Summary, Conclusions, and Future

Directions

The questions we are attempting to answer surrounding Earth’s climate system are growing in

scope, complexity, and urgency. While much of the 20th century saw great theoretical advances in

understanding geophysical flows, a parallel effort in the use of numerical approximations sought

to complement the limitations of theoretical work. With the advent of ever higher computer per-

formance, it is tempting to develop an over-relieance on numerical modeling in studies of the

atmosphere. The aim of this work has been, partly, to bridge the widening gap between “model

user” and “model developer” with the assumption that, going forward, an atmospheric scientist

must embrace both paradigms in order to properly analyze and scrutinize the growing torrent of

model data produced. We demonstrate a process by which model development may grow into

scientific inquiry with the correct knowledge of the properties and limitations of the modeling

tool. Indeed, theoretical work is not abandoned but fully integrated into the design of numerical

experiments and the interpretation of results.

Many questions remain in the study of cross mountain flows. The author is particularly in-

terested in a similar study to the present dedicated to resolving clouds and precipitation forced

by mountains. This would necessitate extending the simulations to 3D and including moisture
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and cloud physics parameterizations and demand a rigorous evaluation of moist parameteriza-

tions in the non-hydrostatic context. This would greatly widen the test space and increase com-

putational resources required, but provides great value to long term climate studies. The linear

model presented in chapter 3.7 would be suitable to development of time integration methods

(Additive Runge-Kutta, multistage, multistep, etc.) both for atmospheric models and as part of

an ocean/atmosphere coupled model. Other possible projects include flight planning for small

aircraft over mountainous terrain, and identification of regions known as climate refuges where

local dynamics combine to create conditions stable against overall climate change.

In this work we have produced a reliable, and fast research dynamical core that is well suited

to scientific questions focused on dynamical processes beyond the reach of theoretical and/or ob-

servational techniques. In the process we develop a simplified 2D linear model that retains much

of the dynamical characteristics of the full equations and provides a fast reliable tool to design

more comprehensive numerical experiments in mountain waves. We then investigate the nature

of turbulent dissipation of mountain waves through careful design of controlled numerical ex-

periments founded on the linear theory of gravity waves extended for the purpose of designing

such tests. Our high fidelity simulations provide insight into the coming changes necessary in

operational global circulation models to account for mountain wave drag in a robust manner. The

result is that current parameterization schemes will need to be revised or reformulated in order

to enable higher horizontal resolution grids (20 km to 1 km range) in global models. The singular

challenge lies in the representation of stratified turbulence at very fine scale distributed over dis-

crete layers throughout the depth of the atmosphere over grids that reproduce the characteristic

vertical standing wave trains but are insufficient in capturing subsequent turbulent cascades. We

hope that our simulations will provide a foundation for future work in developing new parame-

terization schemes for orographic gravity wave drag.
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A.1 Metric terms based on new terrain decay function

Starting from (??) we differentiate with respect to z on both sides such that:

d
dz

[
z = Hξ +

dz
dh

h(x)
]
⇒ (A.1)

1 = H
dξ

dz
+ h(x)

d
dz

(
dz
dh

)
(A.2)

Then, using (??),

dz
dh

= e(−
P
Q ξ)
[
cos

(π

2
ξ
)]P

+ Aξ (1− ξ) (A.3)

and by the Chain Rule,
d
dz

(
dz
dh

)
=

d
dξ

(
dz
dh

)
dξ

dz
. (A.4)

Substituting back into (A.2) then:

dξ

dz
=

{
H + h(x)

[
d

dξ

(
dz
dh

)]}−1

(A.5)

where

d
dξ

(
dz
dh

)
= −Pe(−

P
Q ξ)
[
cos

(π

2
ξ
)](P−1)

[
1
Q

cos
(π

2
ξ
)
+

π

2
sin
(π

2
ξ
)]

+ A(1− 2ξ). (A.6)

Finally, the parameters P and A control the overall rate of decay through the vertical domain

and the minimum rate at top of the model. For this study we use P = 20, Q = 5 and A = 0.001,

but we note these values may be tuned more aggressively if needed.
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A.2 Linearization of the Inviscid Equations - Conservation Form

Here we consider an alternative linearization of the nonrotating Euler equations in conservation

form,

∂

∂x
(
ρu2)+ ∂

∂z
(ρuw) +

∂p
∂x

= 0, (A.7)

∂

∂x
(ρuw) +

∂

∂z
(
ρw2)+ ∂p

∂z
= −ρg,

∂

∂x
(ρu) +

∂

∂z
(ρw) = 0,

∂

∂x
(ρuθ) +

∂

∂z
(ρwθ) = 0.

where pressure p is related to (ρθ) by the definition of potential temperature,

ρθ =
p

Rd

(
p0

p

)κ

, (A.8)

κ =
cp

Rd
.

where Rd = 287.06JK−1 is the gas constant for dry air, and cp = 1004.5JK−1 is the heat capacity at

constant pressure for dry air. The reference pressure p0 = 1.0× 105Pa. And solving (A.8) for p,

p =

(
Rd

(p0)κ

)γ

(ρθ)γ = A (ρθ)γ , (A.9)

γ =
1

1− κ
= 1.4.
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Then, equation (A.7) may be written as the xz Cartesian divergence of two flux vectors,

∂

∂x



(ρu)2

ρ + A (ρθ)γ

(ρu)
ρ (ρw)

(ρu)

(ρu)
ρ (ρθ)



+
∂

∂z



(ρw)
ρ (ρu)

(ρw)2

ρ + A (ρθ)γ

(ρw)

(ρw)
ρ (ρθ)



=
∂ fx

∂x
+

∂ fz

∂z
= 0 (A.10)

Our linearization proceeds by considering the Jacobian of the flux vectors in (A.10) such that

for a vector of quantities q = [ρu, ρw, ρ, ρθ]T expanded as q = q̄ + q′,

∂ fx

∂q

∣∣∣∣
q̄

∂q′

∂x
+

∂

∂z

(
f̄z +

∂ fz

∂q

∣∣∣∣
q̄

q′
)

= 0. (A.11)

where overbars denote background quantities that are time and x invariant. And expanding the

vertical derivative terms,

∂

∂z

(
∂ fz

∂q

∣∣∣∣
q̄

q′
)

=
∂

∂z

(
∂ fz

∂q

∣∣∣∣
q̄

)
q′ +

(
∂ fz

∂q

∣∣∣∣
q̄

)
∂q′

∂z
(A.12)

∂

∂z
(

f̄z
)

q′ = −ρgq′.

where g is the gravitational constant.

Computing the terms in (A.12), using the resulting continuity equation, and eliminating terms

from horizontal momentum with the entropy equation we arrive at the following linearization,
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ū
∂

∂x
(ρu)′ +

(
∂ū
∂z
− ū

∂ ln θ̄

∂z

)
(ρw)′ +

γ p̄− ρ̄ū2

ρ̄θ̄

∂

∂x
(ρθ)′ = 0, (A.13)

ū
∂

∂x
(ρw)′ +

γ p̄
ρ̄θ

∂

∂z
(ρθ)′ + gρ′ − g(γ− 1)

θ̄
(ρθ)′ = 0, (A.14)

∂

∂x
(ρu)′ +

∂

∂z
(ρw)′ = 0, (A.15)

∂ ln θ̄

∂z
(ρw)′ − ū

∂ρ′

∂x
+

ū
θ̄

∂

∂x
(ρθ)′ = 0. (A.16)

This equation set corresponds directly to the first iteration in a nonlinear solution where the

Jacobian is initialized to the background, steady, x-invariant background. An analysis of equa-

tions (3.7) by combining the thermodynamic equation algebraically into the horizontal momen-

tum equation reveals a constraint for the vertical variation of vertical velocity as follows:

∂

∂z
(ρw)′ +

(
d ln θ̄

dz
− d ln ū

dz

)
(ρu)′ +

(
γp− ρ̄ū2

ρ̄θ̄

)
∂ (ρθ)′

∂x
= 0 (A.17)

If we neglect the contribution from horizontal gradients in heat flux from (A.17), then a first

order ordinary differential equation in ρw remains:

∂

∂z
(ρw)′ ≈

(
−d ln θ̄

dz
+

d ln ū
dz

)
(ρw)′ (A.18)

Use of the conservative equations presents a distinct advantage in that vertical momentum

does not change (grow or decay) in response to background density changes. We can envision

practical situations where background conditions are derived from observational data with ver-

tical gradients approximated crudely and computing on vertical momentum rather than vertical

velocity is advantageous as a significant sensitivity is removed in the conservative equation set.
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B.1 Linear Steady State Model Solution

The total prognostic state is decomposed into background (over bar) and perturbation (primed)

components as follows:

u = ū(z) + u′(x, z, t), (B.1)

w = w′(x, z, t),

ln p = ln p̄(z) + (ln p)′ (x, z, t),

ln θ = ln θ̄(z) + (ln θ)′ (x, z, t).

where ū(z), p̄(z), and θ̄(z) are the height dependent, steady background jet and thermodynamic

profiles (pressure and potential temperature). These may be continuous analytic or piecewise con-

tinuous functions where discontinuous gradients are admissible by our solution method. Also,

note that the decomposition of thermodynamic quantities applies to the natural logarithm of den-

sity and pressure in order to better approximate the “small perturbation” assumption in the sub-

sequent linearization.

Assuming a prognostic vector q =
[
u′ w′ (ln p)′ (ln θ)′

]T
, the interior system may be written

as

(L + B)q = 0, (B.2)
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where

L + B =



ū ∂
∂x 0 p̄

ρ̄
∂

∂x 0

0 ū ∂
∂x σ

p̄
ρ̄

∂
∂ξ 0

∂
∂x σ ∂

∂ξ ū ∂
∂x 0

0 0 0 ū ∂
∂x



+



0 σ ∂ū
∂ξ 0 0

0 0 gc

(
1−γ

γ

)
(−gc)

0 σ
∂ ln p̄

∂ξ 0 0

0 σ ∂ ln θ̄
∂ξ 0 0



, (B.3)

Applying the Fourier transform over the x dimension and assuming that background quanti-

ties are invariant in x by construction then (B.3) becomes,

L + B =



ūik 0 p̄
ρ̄ ik 0

0 ūik σ
p̄
ρ̄

∂
∂ξ 0

ik σ ∂
∂ξ ūik 0

0 0 0 ūik



+



0 σ ∂ū
∂ξ 0 0

0 0 gc

(
1−γ

γ

)
(−gc)

0 σ
∂(ln p̄)

∂ξ 0 0

0 σ
∂(ln θ̄)

∂ξ 0 0



, (B.4)

where i is the imaginary unit, and k is the horizontal wavenumber.

We now apply a truncated Lagrange expansion for vertical ξ derivatives in (B.4) using the
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following dense matrix operator with a set of discrete nodes zk ∈ [0 H] for k = 1, N where N is

a positive integer, zk are the Chebyshev nodes up to order N distributed over the given interval.

Again, following Shen, Tang, and Wang (2011), the vertical derivative matrix operator is:

∂

∂ξ
= Dz = Dkj =



L′N(xk)
L′N(xj)

(
1

xk−xj

)
: k 6= j

xk
1−(xk)2 : k = j

(B.5)

where L′ are the derivatives of Lagrange basis polynomials up to order N computed in recur-

sive fashion. We implement this discrete derivative with the matrix package of (Weideman and

Reddy, 2000). The result transforms (B.2) into a sparse matrix inversion problem. The system

is constrained by applying free-slip boundary conditions at the bottom and top boundaries are

imposed by stating that the component of the velocity normal to the terrain must vanish. That is,

~u · n̂ = ~u ·
~∇φ

|~∇φ|
= 0, (B.6)

where φ = z− h(x) = 0 is the level set representation of the terrain surface.

If the gradient of φ in Cartesian geometry is ~∇φ = − ∂h
∂x î+ k̂, then following (B.6) the kinematic

boundary condition is stated in physical and Fourier space as,

w′ − u′
∂h
∂x

= ū
∂h
∂x

, (B.7)

ŵ′ − û′(ikh) = ū(ikh). (B.8)

Here, a further approximation may be taken where the term u′ ∂h
∂x is regarded as a product of

perturbation quantities and hence neglected. The top boundary condition is simply that w′ = 0.
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B.2 Terrain Input Processing

In order to generate quasi-realistic 2D terrain profiles for a limited area model, elevation data in

Fig. 4.1 is parsed into East-West cross sections. Then the following pre-processing is performed to

generate a terrain profile in our simulation tests:

1. Normalize height by the maximum.

2. Circular shift the data to center the peak value at the origin.

3. Multiply by the following spatial windowing function:

W(x) = e−(
x
a )

4

. (B.9)

where a = 50km.

4. Apply a moving average filter of widths 2∆F = 0.1, 0.2, 1.0, 5.0, and 25.0km. The filtered

value at a location is found by the following centered moving average filter,

h̄i =
1

2N

i+N

∑
i−N

hi : N =
⌈∆F

∆x

⌉
. (B.10)

where ∆F is half the filter width, ∆x = 30m, the native resolution of the terrain map, and N

is the resulting number of grid points spanned by the average calculation.

4. Multiply by a constant peak height of 1000m for our tests.
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