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Abstract

Unprecedented climate change is expected in this century. Although its impact

on the regional scale is less well-understood. This thesis aims to bridge the gap

between the relatively well-studied future change of synoptic-scale weather systems,

and the localized change under future climate.

First, we focused on one of the most common coastal phenomena within Califor-

nia’s San Francisco Bay Delta and Central Valley - marine air penetration (MAP)

events, which are a broad category of meteorological features that include the well-

known Delta Breeze (DB). Summertime MAP episodes, identified by an inland

cooling pattern and onshore wind, are selected in both observational and reanal-

ysis dataset using a newly developed objective criteria. Correlations between MAP

occurrence and synoptic-scale meteorology are then examined to understand the

drivers of MAP. Historical data are first used to determine if any significant trends

have been observed in the frequency and character of MAP events. Future trends

in MAP are then predicted based on an investigation of how synoptic-scale meteo-

rology will be modified in the 21st century under CMIP5 climatological projections.

Based on our analysis of historical and future MAP frequency (under RCP8.5), a

weak positive trend (∼0.2 days/century) is identified in the occurrence of sufficiently

strong summertime MAP days, although further study is needed.

Second, we analyzed the California wind resource variability under the future cli-

mate. Shifting wind patterns are an expected consequence of global climate change,

with direct implications for wind energy production. However, wind is notoriously
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difficult to predict, and significant uncertainty remains in our understanding of cli-

mate change impacts on existing wind generation capacity. In this study, historical

and future wind climatology and associated capacity factors at five wind turbine

sites in California are examined. Historical (1980-2000) and mid-century (2030-2050)

simulations were produced using the Variable-Resolution Community Earth System

Model (VR-CESM) to understand how these wind generation sites are expected to

be impacted by climate change. A high-resolution statistically downscaled WRF

product provided by DNV GL, reanalysis datasets MERRA-2, CFSR, NARR, and

observational data were used for model validation and comparison. These projec-

tions suggest that wind power generation capacity throughout the state is expected

to increase during the summer, and decrease during fall and winter, based on signif-

icant changes at several wind farm sites. This study improves the characterization

of uncertainty around the magnitude and variability in space and time of Califor-

nia’s wind resources in the near future, and also enhances our understanding of the

physical mechanisms related to the trends in wind resource variability.

Third, we expanded our analysis to the end-of-century, and developed a statis-

tical model for wind patterns classification. Wind energy production is expected to

be affected by shifts in wind patterns that will accompany climate change. However,

many questions remain on the magnitude and character of this impact, especially

on regional scales. In this study, clustering is used to group and analyze wind pat-

terns in California using model simulations from the Variable-Resolution Commu-

nity Earth System Model (VR-CESM). Specifically, simulations have been produced

that cover both historical (1980-2000) and end-of-century (2080-2100) time periods.

Once clustered, observed changes to wind patterns can be analyzed in terms of both

the change in frequency of those clusters and changes to winds within clusters. A

further examination of the synoptic-scale fields associated with each cluster then

provides a better understanding of how changes to large-scale meteorological fields

are important for driving changes in localized wind speeds.

v



All three studies greatly advance our understanding of the climate change impact

on the regional scale. Future projections for wind and wind energy resources in Cali-

fornia provide valuable and actionable insight for stakeholders, and such information

is crucial in aiding future climate mitigation and adaption.
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Chapter 1

Introduction

The global climate is changing, and climate signals have already been detected

across a wide range of observations [1]. Such changes will have inevitable impact

on human and natural systems [2]. Much previous research has been focused on

analyzing climate change on the global scale. However, there still remains great

uncertainty in future climate changes at the regional level. The latter will have

direct impact on health and economics of local communities. Climate projections

on the regional level can also provide actionable insight to local stakeholders for

future climate mitigation and adaptation.

The main focus of this thesis is to analyze the regional climate change impact

within California, and link the localized changes to synoptic-scale meteorological

conditions. In particular, we choose to detect the regional climate change through

its impact on wind and wind energy resources in California. This thesis also serves

the purpose of better understanding the relationship between the future behavior of

synoptic-scale weather systems and predicted behavior on a regional-scale.

The structure of this thesis is as follows: Chapter 1 provides an introduction and

review of literature on the topics covered in this thesis. Chapter 2 focuses on identi-

fying and analyzing the future change of marine air penetration events, which is the

prominent wind pattern during summertime around the San Francisco Delta region.
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The associated synoptic-scale meteorological background is also discussed. Chapter

3 reports our study on the future projection of wind energy resources across five ma-

jor wind farm sites across California under mid-century. A state-of-the-art climate

model, the variable-resolution CESM, is used to model near-surface wind speed un-

der the future climate. Synoptic-scale drivers behind the regional-scale wind changes

are then identified. Chapter 4 expands on both Chapter 2 and 3 by extending the

time frame to end-of-century, and incorporating a full suite of wind patterns into

the analysis. An unsupervised machine learning algorithm, agglomerative cluster-

ing, is applied to group different wind patterns from the unlabeled modeling data.

The impact on wind energy resources is assessed by analyzing the future change of

capacity factors at each wind farm site. Chapter 5 includes summaries of the main

findings from previous chapters, and discussions of future work.

1.1 Marine Air Penetration in California’s Cen-

tral Valley

This study focuses on a particularly important coastal phenomenon around the

San Francisco Bay Delta region - marine air penetration (MAP) events [3, 4, 5],

also commonly referred to as the Delta Breeze (DB). However, MAP events are

more general, and are composed of two phenomena that are quite different in scale

- the daily sea breeze circulation and the Pacific coast monsoon. The sea breeze

is a very well studied phenomenon with a vast amount of literature on this topic.

It is produced by the differential heating between the land and the adjacent water

mass. Whereas the most noticeable characteristic of a sea breeze event is the frontal-

like feature at the leading edge of its circulation [6], the Pacific coast monsoon is

described as a slow and steady transport of the marine air inland from the Pacific

anticyclone [7]. MAP events occur whenever cool and moist marine air penetrates

inland, whereas DB events must be associated with a sea breeze front. This study
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focuses on analyzing the more general phenomenon MAP.

MAP mostly occurs from the late spring through early autumn months, and

usually peaks in intensity during the summertime, when the temperature and pres-

sure gradients between the land and the adjacent water mass are the greatest [7].

This phenomenon is more closely controlled by synoptic-scale meteorology. It can

act as a meso-scale “amplifier,” which can influence the synoptic-scale “signal” [8].

During the summertime, MAP events can be intensified by DB events, as the latter

is superimposed on the monsoon flow [5].

MAP events occur in many coastal locations throughout the world, and are

strongly correlated with local topography, making prediction of such events particu-

larly difficult and localized. Literature on this topic has widely varying nomenclature

for these events, including marine air penetration (MAP) [3, 4], marine air intrusion

[9, 10, 11], marine air invasion [7], or onshore surge of marine air [8], but essentially

all describe the onshore flow component that causes the cool and moist marine air

to penetrate inland. Most of the literature on this topic may refer to MAP events

and the sea breeze interchangeably. However, the dominant component for MAP

events is its associated synoptic background, and has been discussed in Fosberg and

Schroeder [5].

There are many local studies of MAP. While most studies use direct measurement

from observations to identify MAP events [3, 8, 5], some other studies also use

numerical model simulations [12, 10]. However, detailed studies focusing on the

MAP events around the San Francisco Bay Delta region is still lacking.

MAP events can have impact on people’s lives in many ways. It can be a re-

lief to people by transporting cool moist marine air inland, which can alter local

temperature and decrease the health risks due to prolonged heat exposure. Accu-

rate forecasting of MAP events is of great economical value due to its large impact

on the local electricity demand by altering of the temperature [13]. Also, MAP can

influence local air quality via inland ventilation [14, 15], and this wind pattern is im-
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portant for determining the placement of wind turbines for wind power generation.

Literature analyzing the future change in the temperature and wind fields implying

stronger sea breeze events under the climate change [16]. However, detailed analysis

on the future change of MAP is still lacking. Therefore, a better understanding of

MAP is called for to improve our knowledge of the impacts from climate change.

The complete and detailed report of this study is described in Chapter 2.

1.2 The future of wind energy in California

Renewable energy is collected from renewable resources, such as solar, wind, and

the earth. In the case of wind energy, turbines in wind power systems collect and

convert the kinetic energy of the wind into electricity. By 2016, renewable energy

has taken up to 12.2% of the total energy production in the United States. Among

all the different renewable electricity sources, wind power contributes to 37% of the

total renewable electricity generation, ranking it as the second to largest contributor,

only after hydro power [17]. Wind energy has also been projected to surpass hydro

power in 2019 for the first time, making it the leading renewable power source in the

United States [18]. Within the United States, California is the first state to build

large wind farms back in the 1980s [19]. Over the last few years, the amount of wind-

generated electricity in California has grown rapidly, to where it met almost 7% of

the state’s total system power by 2017 [20]. At present, California remains among

the states that have the largest amount of installed wind power capacity. A study by

Barthelmie and Pryor [21] also indicates that a moderate wind energy deployment

plan could help delay 1–6 years from crossing the 2 ◦C warming threshold.

Looking back on the history of wind energy development, wind energy has been

proven to be a promising and reliable energy source. However, wind varies signifi-

cantly across space and time, which impacts the distribution of wind energy. Wind

energy, like many other renewable energy resources, is influenced by the global cli-
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mate change through its impact on global energy balance and the associated atmo-

spheric circulation [22, 23]. There are many studies that have looked at the climate

change impact on wind energy in different regions around the globe [24, 25, 26, 27].

The study by Schaeffer et al. [24] provides an overview of the impacts from climate

change on the renewable energy chain. It also identifies the current knowledge gaps

and challenges, and states that the detailed future projections of wind speed vari-

ability at the hub height level still remain largely unknown. Also, due to the nature

of the wind energy, it can not be stored in a similar fashion as hydropower. Thus,

the temporal variation of wind speed has a significant impact on the wind energy

output, which is also subjected to be influenced by the global climate change [25].

Wind farms typically have shorter lifespan than hydropower dams, which make it

more adaptable to the future climate in the long-term. All of the above-mentioned

imply the importance of an accurate projection of hub height level wind energy vari-

ability under the future climate. Such information will be essential for stakeholders

with regards to wind project development and financing [28].

This study aims to advance our understanding of the California hub height wind

resource variability till the mid-century. This time frame is chosen as it is within the

typical lifespan of 20-25 years for existing wind farms. Results from this study can

also provide valuable insight into future wind project planning to mitigate risks from

climate change. In this study, we utilized a state-of-the-art climate model with high

spatial and temporal resolutions to simulate the future wind resources across Cali-

fornia. Using this model, we are able to resolve the complex Californian topography

at a high resolution, and analyze the synoptic-scale features that are driving local

changes to wind resources. The high temporal resolution of this model allows us to

have a more accurate representation of the wind profile. Five major wind farm sites

across California, Shiloh, Altamont Pass, Alta, San Gorgonio, Ocotillo, are chosen

to analyze the wind variability at each location. This selection is a combination of

existing wind farms, and locations with growth potential for developing future wind
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projects. For the complete description of this study, refer to Chapter 3.

1.3 Clustering analysis of wind patterns in Cali-

fornia

This study is a continuous study from Chapter 3. In this study, we extend the

future projections of California wind resource variability to the end-of-century, and

include a full suite of wind patterns in California. Many studies have been focused

on analyzing the climate change impact on wind energy resources. Karnauskas,

Lundquist, and Zhang [29] find robust reductions in wind resources in northern

mid-latitudes based on simulations from various climate models. Scaling down the

analysis to the regional level yields a variety of results. Yu et al. [30] find positive

trend in wind speed over the Midwest, the Great Plains, and the U.S. Northeast,

while negative trends in the east and in some areas in California. They also detect

impact from climate modes on seasonal wind speed change across the U.S.. Within

California, Duffy et al. [31] use high resolution climate model, and detect a decreas-

ing trend of potential wind power production in Tehachipi during fall season. These

studies show the importance of improving our understanding of the wind resources

variability in space and time, which can help in many aspects of future wind project

development.

In order to include a complete suite of wind patterns into our analysis, we use

a clustering algorithm to group days with similar wind patterns. Clustering is a

commonly used method to classify patterns from unlabeled data. There have been

studies using such method to find wind patterns. Berg et al. [32] uses a clustering

analysis to identify the impact from ENSO on near surface wind in Southern Cali-

fornia. Conil and Hall [33] apply a mixture clustering model to examine the primary

wind regimes of local atmospheric variability in Southern California. Clustering has

also been used to identify the wind patterns associated with localized air pollution

6



[34, 35].

In this study, we provide a statistical method to analyze the hub-height wind

profile without requiring prior knowledge of various wind types. Though we focus

on the five wind farm sites across California from Chapter 3, the methodology is

generally applicable to any other locations as well. Results from this study link

changes in wind clusters with its synoptic-scale meteorological backgrounds, and

improve our understanding of California wind resources variability by the end-of-

the-century. The full description of this study is presented in Chapter 4.
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Chapter 2

Marine Air Penetration in

California’s Central Valley:

Meteorological Drivers and the

Impact of Climate Change

2.1 Introduction

Unprecedented climate change is expected in the next century, with inevitable

and significant impacts anticipated on the health, welfare, and economies world-

wide. Although the large-scale impacts of climate change are well understood, there

remains substantial uncertainty with regard to how it will impact local-scale mete-

orology, which is of greater relevance for local stakeholders. Since projections of cli-

mate change over the coming century are typically only available at resolutions that

are insufficient to represent local-scale meteorological features, there is a pressing

need for the development of new statistical techniques to connect these unresolved

features to well-resolved large-scale and synoptic-scale meteorological patterns [1].

To this end, the present study investigates the development and application of one
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such technique to a particular coastal phenomenon – marine air penetration (MAP)

events [2, 3, 4, 5]. Literature on this topic has widely varying nomenclature for

these events, including marine air penetration (MAP), marine air intrusion (MAI),

marine air invasion, or onshore surge of marine air. However, these terms essentially

all describe the onshore flow component that causes the cool and moist marine air

to penetrate far inland. The cooling that comes with the MAP events is the most

socially influential impact since it can alter the local energy consumption, as well

as bring cooling relief during summertime to densely populated area such as the

California Delta region. MAP exemplifies many of the issues associated with pro-

jecting climate change at fine spatial scales: Namely, the character of MAP events

strongly depends on coastal topography, but restrictions on model resolution (driven

by computational constraints) requires topography to be smoothed out, leading to

a poor representation of MAP in global models.

The goal of this study is to understand the connections between MAP events of

sufficient strength and large-scale meteorology, and use that insight to understand

potential trends in MAP events in the future. Our approach proceeds as follows:

First, an objective criteria for identifying MAP events is developed based on available

meteorological observations. Next, five synoptic-scale meteorological indicators are

identified that are strongly associated with MAP events. Finally, these indicators are

applied to historical reanalysis and future Coupled Model Intercomparison Project-

Phase 5 (CMIP5) projection to identify any trend in MAP frequency.

The remainder of this paper is as follows. First, the character and impacts

of MAP events in California are described in section 2.2. Section 2.3 outlines the

datasets that have been used in this analysis, and section 2.4 describes our criteria for

objective detection of MAP days. Using this criteria for MAP occurrence, section 2.5

then describes the anomalous large-scale meteorological fields that we have found to

be associated with MAP events. These fields are then used in section 2.6 to identify

five objective indicators associated with MAP occurrence, and a statistical model is
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developed for predicting MAP days based on these indicators. This statistical model

is then applied in section 2.7 to understand how MAP frequency may be changing

in response to a warming climate. Discussion and conclusions follow in section 2.8.

2.2 Marine Air Penetration

MAP events occur in many near-coastal locations throughout the world, driven

by rough coastal topography that blocks marine air from penetrating inland every-

where except through one or more narrow regions. In this study, we focus specifically

on MAP events that occur in the California San Francisco Bay Delta and Central

Valley regions (see Figure 2.1). In this context, MAP is a general meteorological

feature composed of both a mesoscale and a synoptic scale phenomena: the daily

sea breeze circulation, which naturally arises in response to a land/ocean temper-

ature contrast, a product of a differing heat capacity of the land versus the ocean

[3, 6]; and the Pacific coast monsoon [3], a slow and steady transport of the marine

air inland from the North Pacific anticyclone [7]. This latter component enhances

the on-shore sea breeze flow and allows for marine air to penetrate farther inland

than the sea breeze would normally allow. Note that MAP should not be consid-

ered interchangeably with the well-known California Delta Breeze, which must be

associated with a sea breeze front [8, 9].

MAP events in California most often occur from the late spring through early

autumn months, and usually peak in intensity and frequency in the summertime,

when the temperature and pressure gradients are the greatest between land and

ocean [7]. The coastal topography of California is necessary for MAP events, and

acts as a meso-scale “amplifier,” which can influence the synoptic-scale “signal” [10].

Further, during summertime, MAP events can be intensified by the Delta Breeze,

as the latter is superimposed on the monsoon flow [2].

MAP episodes are a dominant feature of summertime meteorology in California’s
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near-Delta Central Valley. A MAP event can be a relief from summertime heat by

transporting cool moist marine air inland, which can alter local temperature and

decrease health risks due to prolonged heat exposure. In turn, a MAP event can

drive down electricity demand, which is typically dominated by indoor environmen-

tal conditioning during summer months [11], or alter local air quality via inland

ventilation [12, 13]. However, MAP events exist along a spectrum, ranging from

weak MAP episodes that rarely carry marine air beyond the San Francisco Bay

Delta through strong events that effectively ventilate a large fraction of the Cali-

fornia Central Valley. The strongest MAP events, and the ones that are the focus

of this study, are associated with the combination of a sea breeze and a large-scale

flow pattern that enhances the wind field. These events are of particular interest, as

it is events of this nature that the potential to counteract climate change induced

warming in the Central Valley.

Past studies of MAP have typically used observational datasets to identify in-

dividual events [2, 4, 10]. A study by Zaremba and Carroll [14] analyzed the more

general summer wind flow regimes over the Sacramento Valley in 1991. They classi-

fied the wind regime by observing the wind direction in Davis, which sits just north

of the San Francisco Bay Delta. Over their study period (May - September 1991),

72% of the days were classified as having some of the features of marine air intrusion

(southerly wind at Davis).

Sources that have analyzed projected temperature and wind fields suggest stronger

sea breeze events will occur in coastal California in response to climate change [15].

However, it is unclear if their assessment, which is motivated by a projected increase

in land/ocean temperature contrast, is applicable to MAP, which is more strongly

connected with synoptic-scale meteorological fields [2]. Therefore, our study aims

to understand if a similar trend is also anticipated for MAP events.
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Table 2.1: Selected CMIP5 models for assessing future trends in MAP days.

Model name Grid resolution (lat x lon) Institution
CCSM4 0.9424◦x 1.25◦ National Center for Atmospheric Research, USA
EC-ERATH 1.1215◦x 1.125◦ EC-EARTH consortium, European Centre
MRI-CGCM3 1.12148◦x 1.125◦ Meteorological Research Institute, Japan
HadGEM2-ES 1.25◦x 1.875◦ Met Office Hadley Centre, UK
MPI-ESM-MR 1.8653◦x 1.875◦ Max Planck Institute for Meteorology, Germany

2.3 Datasets

This study uses a number of datasets for the purposes of identifying MAP

events. For understanding the local character of MAP events, observational data

from California Irrigation Management Information System (CIMIS) stations [16]

(http://www.cimis.water.ca.gov/), National Weather Service (NWS) stations

[17], and radiosonde observation data from Oakland airport (OAK station num-

ber 72493) (University of Wyoming, Department of Atmospheric Science http:

//weather.uwyo.edu/upperair/sounding.html) were used. The CIMIS data is

hourly observation, and sounding data is 12-hourly, only the afternoon hours were

used for both datasets. For understanding the large-scale meteorological patterns

associated with MAP events, the National Center for Environmental Prediction

(NCEP) Climate Forecast System Reanalysis (CFSR) is used [18]. Among the avail-

able CFSR datasets, we chose its analysis subset, which provides 0.5-degree spatial

resolution with outputs every 6 hours between 1979-2010. For understanding fu-

ture trends in MAP frequency, we use data from the 21st century Coupled Model

Intercomparison Project Phase 5 (CMIP5) [19] and a 21st century AMIP-style sim-

ulations produced using the Variable Resolution Community Earth System Model

(VR-CESM) [20, 21].

The five CMIP5 datasets we have used are given in Table 2.1, along with their

nominal grid resolution. This selection of datasets represents relatively even coverage

from research groups around the world.

16



2.4 An Objective Criteria for MAP Events

Since MAP events are not a binary phenomena, no singular objective criteria

is available for the identification of these features. Namely, MAP events are a

general feature that includes any instance of a “sufficiently strong” onshore wind

capable of pushing marine air into the Central Valley. Among the summer wind

flow regimes in California, as categorized by Zaremba and Carroll [14] (hereafter

ZC), we are interested in events of category I-III, which are associated with onshore

flow through the San Francisco Bay Delta. These wind regimes, when compared

with the mean summertime climatology, are associated with a local onshore wind

of particular strength in the late afternoon, cooler inland temperatures, and higher

specific humidity. Figure 2.1 shows a map of this region, along with the typical path

of MAP winds.

Figure 2.1: (Left) A topographical map of the San Francisco Bay area and Carquinez
Strait showing the position of Oakland and Lodi. (Right) A topographical map of
California depicting the California Central Valley and the locations of Oakland,
Lodi, and Fresno. Wind streamlines for a typical MAP episode (obtained from
CFSR data) are superimposed.

In developing an objective criteria for MAP events, it is important to consider

any potential issues that may arise due to the observed fields, such as observational
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uncertainty and signal-to-noise ratio. With this in mind, a temperature and wind

direction criteria is proposed: First, a MAP event must drive a localized cooling

through the Bay Delta, which we identify from a sufficiently large surface tempera-

ture difference between an inland location in the south of the Central Valley that is

mostly insulated from on-shore flows (Fresno, 36.8◦N, 119.7◦W) and the eastern tip

of the San Francisco Bay Delta (Lodi, 38.1◦N, 121.4◦W). These locations are also

chosen, in part, because of the fidelity of the CIMIS temperature measurements at

each location. Here, the spatial temperature difference is advantageous since it effec-

tively removes the historical climate change signal (no observable trend was found

in the temperature difference from CIMIS observations over the 1980-2010 period),

and only triggers for events which deliver a sufficiently strong cooling along the San

Francisco Bay. Second, a MAP event must be associated with an onshore wind at

the Oakland radiosonde. To develop this criteria, local wind direction at 900hPa

was assessed using both radiosonde measurements from Oakland at 00Z (5pm in

local time) and inland meteorological station measurements. Among these two, the

Oakland radiosonde was found to be the most reliable indicator of a MAP-like wind

regime (i.e., ZC category I-III), as inland and near-surface wind observations ex-

hibited more noise due to local surface effects. A criterion for the specific humidity

field at Lodi was also considered, but was found to be poorly indicative of strong

on-shore flow through the Delta and ventilation of the Central Valley. The weak

signal was likely due to the cooler temperatures and relatively low specific humidity

of the North Pacific.

The strength of the temperature and wind criteria has been tuned to provide

a representative sample of “sufficiently strong” MAP events, while avoiding false

positives that were clearly not associated with a MAP-like wind regime, and weak

MAP days associated with the diurnal sea breeze but not with a large-scale me-

teorological forcing. Specifically, the temperature criteria was chosen to equal the

mean temperature difference between Fresno and Lodi minus one standard devia-
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tion. Consequently, the proposed observational criteria is given by:

Observational MAP Criteria

(a) The surface temperature difference between Fresno and Lodi must be

greater than or equal to 7◦C

(b) The 900hPa across-shore wind speed must be greater or equal to 3

m/s. The across-shore direction is defined as perpendicular to the west

coast shoreline at 150 degree SE, and positive across-shore wind speed

indicates onshore wind.

Here the 7◦C difference was selected by first calculating the mean temperature

difference between Fresno and Lodi (9.0◦C), minus one standard deviation (2.1◦C).

Our motivation was to include the ‘stronger’ cooling days (at Lodi) while eliminate

the ‘weaker’ ones, then further select the MAP events using the on-shore wind

criteria. These two criteria added together were to select the on-shore flow with

sufficient cooling effect around the Delta region. The on-shore wind direction was

defined as wind direction ranging from 150◦to 330◦, as an approximation of on-shore

direction with respect to the US west coastline. The across-shore wind speed was

then defined as the wind component from the on-shore wind that was perpendicular

to the coastline. From the wind direction histogram (not shown), the on-shore wind

was found to be the most frequent.

As discussed earlier, MAP events exist along a spectrum and so there remains

some latitude in defining thresholds to ensure only the most significant events are

captured. The thresholds chosen above allow us to eliminate the weakest MAP

events while also maintaining a sufficient statistical sample of these events. Simply

using the two observational MAP criteria above, we were able to detect a lower

surface temperature, higher surface water vapor mixing ratio, and higher surface

wind speed during the afternoon hours on MAP days (blue lines in Figure 2.2)

compared to non-MAP day (black lines in Figure 2.2) from hourly CIMIS data.
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Surface temperature at Fresno (dash lines in Figure 2.2) didn’t show much influence

under MAP days, due to Fresno sits further from the Delta region.

Figure 2.2: Hourly mean values of surface temperature, water vapor mixing ratio,
wind speed and wind direction at Lodi (solid lines), California on days meeting the
observational MAP criteria (blue) and days not meeting the criteria (black) from
CIMIS observation. Dash lines shown are surface temperature at Fresno on MAP
days (blue) and non-MAP days (black).

CFSR data from 2001 to 2010 were initially used in this study in order to assess

the performance of the observational criteria. The number of MAP days that match

the criteria for each month over the 10-year period is plotted in Figure 2.3. Con-

sistent with the known climatology of MAP events [2], most MAP days occurred

during the summer months (JJA). In our analysis, approximately 46% of all JJA

days over the 2001-2010 period are classified as MAP days. Although this is much

fewer than the 72% of summer days identified as MAI days by Zaremba and Car-
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Figure 2.3: Average number of MAP days per month selected from CIMIS observa-
tion between 2001 and 2010. Vertical bars depict standard deviations.

roll [14], this difference again represents our freedom to isolate only MAP days of

sufficient strength.

Since this study requires the large-scale climatological fields associated with MAP

days, the CFSR reanalysis dataset was adopted. However, although CFSR is closely

constrained to meteorological station data in this region, there are slight differences

in the mean climatology of CFSR and CIMIS that needed to be addressed. Grid

points in CFSR are not coincident with meteorological stations, and so the grid

point data at (38◦N, 121.5◦W) was used for “Lodi” and data at (36.5◦N, 120◦W)

was used for “Fresno”. As a consequence, the mean temperature difference from

CIMIS was observed to be 9.0◦C and 10.1◦C from CFSR. Further, CFSR exhibited

a 1.7◦C trend over the 30 year period 1980-2010 that was not present in CIMIS data,

and there was no trend in the temperature difference between Fresno and Lodi from
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CIMIS data. Finally, mean 900hPa wind speed at Oakland was measured as 3.1

m/s in CIMIS and 3.8 m/s in CFSR. Consequently, our thresholds for MAP events

have been adjusted to account for the best match between the CFSR and CIMIS

data. This led to the CFSR criteria for MAP days, as follows:

CFSR MAP Criteria

(a) The surface temperature difference between Fresno and Lodi must be

greater than or equal to

8◦C + 1.7◦C× 〈Y EAR〉 − 2005

30

(b) The 900hPa across-shore wind speed must be greater or equal to 1.87

m/s.

Using these adjusted criteria, the percentage of JJA MAP days in CFSR is found

to be approximately 51% between 2001 and 2010 with a 73% overlap between CIMIS

and CFSR datasets. Expanding our study period to 1979-2010 leads to a selection

of approximately 47% of MAP days in CFSR, with a 69% overlap with CIMIS.

Surface temperature, specific humidity and wind speed fields from the two sets of

MAP events plotted in CFSR appear very similar.

2.5 Synoptic-scale Meteorology During MAP Events

For MAP days selected using the CFSR criteria, synoptic- and large-scale mete-

orological fields describing 700hPa geopotential height anomaly (a), 700hPa geopo-

tential height (b), wind anomaly streamlines (c), wind streamlines (d), temperature

anomalies (e) and specific humidity anomalies (f) are plotted in Figure 2.4.

On MAP days, the mean synoptic-scale meteorology is dominated by a high-

pressure ridge in the Gulf of Alaska accompanied by a coastal trough through the
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Figure 2.4: Geopotential height and height anomaly at 700 hPa, wind streamlines
and anomaly streamlines at 900hPa, surface temperature anomaly and surface spe-
cific humidity anomaly on CFSR MAP days over the 2001-2010 “training” period
from CFSR.
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Pacific Northwest. The presence of this trough is effective at modifying the contours

of the 700hPa geostrophic height (Fig. 2.4b) field to be approximately perpendicu-

lar to the coast, which in turn leads to a 700hPa geostrophic wind directed into the

San Francisco Bay Delta. The coastal trough also leads to southerwesterly winds

throughout the Western U.S. that are then responsible for a large positive temper-

ature anomaly that extends throughout this region. Off-shore 900hPa winds, which

are typically northerly, are weakened during MAP days and are shifted to be more

closely aligned with the coast. In the San Joaquin Valley, 900hPa winds are observed

to diverge away from the Delta, with the strongest winds directed northward. The

near-surface onshore winds are then responsible for a drop in surface temperatures

through the Bay Area and a corresponding increase in specific humidity as cool,

moist oceanic air is forced through the Delta.

Days that only satisfied the on-shore wind criteria were similarly assessed, and

were observed to be associated with a geopotential height anomaly that maintained

a similar Rossby-wave pattern to Fig. 2.4a but was far less significant. This is

indicative that the temperature criteria is effective at isolating days when the large-

scale circulation enhances the on-shore flow.

2.6 Synoptic-scale Meteorological Indicators for

MAP Events

The meteorological fields associated with MAP events that emerges from Figure

2.4 suggests that MAP days are associated with several potential large-scale meteo-

rological indicators. For the purposes of this study, we have proposed the following

five criteria as potential binary indicators of MAP days (all the anomalies are daily

average values):

(I) Positive 700hPa geopotential height anomaly within the region bounded by

30◦N - 60◦N and 165◦W - 120◦W: As observed in Figure 2.4, MAP days are
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associated with a dipole in the 700hPa geopotential anomaly field, with a ridge

over the Gulf of Alaska and a trough over the Pacific Northwest. Although

the position of the dipole is not consistent year-to-year, the average anomaly

in the Gulf of Alaska still tends to be positive during MAP events.

(II) Negative 700hPa geopotential tendency at 44◦N, 125◦W (Fig. 2.4a, point (A)):

In the days leading up to a MAP event, it is frequently the case that geopo-

tential height anomaly dipole shifts eastward (geopotential height anomaly in

the five days leading up to the MAP event is plotted in Figure 2.5), driving

a negative geopotential tendency off of the Oregon Coast (Figure 2.6). As

predicted by the quasi-geostrophic omega equation, a negative geopotential

anomaly is associated with upward motion that is potentially associated with

frontal activity.

(III) Inland daily average surface temperature anomaly at (41.5◦N, 115.5◦W) (Fig.

2.4e, point (B))greater than 1◦C: As described earlier, and as apparent in Fig-

ure 2.4, MAP days are associated with a positive inland temperature anomaly

related to the southwesterly wind field. This indicator appears to be maximal

in the vicinity of 41.5◦N, 115.5◦W.

(IV) Along-shore 700hPa geopotential height difference between (42◦N, 127◦W) to

(32.5◦N, 121◦W) less than or equal to 5m: Geostrophic onshore flow at the

700hPa level occurs when geopotential contours are perpendicular to the shore

– or, equivalently, when there is a geopotential height gradient parallel to the

shoreline. In Figure 2.4 the presence of geopotential contours perpendicular

to the shoreline is indicative that this pattern is prominent during MAP days.
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(V) Off-shore wind speed anomaly at (35◦N, 125◦W) (Fig. 2.4c, point (C)) less

than or equal to 2 m/s: Large off-shore wind speeds (particularly northerly

winds) tend to lead to suppressed MAP activity, as marine air is pushed along

the shore and away from the Bay Delta. On the other hand, MAP days are

associated with suppressed off-shore wind speeds that can encourage on-shore

flow. The position (35◦N, 125◦W) was chosen because it is at the offshore

region where the wind speed anomaly differs most between MAP and non-

MAP days.

Using these five indicators, a multivariate logistic regression model was devel-

oped. Using the R generalized linear model (glm), it was then determined whether

or not each indicator was a statistically significant indicator of a MAP event. The

regression model indicated high significance for all of the five synoptic indicators

for 2001-2010 (the p-values for each of the indicators were (I) 1.22 × 10−11, (II)

2 × 10−16, (III) 1.89 × 10−4, (IV) 2 × 10−16, and (V) 9.8 × 10−4). The strongest

indicators for MAP were purely associated with the 700hPa geopotential field and

its corresponding tendency, indicative of the role played by synoptic-scale meteo-

rology in driving MAP events. The receiver operating characteristic (ROC) curve

(supplement Figure S1) illustrates the performance of this binary classifier system.

The maximum AUC = 1 means the perfect differentiation between MAP and non-

MAP, and AUC = 0.5 means the classifier is no better than a random guess. For

our model, the area under curve (AUC) value was ∼0.74 for 2001-2010. Applying

this procedure to 1979-1989 and 1990-2000 yielded AUC values of ∼0.69 and ∼0.71,

respectively. This suggests that the model is consistent across all three decades, and

indicates that the large-scale indicators described above will correctly discriminate

MAP events from non-MAP events approximately 70% of the time.

To further understand the relationship between these indicators and the objec-

tive MAP criteria, we also assessed the performance of the model as the temperature

difference criterion was varied between 1◦C and 12◦C. Indicators (II), (III) and (IV)
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Figure 2.5: 700hPa geopotential height anomaly field for 5-0 day(s) before MAP
events from CFSR.
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Figure 2.6: 700hPa geopotential tendency field for 5-0 day(s) before MAP events
from CFSR.
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were found to be strongly predictive across all temperatures, and so were primarily

associated with the on-shore wind criterion. Indicators (I) and (V) were both sen-

sitive to the temperature difference, with maximum predictability attained with a

CFSR temperature difference of 8◦C. Other values of the temperature difference led

to indicators that were either not significantly correlated or produced a lower AUC

value.

Using the five binary indicators, 32 daily categories are developed based on all

possible configurations of indicators and the resulting classification given in Table

2.2. For each of these categories, 1 indicates the number of MAP and non-MAP

events for each category, with 1 indicating the criterion holds, and 0 is false, for all

JJA days between 1979-2010. As expected, categories that satisfy a larger fraction

of the five indicators also tend to have a larger ratio of MAP to non-MAP days.

However, days that simultaneously satisfy all five criteria (category 1) are fairly

rare: Although this category includes more than four times as many MAP days as

non-MAP days, only 46 such days occurred over the 32 year study period. Weighing

categories by absolute frequency, category 2 (which does not trigger indicator (V)),

category 4 (which does not trigger indicator (IV) or (V)), and category 18 (which

does not trigger indicator (I) or (V)) exhibit the greatest occurrence of MAP days.

Figure 2.7 depicts the synoptic meteorology associated with all days in category

2. It captures 181 MAP days out of total 1326 MAP days, or 13.7% of the total

number of MAP days between 1979-2010. Category 2 days have only a weak off-

shore wind speed anomaly. However, they do feature a large positive geopotential

height anomaly (Figure 2.7a) that sits in the Gulf of Alaska, accompanied by a weak

negative geopotential height anomaly sitting at off the Oregon coast. This suggests a

Rossby wave train directed eastward and slightly southward. The negative anomaly

acts to redirect the strong northerly flow off of the California coast, leading to

onshore winds directed through the San Francisco Bay Delta. The positive specific

humidity anomaly (Figure 2.7f) extends south along the Baja peninsula, caused by
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weakened off-shore winds through Southern California.

Figure 2.8 depicts category 4, the second-most frequent MAP event category by

total count (135 MAP days, or 10.2% of total MAP days). This category is similar

to category 2 in that it captures days with a positive geopotential anomaly (Figure

2.8a) in the north Pacific, but unlike category 2 it is not associated with an offshore

trough. Although this configuration is fairly common among summer days, there

is only a slightly better than even (∼ 54%) chance for this category to produce a

MAP event. In this case, the occurrence of MAP will be primarily driven by the

local meteorology.

Figure 2.9 depicts category 18, the third most frequent MAP event category,

which accounts for 124 MAP days, or 9.4% of the total number of MAP days. Figure

2.9a shows a much different large-scale pattern compared to category 2, particularly

in the north Pacific, where there is a strong negative geopotential height anomaly

centered at (45◦N, 135◦W) associated with a Rossby wave train that is inclined to

the north. This large negative geopotential height anomaly triggers a substantial

weakening of the offshore northerly winds, in turn permitting air to “leak” into

the Delta. The strength of the geopotential anomaly dipole across the US West also

enhances southerly flow in this region and drives a large inland positive temperature

anomaly (satisfying criteria (III)).

For these three categories, lines of constant negative geopotential height anomaly

lie perpendicular to the California coastline, driving the wind anomaly in the onshore

direction. Categories 2 and 18 also feature an offshore trough, in agreement with

Beaver and Palazoglu [12]. Although it may seem that the offshore trough would

be a better indicator of MAP, it turns out that replacing the positive geopotential

anomaly indicator (I) with a negative geopotential anomaly indicator off of the

Oregon coast does not actually improve our ability to detect of MAP days.

In contrast, the most frequent non-MAP events fall into category 32 (depicted

in Figure 2.10), and account for 223 (14.4%) non-MAP days out of 1554 total. In
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Figure 2.7: The synoptic meteorology over the period 1979-2010 of category 2 days
(the most frequent MAP category) from CFSR.
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Figure 2.8: The synoptic meteorology over the period 1979-2010 of category 4 days
(the second most frequent MAP category) from CFSR.

32



Figure 2.9: The synoptic meteorology over the period 1979-2010 of category 18 days
(the third most frequent MAP category) from CFSR.
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this case, the synoptic-scale pattern (figure 2.10a) is in opposition to the pattern in

MAP category 2, with a major negative geopotential height anomaly sitting in the

Gulf of Alaska, and a weak positive anomaly located near the Oregon coast. The

intensity of the negative geopotential anomaly in this category partially explains

why the mean synoptic-scale meteorology indicates a strong positive geopotential

anomaly in the north Pacific associated with MAP days (Figure 2.4), even though

geopotential anomaly in this region takes on opposing signs for the top two MAP

categories – namely, a negative geopotential anomaly in this region is frequently

associated with a blocking pattern that prevents MAP from occurring.

The second to most frequent non-MAP category is category 16 (Figure 2.11),

which captures 11.1% of the non-MAP days, and has a dominant positive geopo-

tential height anomaly (Figure 2.11a) centering at (45◦N, 140◦W). This pattern is

again an off-shore blocking pattern, here exhibiting characteristics in opposition to

category 18 (Figure 2.9).

Notably, the top two non-MAP categories both have positive geopotential height

anomaly contour lines perpendicular to the coastline, enhancing the northerly flow

off of the California coast, and blocking on-shore flow.

2.7 Future Trends in MAP Events

In this section, the categorization strategy from section 2.6 is used to project

future trends in MAP days. Since MAP events are fairly localized and driven by

quick variations in local topography, they are not actually resolved in the coarse

resolution data typically produced by global climate models (GCMs). However, the

indicators identified in section 2.6 are well-resolved, even in coarse-resolution GCM

data. To estimate the number of MAP days in a given year, the following procedure

was performed: For each JJA day over the period 1980-2100, the five binary MAP

indicators are computed for each CMIP5 dataset. Cross-referencing the associated
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Figure 2.10: The synoptic meteorology over the period 1979-2010 of category 32
days (the most frequent non-MAP category) from CFSR.
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Figure 2.11: The synoptic meteorology over the period 1979-2010 of category 16
days (the second most frequent non-MAP category) from CFSR.
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category (1-32) with the number of 1979-2010 MAP days then yields a corresponding

probability of the day being a MAP day (i.e. category 1 is a MAP day 46/57 =

80.7% of the time and not a MAP day 11/57 = 19.3% of the time). Summing the

MAP probability over all days then gives the mean number of MAP days expected

over that year. This procedure then allows us to understand how changes in the

frequency of the 32 MAP categories will impact the frequency of MAP days.

Historical MAP days are selected in the CMIP5 datasets and VR-CESM dataset

of Rhoades et al. [21] using the five synoptic indicators, and compared this selection

with historical MAP days from CFSR. Figure 2.12 shows that the number of MAP

days was found to vary around 42±4 out of the 92 days (JJA). In fact, there is

surprisingly good agreement on the number of MAP days among all datasets (even

though there was little agreement for a particular year), suggesting no significant

biases in the representation of the synoptic-scale meteorology of this region.

Future trends in the five synoptic indicators in CMIP5 were then assessed under

different climate scenarios, by analyzing experiments arising from the “business as

usual” Representative Concentration Pathway 8.5 (RCP8.5). Indicators (I), (III)

and (V) were all anomalous values calculated from each year mean, so this could

include the annual variations during the study period. Therefore, building a linear

regression line based on the corresponding climatological field was necessary so that

the climatological trends were better represented, and then the anomaly values for

each indicators (I), (III) and (V) were calculated against the values from regres-

sion lines. As expected, all models exhibited enhanced inland temperatures and

increases in geopotential height anomaly through the 21st century, consistent with

the well-known consequences of climate change, but exhibited mixed behavior for

the individual indicator fields. Nonetheless, as shown in Figure 2.13, all datasets

examined produced a small upward trend (∼0.2 days/century on average). The

primary driver for enhanced MAP came from reduced along-shore wind speeds at

(35◦N, 125◦W) in all models, leading to more days that triggered indicator (V),
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Figure 2.12: Number of MAP days selected over JJA from CFSR and historical
CMIP5 data.
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and this trend is consistent across all five CMIP5 models, though the magnitude

varies. A slight reduction in geopotential height difference also emerged, which led

to fewer days that triggered indicator (IV), although it was not enough to coun-

teract the change in indicator (V). There is no clear agreement between models for

the geopotential ridging indicator (I), the geopotential tendency (II) or the tem-

perature indicator (III). In summary, this result suggests that climate change may

be weakly conducive to the emergence of synoptic-scale fields that are favorable to

MAP. Nonetheless, we note that a key limitation of this study is that it cannot be

used to draw conclusions on weaker MAP events, or the effect of a cooler sea breeze

(potentially associated with increased upwelling), both of which could also mitigate

warming near the Delta region.

2.8 Conclusions

The goals of this project have been threefold: First, to develop a simple, objective

criteria for the identification of MAP episodes in the California Central Valley from

observational and reanalysis data; second, to characterize the synoptic- and large-

scale meteorological fields that are correlated with these MAP episodes; and third,

to bridge the gap between the relatively well-understood future behavior of synoptic-

and large-scale weather systems and a local-scale meteorological phenomenon. In

this study, it was observed that MAP episodes could be identified as the conjunction

of a temperature difference along the central valley and an on-shore wind speed

criteria. Using this criteria, MAP episodes were then associated with five large-scale

indicators: (I) a positive geopotential anomaly in the Gulf of Alaska, (II) a negative

geopotential tendency off of the Oregon coast, (III) an inland surface temperature

anomaly in the north-west of the continental US, (IV) an off-shore geopotential

height difference, and (V) an off-shore wind speed anomaly. These indicators then

formed the foundation for a model for probabilitistic prediction of MAP episodes.
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Figure 2.13: Number of MAP days selected over each summer season from CMIP5
and VR-CESM under RCP8.5, with horizontal lines indicate the linear trends from
each CMIP5 dataset.
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Finally, by analyzing MAP events through the lens of synoptic-scale indicators,

this study finds that climate change may favor synoptic-scale conditions that are

conducive to MAP events.

We note that the connections across scales that emerge from this study can be

further used for improving forecasts of MAP events using available synoptic-scale

fields. We also argue that a similar methodology can likewise be employed to develop

statistical relationships between large-scale fields and local meteorological features.

Many other factors play an important role in the emergence of MAP that were

not investigated here, including local meteorology, large-scale teleconnections and

coastal upwelling. In particular, coastal upwelling is theorized to intensify under

climate change [22], and has a strong influence on coastal temperatures and sub-

sequently the strength of the cooling effect associated with MAP episodes. It also

remains unclear how MAP interacts with other large-scale systems, such as the

North Pacific Oscillation (NPO), Pacific Decadal Oscillation (PDO), and El Niño-

Southern Oscillation (ENSO). Further, there is an incomplete understanding of how

MAP interacts with other meteorological features, including coastal fog and Tule

fog. These topics remain for the consideration of a future study.
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Table 2.2: Number of MAP and non-MAP days in each of the 32 MAP categories
for 1979-2010. Categories 2, 4, and 18 (bold) are the top three most frequent MAP
categories, and categories 32 and 16 (bold) are the top two most frequent non-MAP
categories.

Indicators 1979-1989 1990-2000 2001-2010 1979-2010

Category I II III IV V MAP non-MAP MAP non-MAP MAP non-MAP MAP non-MAP
1 1 1 1 1 1 16 3 15 8 15 0 46 11
2 1 1 1 1 0 69 22 68 26 44 17 181 65
3 1 1 1 0 1 10 6 3 1 9 5 22 12
4 1 1 1 0 0 44 30 31 50 60 36 135 116
5 1 1 0 1 1 3 3 5 2 6 2 14 7
6 1 1 0 1 0 17 15 14 16 17 7 48 38
7 1 1 0 0 1 3 3 3 8 4 0 10 11
8 1 1 0 0 0 18 28 9 31 18 29 45 88
9 1 0 1 1 1 13 7 6 3 5 2 24 12
10 1 0 1 1 0 30 13 27 25 28 10 85 48
11 1 0 1 0 1 6 9 3 7 9 8 18 24
12 1 0 1 0 0 22 45 23 43 39 28 84 116
13 1 0 0 1 1 7 5 5 10 5 2 17 17
14 1 0 0 1 0 11 13 13 18 5 14 29 45
15 1 0 0 0 1 7 6 3 16 3 10 13 32
16 1 0 0 0 0 20 64 14 50 18 58 52 172
17 0 1 1 1 1 4 0 11 3 10 1 25 4
18 0 1 1 1 0 42 15 41 26 41 15 124 56
19 0 1 1 0 1 0 1 0 1 1 0 1 2
20 0 1 1 0 0 11 14 9 17 6 5 26 36
21 0 1 0 1 1 6 4 3 4 5 4 14 12
22 0 1 0 1 0 34 35 18 37 34 34 86 106
23 0 1 0 0 1 2 0 1 4 3 0 6 4
24 0 1 0 0 0 12 24 4 25 9 22 25 71
25 0 0 1 1 1 8 2 3 1 6 2 17 5
26 0 0 1 1 0 20 7 14 14 12 15 46 36
27 0 0 1 0 1 2 0 1 6 2 1 5 7
28 0 0 1 0 0 7 21 13 21 7 12 27 54
29 0 0 0 1 1 4 3 3 7 5 4 12 14
30 0 0 0 1 0 28 31 14 31 19 35 61 97
31 0 0 0 0 1 2 7 1 3 0 3 3 13
32 0 0 0 0 0 7 69 6 92 12 62 25 223
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Chapter 3

The Future of Wind Energy in

California:

Future Projections with the

Variable-Resolution CESM

3.1 Introduction

Renewable energy installations, particularly wind and solar, have been rapidly

deployed in recent years in an effort to displace existing fossil fuel-based energy

sources [1]. Within the U.S., California was the first state to undertake development

of large wind farms starting in the early 1980s. In terms of absolute capacity, Cal-

ifornia’s wind-generated electricity has roughly doubled during the past five years,

to meet 6.81% of the state’s total system power (as of 2016). Research has also

indicated that, globally, a moderate wind energy deployment plan in which wind

displaces coal (i.e., 14% wind-derived electricity generation by 2050) would help

delay by 1-6 years crossing the 2◦C warming threshold, often considered a lower

threshold for dangerous climate change [2]. The growing adoption of wind power
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emphasizes that wind is a proven, reliable, and cost-effective source of low-emission

power that can grow at scale. However, wind power is also dependent on sufficiently

high wind speeds, which can significantly vary by location and time period. Sev-

eral past studies have demonstrated historical decreases in near-surface wind speeds

over many regions of the Northern Hemisphere, including the United States [3, 4].

Consequently, an understanding of present and future wind climatology is very im-

portant when determining where investments in the construction of new wind farms

should be made. In particular, given that the lifespan of wind farms is typically

around 20-25 years, climate change over the coming decades has the potential to

significantly affect the wind farm productivity [5].

Like many other renewable energy technologies, wind energy is influenced by

climate change through changes in global energy balance and resulting shfits in

atmospheric circulation patterns [6]. The few studies that have examined the impact

of climate change on wind resources over California using global and/or regional

climate models [7] have been largely inconclusive. These prior studies have shown

sensitivity to model setup, including choice of physics scheme, downscaling method,

and number of models used [8, 9, 10, 11, 12, 13]. Furthermore, the spatial variability

of wind energy resources and its sensitivity to model settings emphasizes the benefit

of higher resolution models and multiple model inter-comparisons [7].

In order to better understand how climate change will impact wind energy re-

sources in California, this study has utilized a state-of-the-art global climate mod-

eling system with support for regional refinement, the Variable-Resolution Commu-

nity Earth System Model (VR-CESM). The goal of this study is twofold: First,

to validate, analyze, and understand the biases in the historical hub-height wind

field as produced by VR-CESM, and second to use VR-CESM to understand how

climatological trends will impact wind power. Seasonal synoptic-scale patterns were

investigated as part of this work to better understand how shifts in large-scale sys-

tems can impact local-scale changes in wind energy. For this study we have divided
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California into two primary sub-domains: Northern California (NC) sub-domain,

which includes Shiloh and Altamont Pass sites, and Southern California (SC) sub-

domain, which includes Alta, Tehachapi, San Gorgonio, and Ocotillo sites. These

five wind farm locations constitutes a selection of both wind farm sites currently at

service, and wind project sites are slated for new development. Note the Tehachapi

wind farm (35◦06’08” 118◦16’58”W) is very close to the Alta Wind Energy Center

(35◦1’16”N 118◦19’14”W), so only the Alta site was used for assessing the wind field

in that area. Figure 3.1 depicts this region, along with the six wind farms and three

atmospheric sounding locations.

Previous studies [14, 15] utilizing VR-CESM have demonstrated its competitive-

ness in studying high-resolution regional climatology when compared to other re-

gional climate models, especially when non-local processes have significant influence

on the local climatology. VR-CESM has demonstrated a much better representa-

tion of climatology within regions of complex topography, due to the relatively fine

regional resolution compared with conventional GCM simulations [16, 17, 18].

The remainder of the paper is as follows. Section 3.2 describes the VR-CESM

model setup and the datasets used in this study. In section 3.3, historical wind speeds

are compared across all datasets, including the available sounding observational

sites and surface observations. Future projections from the mid-century VR-CESM

simulation are discussed in section 3.4. Changes to the synoptic-scale climatological

background fields are also analyzed and described in this section. Discussion and

conclusions follow in section 3.5.

3.2 Datasets

Two model simulations, three reanalysis products, and two observational datasets

are used for model validation and inter-comparison of wind speed at hub height

(summarized in Table 3.1). In this section we provide an overview of these prod-
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Figure 3.1: Six wind farm sites, and three sounding locations assessed in this study.
Markers shown for each location are consistent as in the rest of the figures.
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Table 3.1: Model, reanalysis, and observational datasets used in this study

Dataset Spatial resolution Temporal resolution Time period Source
VR-CESM ∼14km(0.125◦) 3-hourly 1980-2000; 2030-2050 Available upon request
Virtual Met 4km 1-hourly 1980-2000 N/A
MERRA-2 ∼55km(0.5◦) 3-hourly 1980-2000 https://disc.gsfc.nasa.gov/datasets/M2I1NXASMV 5.12.4/summary

CFSR ∼55km(0.5◦) 6-hourly 1980-2000 https://rda.ucar.edu/datasets/ds093.0/
NARR 32km 3-hourly 1980-2000 https://www.esrl.noaa.gov/psd/data/gridded/data.narr.html
ISD Point stations 1-hourly 1980-2000 https://www.ncdc.noaa.gov/isd

Soundings OAK, VGB 12-hourly 1980-2000 http://weather.uwyo.edu/upperair/sounding.html
NKX 12-hourly 1990-2000

ucts. More details on these datasets can also be found in a separate data article

[19].

3.2.1 Summary of datasets

VR-CESM (Global climate model product) CESM version 1.5.5, a fully cou-

pled atmospheric, land, ocean, and sea ice model, was utilized for this study. All

simulations used the F-component set (FAMPIC5), which prescribes sea-surface

temperatures and sea ice but dynamically evolves the atmosphere and land surface

component models. The atmospheric component mode is the Community Atmo-

sphere Model, version 5.3 (CAM5) [20] with the spectral-element (SE) dynamical

core [21] in its variable-resolution (VR) configuration [22]. The VR model grid

used for this study, depicted in Figure 4.2, was generated for use in CAM and

CLM with the open-source software package SQuadGen [23, 24]. On this grid the

finest horizontal resolution is 0.125◦(∼14km), with a quasi-uniform 1◦mesh over

the remainder of the globe. VR-CESM model used in this study is a hydrostatic

model, therefore the vertical motion is not fully included. However, using the hy-

drostatic solver in our case allows the model to run much faster comparing to a

non-hydrostatic solver, while the results still give a reasonable representation at

14km. Two simulations were conducted using this grid structure: First, the histori-

cal run covers the period from October 1st, 1979 to December 31st, 2000, with first

three months discarded as the spin-up period, for a total of 21-years outputted every

three hourly. This historical time period was chosen to provide an adequate sam-

pling of the inter-annual variability, and to coincide with the time period from the
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Figure 3.2: The VR-CESM grid used in this study, constructed by first succes-
sively refining a cubed-sphere grid with a 1◦(111km) quasi-uniform resolution to a
resolution of 0.125◦(∼14km) over the western USA.

rest of the modeling and reanalysis datasets. For projections of future wind energy

change, our mid-century simulation ran with the “business as usual” Representa-

tive Concentration Pathway 8.5 (RCP8.5) [25] from October 1st, 2029 to December

31st, 2050, again discarding the first three months for a total of 21-years. The fu-

ture time period was chosen to emphasize the mid-century focus of this study and

avoid divergence in the predicted impacts among different RCPs. Greenhouse gas

(GHG) and aerosol forcings are prescribed based on historical or RCP8.5 concen-

trations for each simulation. More details on VR-CESM can be found in Rhoades

et al. [14]. The complete namelist for CAM used in this study can be found at

https : //github.com/meinaw/V R− CESM/blob/master/user nl cam.

DNV GL Virtual Met (Dynamically-downscaled regional model product)

The Det Norske Veritas Germanischer Lloyd (DNV GL) Virtual Met product is

derived from a hybrid dynamical-statistical downscaling system based upon the
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Weather Research and Forecasting (WRF) model and an analog-based ensemble

downscaling method (denoted as Virtual Met in table 3.1). The predictor consists

of a coarse resolution WRF simulation that is run for the entire simulation period. To

provide training data for the statistical model, a nested version of the same model

is run at high resolution. The period over which the coarse and high-resolution

runs overlap is called the training period, while the remaining portion is termed

downscaling period. To downscale the predictor data outside of the training period,

the best matching coarse estimates (termed “analogs”) over the training period are

found. The downscaled solution is then constructed from the set of high-resolution

values that correspond to the best matching coarse analogs. This method is based

upon Delle Monache et al.[26, 27].

The WRF simulation uses telescoping computational grids with one-way inter-

action. For this study the respective horizontal grid increments are 20 km and 4

km, with the 4 km grid centered over California. The initial and lateral bound-

ary conditions are specified using MERRA-2, which is widely accepted in the wind

energy community as a high-quality (albeit coarse resolution) wind product. The

coarse model was run for the entire 01 Jan 1980 - 31 Dec 2015 period, and gener-

ated output every hourly, whereas the nested 4 km grid was run only during the

last year of the full simulation (01 Jan 2015 to 31 Dec 2015). The high resolution

downscaled dataset is then reconstructed for the entire 36-year period using the 4

km resolution training data and the 20 km simulation (both from the same WRF

model configuration). The result is an hourly time series at each 4 km grid point for

January 1st 1980 to December 31st 2015. Wind speed and direction at hub heights,

including 50m, 80m, 140m, are predicted and output. This study purely utilized

the 80m wind speed output, as the 80m hub height is typical for most present-day

industrial wind turbines. DNV GL served solely as a data provider for this project,

and is not responsible for any results from this study.
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MERRA-2 (Reanalysis product) The Modern-Era Retrospective analysis for

Research and Applications, Version 2 (MERRA-2) is a reanalysis product for the

satellite era using the Goddard Earth Observing System Data Assimilation Sys-

tem Version 5 (GEOS-50) produced by Global Modeling and Assimilation Office

(GMAO) at NASA [28]. MERRA-2 integrates several improvements over the first

version MERRA product, as described in Rienecker et al. [29]. For the fields used in

this study, the spatial resolution is ∼55km with 3-hourly output frequency from

1980 to present. Vertical interpolation of MERRA-2 data, as described in the

following section 3.3, was performed to calculate hub height wind speed at 80m.

Variables used in vertical interpolation were extracted from two subsets: 3-hourly

instantaneous pressure level assimilation [30], and hourly instantaneous single level

assimilation [31] (extracted at 3-hourly frequency).

CFSR (Reanalysis product) The Climate Forecast System Reanalysis (CFSR)

from NCEP (National Centers for Environmental Prediction) is a global, coupled re-

analysis that spans from 1979 to present, with∼55km spatial resolution and 6-hourly

temporal resolution of relevant wind fields [32]. Notably, this temporal resolution is

the lowest out of the five dataset used. The analysis subset was used in this study,

and vertical interpolation was performed at 6-hourly frequency.

NARR (Reanalysis product) The North American Regional Reanalysis (NARR),

another NCEP reanalysis product, features a slightly higher spatial resolution of

∼32km. It is a dynamically-downscaled data product with spatial coverage over

North America, with 3-hourly temporal resolution from 1979 through present [33].

Hub height wind speeds from NARR were also calculated at this frequency.

ISD (In-situ observations) The Integrated Surface Database (ISD) from NOAA’s

National Centers for Environmental Information (NCEI) were used for assessment

of hourly 10m wind speed from model and reanalysis. The ISD observational sta-
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tions are distributed globally, with the highest concentration of stations found in

North America. Stations across California that provide full year data were selected.

As not all stations had continuous temporal coverage between 1980 to 2000, each

year was examined separately so as to maximize the number of available stations.

To compare 10m wind speeds from model and reanalysis datasets to ISD, the near-

est grid point values to each of the ISD stations was used. Coastal stations were

neglected in the analysis of 10m winds, due to coastal biases that tend to occur

in near-surface coarse-resolution reanalysis. These biases tend to emerge because

similarity theory is typically employed to extract 10m wind speeds, which produces

distinctly different results over the ocean and land surface.

Upper air soundings (In-situ observations) Upper air soundings (vertical

wind profiles) from all the available locations across California are incorporated into

the comparison (University of Wyoming, Department of Atmospheric Science http:

//weather.uwyo.edu/upperair/sounding.html). The three sounding locations

used in this study are OAK at Oakland airport (station number 72493), VBG at

Vandenberg Air Force Base (72393), and NKX at San Diego (72293) (see Figure

3.1). The time period used in this study from the first two stations spans 1980 to

2000. NKX only has data available starting from September 1989, so only the full

years 1990-2000 were assessed. Soundings were collected every 12 hourly at 00Z and

12Z, and logarithmic vertical interpolation was performed to calculate 80m wind

at each sounding location. However, this logarithmic interpolation from sparsely

sampled profile data could introduce uncertainties into the calculation.

3.2.2 Representation of topography

Local topography is particularly important in representing the wind field, partic-

ularly in the regions of significant topographic variability that tend to be well-suited

for wind power generation. Consequently, the importance of model resolution can-
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Figure 3.3: Topographical representation of California and surrounding regions from
model (top row) and reanalysis (bottom row) datasets.

not be understated. Topographic profiles from each of the models and reanalysis

datasets are plotted in Figure 4.1. As can be seen here, DNV GL WRF model ran

at 20km resolution (b), which captures the dynamical wind field at this resolution,

and then statistically downscaled to 4km resolution (c). VR-CESM uses a relatively

smooth topography by comparison, due to its slightly lower spatial resolution of

14km (a). MERRA2, CFSR, and NARR (d-f) all have much more poorly refined

topography, with a poor representation of the coastal ranges that are important for

shaping the wind field. Note that these differences also imply that each model has

a different altitude for the wind farms and sounding stations used in this study.

3.2.3 Wind speed interpolation method

The wind speed at each wind farm location 3.1 was determined using nearest

grid point values to each wind farm site. To obtain hub-height wind vectors, vertical

interpolation was performed on 3-hourly VR-CESM, 3-hourly MERRA-2, 6-hourly

CFSR, and 3-hourly NARR products from 1980 to 2000. As mentioned above,
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hub-height wind output is available directly from the DNV GL Virtual Met data

product. Vertical interpolation of VR-CESM data uses the 3D wind field on hybrid

surfaces and 10m altitude wind speed, which is computed from similarity theory.

For VR-CESM data, the interpolation procedure is as follows: (1) the CAM5 hy-

brid coordinates are first converted to pressure coordinates within the column being

analyzed, (2) the height of each pressure surface above ground level (AGL) is com-

puted by subtracting the surface geopotential height from the geopotential height of

the model level, (3) two model levels that bound the desired interpolation altitude

are selected or, if the interpolation altitude is below the lowest model level, the

lowest model level and 10m wind speed field are used, and (4) logarithmic interpo-

lation is applied to obtain the wind speed at the desired interpolation altitude. The

interpolation was done by fitting a log equation with the two levels bounding the

altitude to be calculated, then with the log profile, interpolating the wind at desired

altitude [34]. Vertically interpolated wind speed from MERRA-2, CFSR, NARR,

and sounding observations all followed a similar procedure, and were calculated at

three hub heights (50m, 80m, and 140m). Figure 3.4 to 3.7 show the interpolated

hub-height wind speed at 50m and 140m, respectively, at northern and southern

California. For wind speed at 80m, and detailed wind speed analysis, please refer

to the next section. Different atmospheric stability will also lead to different ver-

tical wind profile based on the wind speed power law. This will have impact on

the vertical wind speed interpolation, though we didn’t take this into consideration

here.

Wind turbines can contribute to energy via the electric power system. This

contribution is the total amount of usable energy supplied by the turbine per year

[35]. The capacity factor (CF) is often defined as actual power output divided by the

max amount of wind power that can be generated through the system. This wind

speed and CF relationship is not continuous since there is a discontinuous minimum

and maximum wind speed required to begin and cease wind power production (the
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Figure 3.4: Seasonal average of interpolated 50m wind speed from each datasets for
historical time period 1980-2000 in northern California domain.
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Figure 3.5: Seasonal average of interpolated 50m wind speed from each datasets for
historical time period 1980-2000 in southern California domain.
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Figure 3.6: Seasonal average of interpolated 140m wind speed from each datasets
for historical time period 1980-2000 in northern California domain.
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Figure 3.7: Seasonal average of interpolated 140m wind speed from each datasets
for historical time period 1980-2000 in southern California domain.
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Table 3.2: Power curves for wind farms across California. Each value corresponds
to a 1m/s wind speed bin increment starting from 0m/s.

Wind farm Power curve

San Gorgonio IECclass1 = [0, 0, 0, 0.0043, 0.0323, 0.0771, 0.1426, 0.2329, 0.3528, 0.5024,
0.6732, 0.8287, 0.9264, 0.9774, 0.9946, 0.999, 0.9999, 1, 1, 1, 1, 1, 1, 1, 1, 1]

Altamont Pass, IECclass2 = [0, 0, 0, 0.0052, 0.0423, 0.1031, 0.1909, 0.3127, 0.4731,
Ocotillo 0.6693, 0.8554, 0.9641, 0.9942, 0.9994, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

Alta, IECclass3 = [0, 0, 0, 0.0054, 0.053, 0.1351, 0.2508, 0.4033,
Shiloh 0.5952, 0.7849, 0.9178, 0.9796, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

latter to avoid damage to the wind turbine under extreme wind conditions), and this

is represented with different power curves associated with each of the wind farm sites.

The calculated CF at each wind farm site is based on different characteristic power

curves at that site, and do not include electrical losses during the power generation

process. The normalized power curves at each wind farm sites, with each value

corresponding to a 1m/s wind speed bin increment starting from 0m/s, are listed

in Table 3.2. To calculate the CF, wind speed is multiplied with the corresponding

power curve value from the corresponding wind speed bin, and then times 100 to

convert the percentage values.

3.3 Model comparison and wind resources char-

acterization

3.3.1 Methodology

The wind speed at each wind farm location was determined using nearest grid

point values to each wind farm site. To obtain 80m wind vectors for this study,

vertical interpolation was performed on 3-hourly VR-CESM, 3-hourly MERRA-2,

6-hourly CFSR, and 3-hourly NARR products from 1980 to 2000. As mentioned

above, 80m wind output is available directly from the DNV GL Virtual Met data

product used in this study, so values are extracted directly from the output from

1980 to 2000. Vertical interpolation of VR-CESM data uses the 3D wind field on
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hybrid surfaces and 10m-altitude wind speed, which is computed from similarity the-

ory. For VR-CESM data, the interpolation procedure is as follows: (1) the CAM5

hybrid coordinates are first converted to pressure coordinates within the column

being analyzed, (2) the height of each pressure surface above ground level (AGL)

is computed by subtracting the surface geopotential height from the geopotential

height of the model level, (3) two model levels that bound the desired interpola-

tion altitude are selected or, if the interpolation altitude is below the lowest model

level, the lowest model level and 10m wind speed field are used, and (4) logarithmic

interpolation is applied to obtain the wind speed at the desired interpolation alti-

tude. Specifically, the interpolation was performed by fitting a log equation with

the two levels bounding the altitude to be calculated, then interpolating the wind at

desired altitude [34]. Vertically interpolated wind speeds from MERRA-2, CFSR,

NARR, and sounding observations were all obtained a similar procedure, and were

calculated at three hub heights (50m, 80m, and 140m). Further, wind speed at

80m was logarithmically interpolated for all three sounding profile locations, and

compared with interpolated 80m wind speed at each sounding locations from all five

model/reanalysis datasets.

The wind field enters into the maximum potential wind power P (W ) via the

expression P = 1
2
ρAU3, where ρ is air density (kg/m3), A is the cross section area of

the turbine rotor (m2), and U is wind speed at hub height (m/s). Given the cubic

relationship between wind speed and wind energy potential, even a small change

in wind speeds can lead to a substantial change to wind energy production. The

energy contribution of wind turbines to the electric power system is then computed

as the total amount of usable energy supplied by the turbine per year [35]. The

capacity factor (CF) is often thus defined as actual power output divided by the

maximum wind power output that can be generated through the system. This wind

speed and CF relationship is not continuous, since there is a discontinuous minimum

and maximum wind speed required to begin and cease wind power production (the
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Figure 3.8: Seasonal average of interpolated 80m wind speed from each datasets for
historical time period 1980-2000 in northern California domain.

latter to avoid damage to the wind turbine under extreme wind conditions), and

this is represented with different power curves associated with each of the wind farm

sites. For this study, the calculated CF at each wind farm site is based on different

characteristic power curves specific to each site (see the data in brief accompanying

this paper), and do not include electrical losses during the power generation process.

3.3.2 80m wind speed climatology

The remainder of the text focuses on the NC domain and SC domains. Fig-

ure 3.8 depicts the 80m wind speed fields (vertically interpolated values except for

Virtual Met) from each of the datasets in the NC domain. Wind fields shown are
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seasonal mean values for all March-April-May (MAM), June-July-August (JJA),

September-October-November (SON), December-January-February (DJF) seasons

between historical time period 1980-2000. Because of Virtual Met’s high spatial

resolution (4km), more topographic features are apparent in the wind field, whereas

the MERRA-2, CFSR, and NARR wind fields are blockier due to their relatively

coarse resolution. Comparing VR-CESM to Virtual Met, the overall pattern is very

similar, although VR-CESM exhibits lower mean wind speeds overall. This differ-

ence will be further assessed as part of the wind farm site comparisons in section

3.3.2. Figure 3.9 depicts mean winds for the SC domain. Again, the patterns remain

similar between VR-CESM and Virtual Met, but with a reduced wind magnitude.

Quantitatively, the VR-CESM and Virtual Met product outputs are highly corre-

lated (∼ 0.69), which suggests that the underlying physical mechanisms responsible

for determining wind speed are similar between these two products. The slow wind

speeds in VR-CESM are likely a consequence of excessive diffusion in the lowest

model levels, and further hypothesized to be connected to a boundary layer param-

eterization in CESM that is not tuned for the high resolutions employed in this

study (we anticipate addressing this issue in future work). To better match the

wind speeds predicted in the virtual met product, we applied a multiplier of 1.30

to the VR-CESM results to produce a bias-corrected VR-CESM (BC VR-CESM)

prediction. The value of this multiplier is determined by the mean wind speed dif-

ference between VR-CESM and the Virtual Met. As can be seen in Figure 3.8 and

Figure 3.9, the wind magnitudes are more comparable to Virtual Met, the latter still

produces more spatial variation as compared to BC VR-CESM. This difference in

spatial variation can be attributed to the representation of topography in the model

– as apparent in Figure 4.1, Virtual Met captures the rough rolling terrain of this

region, whereas VR-CESM represents the coastal ranges as a single “mound.” As

a result, Virtual Met captures a detailed pattern of wind speed variation, whereas

VR-CESM only captures a large-scale downslope winds off of this range. In Figure
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Figure 3.9: Seasonal average of interpolated 80m wind speed from each datasets for
historical time period 1980-2000 in southern California domain.

3.12 we observe that the histograms of wind speed from BC VR-CESM are closer

to WRF 20km, although the futher downscaled Virtual Met results exhibit much

higher frequencies over the highest wind speed bins at all locations except San Gor-

gonio. For wind speed fields at the other two analyzed hub heights (50m and 140m),

please refer to the data in brief. In general, higher altitudes tend to produce larger

wind speeds, although the patterns remain quite similar.

Monthly climatological mean wind speeds at each wind farm site are depicted

in Figure 3.10. As observed in Figures 3.8 and 3.9, Virtual Met tends to produce

the highest overall wind speeds. Whereas VR-CESM exhibits a lower wind speed

magnitude than Virtual Met, both datasets produce similar spatial patterns that
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Table 3.3: Averaged Pearson pattern correlations between each pair of datasets as
obtained from the seasonal mean 80m wind speed from 1980 to 2000.

VR-CESM
Virtual Met 0.69
MERRA-2 0.61 0.58

CFSR 0.45 0.53 0.58
NARR 0.45 0.52 0.51 0.77

Model name VR-CESM Virtual Met MERRA-2 CFSR NARR

are distinctly different than the other three reanalysis datasets. In particular, the

coarser resolution reanalysis data tends to exhibit a weak seasonal cycle. Computing

the correlation across monthly mean wind speeds between each dataset with Virtual

Met, VR-CESM has the highest correlation (on average ∼0.87 over all five wind

farm sites), followed by MERRA-2 (∼0.55), and CFSR (∼0.37). NARR (∼0.17)

exhibited the weakest correlation. To further quantify the spatial correlations be-

tween datasets, the centered Pearson pattern correlation (Table 3.3) was calculated

for seasonal mean 80m wind speeds from all the datasets, with the domains masked

to only include California, matching the domain from Virtual Met. As observed in

Table 3.3, VR-CESM produces the highest pattern correlation (∼0.69) with Vir-

tual Met, followed by MERRA-2 (∼0.58). Therefore, both temporal and spatial

correlation comparisons suggest VR-CESM produces the most similar wind speed

climatology (both temporally and spatially) to Virtual Met, followed by MERRA-2.

NARR produces the lowest correlation in space and time – in fact, discrepancies

in the spatial structure of NARR’s wind climatology are likely indicative of poten-

tially significant errors in its representation of wind speeds [David Pierce, personal

communication]. At several sites (particularly San Gorgonio), the seasonality from

the three reanalysis datasets is distinctly different from both VR-CESM and Virtual

Met. This is again likely a direct result of the resolution discrepancy between the

models and reanalysis – for instance, the San Gorgonio wind farm site sits along

a narrow pass (∼3km) between mountains, which is not resolved in the reanalysis

datasets.
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Figure 3.10: Monthly mean 80m wind speed (color-coded lines on left) and mean
CF (blue lines on right) at each wind farm site from all datasets during historical
time period 1980-2000.
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The frequencies of instantaneous 80m wind speeds from each dataset in Figure

3.11. Wind speeds in almost all locations appear to follow a Weibull distribution, as

is typical for wind speeds where the velocity in each coordinate direction is normally

distributed [5, 36]. However, the Virtual Met data diverges from the Weibull distri-

bution at several locations, which may be indicative of physical processes that are

uniquely captured by this product at high spatial resolution. Specifically, Virtual

Met produces higher wind speeds at a higher frequency than other datasets in many

cases, leading to a greater spread among the wind speed bins. Frequencies from BC

VR-CESM are closer to Virtual Met compared to VR-CESM due to increased wind

speed, although there remains a mismatch in the shape of the distribution. The

behavior of the Virtual Met data might be related to the analogous method used

on WRF model, and further investigation is needed to analyze its impact on the

hub-height wind speed. Unfortunately, the authors are presently unaware of any

publicly available hub-height wind speed datasets that would allow direct validation

of these results against observations.

3.3.3 10m wind speed climatology

The performance of VR-CESM is now assessed against the 10m hourly Inte-

grated Surface Database (ISD). Although ISD incorporates hundreds of observation

stations across California, many of these stations do not provide consistent obser-

vations over the relevant historical time period (1980-2000). In order to maximize

the number of available stations each year, and ensure sure each year has complete

data coverage, validation metrics (Table 3.4) were calculated separately for each

year between 1980 and 2000. Also, to avoid issues with near-surface coastal flow,

only inland observation stations were selected for comparison. After imposing these

restrictions, an average of 100 inland stations were used from each year.

Table 3.4 provides the averaged seasonal bias and root-mean-square error (RMSE)

at 10m altitude from our five datasets against ISD observations from 1980 to 2000.
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Figure 3.11: Frequencies for instantaneous 80m wind speeds from all datasets at
each wind farm location for the historical time period 1980-2000 by season. The bin
width is 1m/s and covers the range from 0m/s to 21m/s.
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Figure 3.12: Frequencies for instantaneous 80m wind speed from bias-corrected VR-
CESM (BC VR-CESM) and 20km WRF compared to VR-CESM and Virtual Met
at each wind farm location for the historical time period 1980-2000. The bin width
is 1m/s and covers the range from 0m/s to 21m/s.
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Here, a negative (positive) bias indicates that the wind speed is lower (higher) than

observations. As observed previously, VR-CESM tends to produce lower wind speeds

than observation, whereas the Virtual Met produces overall higher wind speeds.

MERRA-2 and Virtual Met exhibit similar differences, as MERRA-2 provides the

boundary conditions for the WRF model; nonetheless, Virtual Met does produce

higher mean wind speeds than MERRA-2, likely due to a positive wind bias that

appears fairly consistently in the WRF model [37, 38]. Note that the values listed

for Virtual Met in table 3.4 are dependent upon the specific WRF model configu-

ration and initialization used in Virtual Met. Further investigation is required to

understand biases in the WRF model. CFSR exhibits lower wind speeds for most

of the year except the DJF season, whereas NARR produces higher wind speeds in

all seasons. For MAM and JJA seasons, Virtual Met is very close to observations

– namely, it shows a relatively small bias, whereas VR-CESM has strong negative

biases in both seasons. In SON and DJF seasons, VR-CESM is closer to observa-

tions compared to Virtual Met, particularly during the DJF season (and closer to

observations than all other datasets). As VR-CESM also obtains 10m wind using

the lowest model level wind plus similarity theory, the biases in 10m wind have

the potential to be conveyed to higher elevations during the calculation. So this

10m wind speed comparison with observation also provides us some insight into the

possible biases for wind speed at 80m.

3.3.4 Comparison with soundings

Hub-height wind data in California is often produced through private investment

and hence a closely guarded trade secret confidential to project owners. Conse-

quently, for validation of our modeled hub-height wind speed data against observa-

tion, our assessment is limited to a select number of vertical sounding sites across

California (listed in Section 3.2) for comparison of higher level wind speeds, and all

of the three soundings are located near the coast (denoted by “X” in Figure 3.1)
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Table 3.4: Bias and RMSE for 10m wind speed from all five datasets to inland ISD
observational stations from 1980 to 2000. Bias and RMSE both have units of m/s.

Model name Stats MAM JJA SON DJF Annual average bias

VR-CESM Bias -0.80 -0.52 -0.32 -0.16 -0.45
RMSE 1.23 1.06 0.88 0.85

BC VR-CESM Bias -0.04 0.21 0.28 0.52 0.24
RMSE 1.10 1.10 1.00 1.17

Virtual Met Bias 0.02 -0.03 0.40 0.56 0.24
RMSE 0.97 1.02 0.94 1.02

MERRA-2 Bias -0.14 -0.13 0.23 0.52 0.12
RMSE 0.87 0.92 0.78 0.91

CFSR Bias -0.48 -0.50 -0.14 0.23 -0.22
RMSE 1.11 1.11 0.83 0.88

NARR Bias 0.11 0.16 0.52 0.67 0.37
RMSE 1.34 1.17 1.25 1.49

with complex local topographies. The coarse resolution of these models requires

them to average inland and offshore wind speeds, leading to skewed results. Also,

the sounding observations are only measured twice daily. Both these factors take

into account when doing interpolation to calculate 80m wind from sounding ob-

servations, and from model and reanalysis dataset at these sounding locations. In

comparison, the three lower resolutions reanalysis datasets all project higher than

observation wind speeds. At the OAK site, wind speed projected from VR-CESM

is the closest (bias = 0.95m/s) to observations in terms of wind magnitude , though

Virtual Met captures monthly variation better (correlation = 0.62). However, at

VBG and NKX, none of the model datasets could be said to capture the values and

seasonal variation particularly well, even though VR-CESM and Virtual Met are

the closest among all.

Figure 3.13 shows the 80m wind speed from each model and reanalysis dataset,

as well as the interpolated 80m wind speed from sounding observations. At the

OAK site, wind speed projected from VR-CESM is the closest (bias = 0.95m/s)

to observations in terms of wind magnitude , though DNV GL captures monthly

variation better (correlation = 0.62).

The three reanalysis datasets all project higher wind speeds in comparison to
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observations; the coarse resolution of these models requires them to average inland

and offshore wind speeds, leading to skewed results. At VBG, all datasets projected

higher wind speeds than observed. This might due to the location of VBG sounding

sitting very close to coast (∼5km), so that bias could be incorporated from the

higher wind speeds from the adjacent ocean. Nonetheless, wind magnitudes from

VR-CESM and DNV GL are very close to each other. Similarly at the NKX site,

VR-CESM and DNV GL are again the closest among all, but at this sounding site,

none of the datasets captured the monthly variation from observation particularly

well. This might be because the NKX sounding site locates in the mountainous

region where local topography is complicated, leading to the monthly variations not

being captured. Overall, at these coastal locations, VR-CESM produced the closest

results to observations at OAK site, whereas none of the model datasets could be

said to capture the values and seasonal variation particularly well at the other two

sites, which might due to biases coming from the higher wind speed over the ocean,

or the complexity of the local topography.

3.3.5 Comparison between VR-CESM and Virtual Met

To further investigate the difference in wind field between VR-CESM and Vir-

tual Met, the Virtual Met product was regridded to the VR-CESM grid and the

difference taken. Figure 3.14 shows 1980-2000 seasonly mean wind speed difference

from Virtual Met minus VR-CESM, with positive values indicates Virtual Met has

higher wind speeds than VR-CESM. The difference is not spatially uniform – in

particular, when comparing Figure 3.14 alongside Figure 4.1, Virtual Met projected

higher wind speed over higher altitudes, and lower wind speed at lower altitudes.

The five wind farm sites all sit at relatively high topography regions, and conse-

quently Virtual Met projects higher values at all five locations from Figure 3.14,

consistent with Figure 3.10.
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Figure 3.13: Comparison of monthly mean interpolated 80m wind speed from sound-
ing observations with interpolated 80m wind speed from all datasets. The available
time period at OAK and VBG is 1980-2000, and 1990-2000 at NKX.
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Figure 3.14: Comparison between DNV GL Virtual Met 4km and VR-CESM (Vir-
tual Met minus VR-CESM) of interpolated 80m wind speed between 1980-2000 for
northern, southern, and whole states of California domains.

3.4 Future projection

We now turn our attention to future projections of wind energy from VR-CESM

mid-century simulation under the RCP8.5 “business as usual” scenario. In this sec-

tion, seasonal wind power changes are first quantified from the mid-century projec-

tion, then understood in terms of the synoptic-scale meteorological shifts associated

with these changes at each wind farm site.

3.4.1 Projected changes

Figure 3.15 compares the seasonal 80m wind speed change between mid-century

and historical time periods (2030-2050 minus 1980-2000). These results indicate

the SON, DJF, and MAM seasons exhibit decreases in wind speed for all seasons

across most areas except for parts of the Central Valley (CV). However, JJA winds

were projected to increase in magnitude throughout most of California, particularly

through the SC domain.
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Figure 3.15: Comparison of VR-CESM seasonal averaged 80m wind speed between
historical 1980-2000 and mid-century 2030-2050 (mid-century minus historical) for
NC, SC, and California domains.

Comparing historical and future simulations, the seasonal pattern of CF and

wind speed at each site was similar, with overall higher wind speeds during summer

months, and lower wind speeds during winter months (Figure 3.16). All wind farm

sites exhibit a net increase in both wind speed and CF during summer months

(JJA), and decrease during winter months (DJF). Annual wind energy production

decreases at all sites except Altamont Pass (Table 3.5). Consistent with Figure 3.16,

JJA at all wind farm sites is associated with an increase in CF, while SON and DJF

seasons lead to a decrease in CF. The SON CF decrease is consistent with results

from Duffy et al. [39], which analyzed possible future trends at the Tehachapi wind

farm site (denoted as · in Figure 3.1), and projected a significant decrease in wind

speed throughout mid-century Fall months, and little change in Spring-Summer.

An increase in the frequency of lower wind speeds during SON and DJF seasons

is indicative of the decreasing trend in wind speed through these two seasons. A

decrease in the frequency of lower wind speeds during JJA, and increased frequency

of higher wind speeds, is indicative of the increasing trend in wind speed during this
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Figure 3.16: Comparison of 80m wind speed and capacity factor between historical
and mid-century at each wind farm site.

Table 3.5: Seasonal and annual capacity factor changes (mid-century CF minus
historical CF, divided by historical CF, and written as a percentage) at each wind
farm site under mid-century 2030-2050 compared to historical 1980-2000. Boldface
indicates a percent change above the 95% significance level.

wind farm MAM JJA SON DJF annual

Shiloh + 0.2% + 0.4% - 7.7% - 5.8% - 3.2%
Altamont Pass + 4.2% + 7.5% - 4.5% - 0.9% + 1.6%

Alta - 5.1% + 8.3% - 13.3% - 7.3% - 4.4%
San Gorgonio - 2.4% + 9.7% - 10.9% - 16.9% - 5.1%

Ocotillo + 1.6% + 5.6% - 2.0% - 9.0% - 1.0%

77



season. Figure 3.17 depicts the differences in frequency between seasonal 80m wind

speeds over the historical and mid-century periods from VR-CESM. The bold lines

in Figure 3.17 correspond to the seasons with significant CF changes from Table 3.5.

3.4.2 Synoptic-scale drivers

In meteorology, synoptic-scale fields are associated with horizontal scales on the

order of 1000km or more. Mean meteorological fields have been analyzed for seasons

with significant CF changes to identify the synoptic-scale drivers that could influence

the historical and mid-century wind climatology (JJA in Figure 3.18, SON in Figure

3.19, DJF in Figure 3.20). In particular, our analysis focuses on the 700hPa geopo-

tential height field, which is defined as the height of 700hPa isobar surfaces above

mean sea level, as well as surface pressure, surface temperature, and hub height wind

speed at 80m overlaid with wind direction at the same height. The 700hPa geopo-

tential height field was analyzed as it is reflective of the general circulation, with

wind flow at this level largely geostrophic and hence following constant geopotential

contours. The surface pressure field also impacts local wind speeds, and is closely

associated with surface temperature changes. Synoptic-scale fields during the MAM

season were not investigated, as there was no significant CF change detected over

this period (see Table 3.5).

Through JJA (Figure 3.18), the 700hPa geopotential height field features an

off-shore trough and geopotential height contour lines perpendicular to coast. This

pattern is indicative of a typical summertime marine air penetration condition [40,

41, 42] and is driven by the off-shore trough modifying the geopotential height

contour lines to be perpendicular to the coastline, allowing cool and moist marine

air to penetrate inland. The location of the off-shore trough is directly responsible for

driving marine air through the San Francisco Bay Delta. Relative to the historical

period, the magnitude of the 700hPa geopotential height field under the mid-century

increases (as a direct consequence of low-level warming). However, this increase is
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Figure 3.17: Differences in frequencies between mid-century 2030-2050 and historical
1980-2000 (mid-century minus historical) for seasonal averaged 80m wind speed from
VR-CESM at each wind farm location. Bold lines correspond to significant changes
from Table 3.5.
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less pronounced over the Northern Pacific, which drives a weakening of the typically

northerly wind pattern that traces the coastline in Northern California, and an

increase in the on-shore flow pattern driven by the general circulation. This in turn

leads to an increase in wind speeds through the San Francisco Delta region (Shiloh

and Altamont Pass in NC domain). A shift in this synoptic-scale pattern also drives

increased ventilation in the SC domain.

Surface pressure in JJA is also observed to increase more rapidly at higher al-

titudes – consequently the surface pressure in the Mojave desert increases more

rapidly than the Central Valley, and leads to a weaker pressure gradient between

the CV and Mojave. A similar observation was made by Miller and Schlegel [43]

to explain a projected decrease in Santa Ana wind events in this region during the

Fall season. Although this is a potential driver for wind speed decrease at Alta in

SC, the impact of a reduced pressure gradient is counterbalanced by the changes to

the large-scale geopotential height field, which enhances westerly wind throughout

California.

Across both time periods, SON wind speeds are generally reduced in comparison

to JJA, partly due to the decrease in land-sea temperature contrast, and associated

reduction to marine air penetration. Comparing the 700hPa gepotential height

field between historical and mid-century during SON, the entirety of the California

coast is under the influence of the weakening of wind flow parallel to the coast,

driven by the negative geopotential anomaly south of Alaska, and accompanied by

a positive geopotential height anomaly over the continent. Through the SC domain,

a weakening pressure gradient drives a decrease in the wind speed at Alta and San

Gorgonio. This observation is in agreement with the observations of Duffy et al.

[39], and leads to a projected 10-15% power potential decrease during Fall season in

mid-century in the immediate vicinity of Tehachapi.

Through DJF (Figure 3.20), increased geopotential height over the sub-tropical

western Pacific and the North American continent lead to a weaker northerly flow
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Figure 3.18: Seasonal mean 700hPa geopotential height, surface pressure, surface
temperature, and 80m wind fields on historical 1980-2000 (top row), and the corre-
sponding anomaly fields on mid-century 2030-2050 (bottom row) during JJA season.
Anomaly values (bottom row) were calculated from subtracting mean historical fields
(top row) from mean mid-century fields.

Figure 3.19: Seasonal mean 700hPa geopotential height, surface pressure, surface
temperature, and 80m wind fields on historical 1980-2000 (top row), and the corre-
sponding anomaly fields on mid-century 2030-2050 (bottom row) during SON season.
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Figure 3.20: Seasonal mean 700hPa geopotential height, surface pressure, surface
temperature, and 80m wind fields on historical 1980-2000 (top row), and the corre-
sponding anomaly fields on mid-century 2030-2050 (bottom row) during DJF season.

parallel to the coast and a reduced on-shore flow. Further, with surface pressure

decreases in the CV, the surface-level pressure gradient between the CV and the

Mojave desert decreases, which would in turn be expected to drive lower wind speeds

at the Alta wind farm site. The surface pressure gradient also decreases between

the inland and the adjacent ocean near San Gorgonio wind farm site, which further

enhances the wind speed decrease.

The seasonal meteorological patterns under the mid-century RCP8.5 scenario

provide further evidence that future changes of wind energy in California will be

influenced by both the synoptic-scale and local changes. Overall, the synoptic anal-

ysis suggests that the climate through mid-century will be conducive to higher wind

speed across the whole state of California during JJA (5-10% at four of the five sites

examined), and lower during SON (particularly at Alta and San Gorgonio which each

exhibited a > 10% decrease) and DJF (with a 17% decrease at San Gorgonio). The

changes to the surface pressure gradient between the Central Valley and the Mojave

Desert appears robust across seasons and is a primary driver of wind speed decreases
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in the SC domain. To ensure the synoptic-scale climatology of VR-CESM was not an

outlier, synoptic-scale geopotential height fields were also examined across CMIP5

models over the same time period and similar trends were observed. Ensemble runs

with VR-CESM could potentially add confidence to this study, and are a topic for

future exploration once the identified biases in VR-CESM are addressed. Besides

the mid-century time frame (2030-2050) that was studied in this paper, another

VR-CESM simulation over the end-of-century time frame (2080-2100) was also con-

ducted using the same model configuration. Wind speed change at each wind farm

site from the end-of-century run had the same sign as the mid-century run, and rel-

atively greater magnitude. The results from the end-of-century run adds confidence

to our current analysis. However, due to the end-of-century time frame is outside

the typical lifetime of a wind farm (∼20-25 years), the analysis from end-of-century

was not included in this paper.

3.5 Discussion and conclusions

The goal of this paper is twofold: First, to validate and assess the performance of

VR-CESM as a tool for modeling near-surface wind speeds and, second, to leverage

VR-CESM to assess the drivers of future wind speed change in California. The main

conclusions of this paper follow.

The capacity of the VR-CESM variable-resolution global climate modeling sys-

tem was assessed at correctly representing the historical character of wind field

in California (1980-2000) against a high-resolution WRF statistically-downscaled

wind data product, multiple reanalysis products, and publicly available observa-

tional data. Our results suggest that although VR-CESM generally exhibited a

bias towards slower wind speeds inland, the monthly climatology and spatial pat-

tern associated with the wind field was approximately consistent with observations.

Although the wind climatology was greatly improved over coarse resolution reanal-
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ysis products, we believe that the local model resolution (14km) is still too coarse

for regions of rapid topographic variation. Nonetheless, rough agreement between

simulated and observed wind fields led us to conclude that VR-CESM is correctly

representing the key regional and synoptic-scale processes that are relevant for wind

speed forecasts. Further work is needed to determine the source of the slow bias in

near-surface wind speeds from CESM.

Second, this study aimed to project and understand hub-height wind speed

changes at each wind farm site, using a VR-CESM mid-century (2030-2050) simu-

lation under RCP8.5. To better understand the regional and synoptic-scale drivers

that are responsible for these changes, our analysis targeted the meteorological pat-

terns associated with large-scale shifts in wind character. The five major wind farm

sites considered in this study spanned California. At almost all wind farm sites,

significant seasonal changes were observed in the capacity factor, with an increase

in summertime (JJA) resources and a decrease in fall (SON) and winter (DJF) un-

der RCP8.5 at all five sites (Table 3.5). Synoptic-scale and localized drivers behind

season wind energy change were also identified, and suggested climate change may

favor synoptic patterns that lead to higher wind speed during JJA, and lower wind

speed during SON and DJF.

Overall, this study improves the characterization of uncertainty around the mag-

nitude and variability in space and time of California’s wind resources in the near

future, and also enhances our understanding of the physical mechanisms related to

the trends in wind resource variability.

There are many climatological factors that impact on the wind energy in Cal-

ifornia, including correlations of wind speed with climate modes such as El Niño-

Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and North At-

lantic Oscillation (NAO). Because of the long temporal frequency of these climate

modes, there is some difficulty in disentangling how these climate modes have his-

torically impacted wind resources. In this context, ensemble simulations with VR-
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CESM may be valuable at modeling these connections. Future work could also

address alternative statistical strategies for identifying change in wind fields: for in-

stance, the use of a clustering method to analyze and group relevant wind patterns

in California. Such a method could be used to investigate the potential historical

and future trends from different wind patterns. Possible future study will also focus

on analyzing the capacity of models to capture, and the climate change impact on

intense and extreme winds.
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Chapter 4

Future Projections of Wind

Patterns in California with the

Variable-Resolution CESM: A

Clustering Analysis Approach

4.1 Introduction

It is expected that wind energy production, as with many other environmentally-

sourced renewable energy technologies, will be directly impacted by climate change.

However, the highly localized character of wind fields, driven by a strong sensitivity

to local topography, makes it difficult to model and project wind fields at the scales

needed for stakeholders. Nonetheless, a better understanding of the variability of

localized wind fields is essential to future wind energy resources planning and could

help reduce the risk of selecting future wind project locations.

Even with the known difficulties with modeling wind, some progress has been

made in better understanding this important resource. Past studies have focused

on analyzing the climate change impact on localized wind fields, and the associated
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change in wind energy generation potential [1, 2, 3, 4]. Wang, Ullrich, and Millstein

[1] assessed the climate change impact through mid-century on California wind en-

ergy resources, and found that wind speed (and hence wind energy production) is

likely to increase in summer, and diminish during fall and winter. Another study by

Duffy et al. [5] also concluded that available wind energy in California will decrease

in fall and winter. Yu et al. [6] detected upward trends in wind speeds across areas

of the US Great Plains and Intermountain West, but downward trends in the east

and in some parts of California. However, these past studies have only assessed

overall trends of wind patterns on seasonal scales, or focused only on one specific

type of wind pattern.

In this study, we present a new approach that leverages an unsupervised machine

learning algorithm, agglomerative clustering, to group wind patterns from unlabeled

data into wind clusters. The unlabeled input data for the clustering algorithm is

produced using the Community Earth System Model (CESM), a global climate

modeling system that has some demonstrable skill with modeling wind [1]. More

details about the model can be found in Section 4.2. This clustering technique is

leveraged to provide insight into the drivers and variability of different wind patterns.

Once clusters have been identified, changes in wind fields between historical and

end-of-century are decomposed into change in the cluster frequency and the change

within each cluster. The insights gained from this decomposition then serve as

our starting point for explaining significant trends that should be expected in the

future. We investigate the cause of within-cluster wind speeds change by analyzing

synoptic-scale fields associated with each cluster. However, we do not investigate

the drivers of future change to the frequency of clusters, as these changes depend

on global meteorological patterns that are beyond the scope of this study. Finally,

seasonal changes of wind energy are assessed, along with the local impact of observed

changes from wind clusters. Given appropriate regional climate data, this technique

has the potential to be adapted to essentially any geographic region.
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This work builds on a previous study by Millstein et al. [7], who used clustering

to identify the characteristics of ten selected clusters over the historical time period.

Their study then investigated the wind regime changes over the period of 1980-2015

in California, and further analyzed the impact on local wind energy resources. The

present study works to expand the time scope of Millstein et al. [7] to the end of

the 21st century, and detect any significant trends associated with the most relevant

wind clusters.

For the purposes of this study, we have divided California into two sub-domains:

the Northern California (NC) domain, which includes Shiloh and Altamont Pass

wind plant sites, and the Southern California (SC) domain, which includes Alta, San

Gorgonio, and Ocotillo sites (Figure 4.1). These five wind plant locations include

both wind plant sites currently in service, and wind project sites targeted for future

development. Due to differences in wind patterns that emerge between NC and SC

domains, the clustering algorithm was applied to the two domains separately.

The remainder of this paper is as follows: In section 4.2 we describe the VR-

CESM model setup and the clustering algorithm used in this study. Results are

presented in section 4.3, followed by discussion and conclusions in section 4.4.

4.2 Methods

This study uses model output from the Community Earth System Model (CESM),

a widely-used global climate model [8, 9]. Three time periods were separately simu-

lated, including historical (1980-2000), mid-century (2030-2050), and end-of-century

(2080-2100). However, the mid-century period that was the focus of Wang, Ullrich,

and Millstein [1] is not considered in this study, and is only used to provide ad-

ditional input for the clustering procedure. All simulations used the same model

setup, enabling us to compare across time frames, with differences only in prescribed

sea-surface temperatures and greenhouse-gas forcing. Details on model validation,
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Southern California

Northern California

Figure 4.1: The Northern California (NC) and Southern California (SC) domains
with dash line bounding boxes, along with the five wind plant locations. This figure
is a reproduction of Figure 1 from Millstein et al. [7].
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including comparison with observational stations, reanalysis datasets, and other

modeling products, can be found in Wang, Ullrich, and Millstein [1].

4.2.1 Description of VR-CESM (global climate model prod-

uct)

CESM version 1.5.5 was used for this study with the F-component set (FAMPIC5),

which prescribes sea-surface temperatures and sea ice but dynamically evolves the at-

mosphere and land surface component models. The atmospheric component model

is the Community Atmosphere Model, version 5.3 (CAM5) [8] with the spectral-

element (SE) dynamical core Dennis et al. [10] in its variable-resolution (VR) con-

figuration [11]. More details on VR-CESM can be found in Rhoades et al. [12, 13],

and Huang et al. [14]. The VR model grid used for this study, depicted in Figure

4.2, was generated for use in CAM and CLM with the open-source software package

SQuadGen [15, 16]. This grid has a finest horizontal resolution of 0.125◦(∼14km)

over the western United States, with a quasi-uniform 1◦ mesh over the remainder

of the globe. Three simulations were conducted on this grid: The historical run

covered the period from October 1st, 1979 to December 31st, 2000, with the last

three months of 1979 discarded as the spin-up period, for a total of 21-years of

three-hourly output. This historical time period was chosen to provide an ade-

quate sampling of the inter-annual variability. For projections of future wind energy

change, our mid-century and end-of-century simulations ran with the “business as

usual” Representative Concentration Pathway 8.5 (RCP8.5) [17] from October 1st,

2029 to December 31st, 2050, and from October 1st, 2079 to December 31st, 2100,

respectively. In each case the first three months of the simulation were discarded,

yielding two additional 21-year-long simulations. Analogous simulations with VR-

CESM have also been conducted by Rhoades, Ullrich, and Zarzycki [18] and Huang

and Ullrich [19] for assessing snowpack and future precipitation, respectively. Green-

house gas (GHG) and aerosol forcings are prescribed based on historical or RCP8.5
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Figure 4.2: The VR-CESM grid used in this study, constructed by first successively
refining a cubed-sphere grid with a 1◦(111km) quasi-uniform resolution to a resolu-
tion of 0.125◦(∼14km) over the western USA. This figure is a reproduction of Figure
2 from Wang, Ullrich, and Millstein [1].

concentrations for each simulation. The historical and mid-century VR-CESM sim-

ulations were previously validated and analyzed in Wang, Ullrich, and Millstein [1].

Here we expand the time horizon through the end of the 21st century, and analyze

the potential changes on localized wind regimes. Note that in Wang, Ullrich, and

Millstein [1], we found that although the large-scale patterns are captured, there is

nonetheless a low wind speed bias from VR-CESM which leads to an under estima-

tion of capacity factors. In order to calibrate the wind speed from VR-CESM, we

estimated a bias correction factors of 1.3 in Wang, Ullrich, and Millstein [1]. This

bias-correction factor was calculated based on a comparison between VR-CESM

and a high-resolution regional simulation (referred to as DNV GL in Wang, Ullrich,

and Millstein [1]). Linear bias correction factors have been applied in past efforts

in order to match global modeling or reanalysis outputs with operational data, for

example, see Staffell and Pfenninger [20] and Olauson, Edström, and Rydén [21].

Capacity factors, which are analyzed in section 4.3.3, were therefor calculated from

the bias-corrected wind speed.
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4.2.2 Agglomerative clustering

In the nomenclature of machine learning, the output data from the CESM model

simulations is referred to as “unlabeled” – namely, there is no prior knowledge of

the different wind patterns and their associated frequencies. In order to develop

such a labeling, we apply an unsupervised machine learning algorithm to group and

distinguish different wind patterns. Specifically, we use the agglomerative clustering

algorithm with Ward’s method [22] to minimize the total within-cluster variance.

Under this algorithm, each data point is initialized as a single-item cluster. At

each iteration of the method, smaller nearby clusters are chosen to merge and form

larger clusters; the particular choice of merged clusters minimizes a global inter-

cluster distances metric (i.e., Ward’s method minimizes the variance of clusters

being merged). This “bottom-up” algorithm then iterates to create a dendrogram,

which is tree-like structure, illustrating the arrangement of clusters. The number of

clusters used in the subsequent analysis can then be varied by halting the iteration

procedure at a particular level. Typically this choice is made through inspection of

the resulting clusters at each iteration, so as to identify the earliest point at which

there is sufficient distinction between all clusters in the set. This algorithm’s primary

advantage over k-means clustering [23] is that it does not require the parameter

k (how many clusters to generate) to be specified beforehand. Since we did not

have prior knowledge of the number of distinct wind patterns before execution of

the clustering algorithm, agglomerative clustering provided a natural mechanism to

tune this value.

In this study, clustering is solely applied to 80m wind vector fields (composed of

horizontal and meridional wind magnitudes). This particular height was chosen as

it is typical of the hubs of large wind turbines. Principal component analysis (PCA)

was first applied to 3-hourly (eight times daily) 80m wind vector fields to reduce

dimensionality, similar to the approach taken in Millstein et al. [7], Jin, Harley, and

Brown [24], Berg et al. [25], Conil and Hall [26] and Ludwig, Horel, and Whiteman
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[27]. We retained the first ten principal components for clustering, as they accounted

for over 80% of the total variance. Then, each day was categorized into a particular

cluster based on a set of (8 × 10) 80 PCA components. For each region (NC and

SC), regridded data from all three time periods (historical, mid-century, and end-

of-century) was simultaneously provided as input to the clustering algorithm. This

was to ensure the consistency of clusters across all three time periods. We ran

the clustering algorithm separately on NC and SC domains since the synoptic-scale

wind patterns produce distinct localized effects in these regions. To determine how

many wind patterns would be needed to distinguish wind regimes, we leveraged the

dendrogram produced by the agglomerative clustering algorithm and determined the

point when distinctly different wind patterns were merged [28]. After examination of

the clustering output, we concluded that for each of NC and SC domains, ten clusters

provided a good representation of different wind regimes – namely, five clusters did

not sufficiently distinguish various qualitatively different wind patterns, and fifteen

clusters produced several instances of cluster pairs with only subtle differences. A

quantitative assessment using the CH index [29], which measures the overall within-

cluster variance and the overall between-cluster variance, confirmed the optimality of

ten clusters in each region. Namely, ten clusters produced a higher CH index than

the index from either five and fifteen clusters – indicating that the clusters have

larger between-cluster variance, and smaller within-cluster variance. Therefore, for

both NC and SC we analyzed the different wind patterns from ten clusters. Note

that in the remainder of the text the numbers associated with each cluster do not

bear meaning, and are only for labeling purposes. Each cluster is labeled by its

domain and cluster number (e.g. NC 6 is cluster 6 from NC domain).

4.2.3 Decomposition of changes in wind clusters

Climate change can impact wind clusters through two principal avenues: First,

through the modification of the frequency of the wind cluster, and second, through
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the modification of the wind patterns within each cluster. The change in either the

total wind field or the wind field of each cluster can be decomposed into these two

contributions as follows. We denote the historical frequency of a given cluster i as

fh
i , the end-of-century frequency as f e

i , the historical average wind field within the

cluster by Uh
i , and the end-of-century wind field within the cluster by U e

i . Thus the

average historical Uh and end-of-century U e wind fields can be written as:

Uh =
∑
i

Uh
i f

h
i , U e =

∑
i

U e
i f

e
i . (4.1)

The average frequency of the cluster fi and average wind field within the cluster Ui

(combining both historical and end-of-century) are given by:

fi =
1

2
(fh

i + f e
i ), Ui =

Uh
i f

h
i + U e

i f
e
i

fh
i + f e

i

(4.2)

Then defining change in cluster frequency by ∆fi = f e
i − fh

i and change in the

average wind field by ∆U = U e − Uh, we can write

∆U =
∑
i

U e
i f

e
i − Uh

i f
h
i (4.3)

=
∑
i

Ui∆fi︸ ︷︷ ︸
(a)

+ (U e
i − Uh

i )fi︸ ︷︷ ︸
(b)

−∆f 2
i (U e

i − Uh
i )

4fi︸ ︷︷ ︸
(c)

, (4.4)

where (4.4a) denotes the change in average wind speed due to the change in frequency

of cluster i, (4.4b) denotes the change in average wind speed due to the change in the

wind field within each cluster i, and (4.4c) denotes nonlinear changes associated with

simultaneous changes in frequency and wind field. In this wind speed decomposition,

U represents the wind speed magnitude from VR-CESM, not the wind vector field.

Note that such a decomposition is independent of our choice of clustering technique,

and can be performed for any grouping of fields from two periods.
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4.3 Results

Section 4.3.1 describes the wind patterns associated with each cluster. Section

4.3.2 then examines the climatological synoptic-scale fields from clusters with sig-

nificant trends. In section 4.3.3, we analyze the future projections of wind clusters

from the end-of-century VR-CESM simulation, and their impact on wind energy

output.

4.3.1 Trends in cluster frequency

As described in section 4.2.2, days from historical and end-of-century time pe-

riods were grouped into ten clusters per region (NC and SC) based solely on wind

vector fields (twenty clusters total). A qualitative summary of these clusters, their

dominant seasonality, and end-of-century minus historical frequency change (annual

and broken down by season) is given in Table 4.1. By using a combined dataset

of historical and end-of-century daily wind fields as input for the cluster analysis,

we would generally expect that changes in cluster frequency will dominate the total

change in the wind field. Namely, since the cluster analysis is, in effect, grouping

days with similar wind fields, we expect that the wind field for days in a particular

cluster to be more similar to one another than to the wind field of days in another

cluster. For each of these twenty clusters, Figures S3-S5 and S6-S8 show the mag-

nitudes of each of the three terms in Equation (4.4) for the northern and southern

California clusters, respectively. In general, we observe that change in cluster fre-

quency is the dominant contributor to change in wind patterns, followed by changes

in wind fields within each cluster (except in those cases where the change in cluster

frequency is small). In each case the nonlinear term is not a significant contributor

to the overall change. The remainder of this section focuses on analysis of select

clusters, with additional discussion on the large-scale drivers that could influence

the wind climatology in each case.
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Table 4.1: Top: Dominant seasons, historical frequency, end-of-century frequency
changes, and qualitative summary for NC and SC clusters. Bottom: Historical
frequency and end-of-century frequency change broken down by season. Frequency
changes indicated in bold are significant under the two-proportion z-test at the
95% significance level. The seasonal frequency of these clusters is also depicted in
Figures S1 and S2. Seasons are March-April-May (MAM), June-July-August (JJA),
September-October-November (SON), and December-January-February (DJF).

Cluster Dominant Annual Qualitative summary
Seasons fh

i ∆fi
NC 1 DJF MAM 13.6% -1.5% Westerly wind
NC 2 DJF 10.2% -1.3% Stronger westerly wind w/ offshore trough
NC 3 DJF SON 11.2% - 3.2% Offshore blocking
NC 4 SON MAM 13.4% - 0.5% Low wind
NC 5 JJA 5.3% + 0.3% Strong northerly wind
NC 6 JJA MAM 12.7% + 2.4% Marine air penetration
NC 7 JJA MAM 12.3% + 0.2% Marine air penetration
NC 8 JJA SON 8.0% + 2.1% Marine air penetration
NC 9 DJF MAM 9.2% + 0.6% Low southerly wind
NC 10 JJA 4.0% + 0.8% Marine air penetration

SC 1 MAM DJF 14.1% - 1.1% Strong alongshore wind
SC 2 JJA SON 23.1% - 0.3% Weak onshore flow
SC 3 DJF MAM 12.5% + 0.4% Low wind
SC 4 JJA MAM 15.5% + 2.8% Onshore flow
SC 5 DJF 3.8% - 0.5% Southwesterly wind
SC 6 DJF SON 8.8% - 2.3% Santa Ana winds
SC 7 JJA SON 7.3% + 2.0% Weakened onshore flow
SC 8 DJF MAM 7.2% - 1.7% Westerly wind
SC 9 SON MAM 4.9% + 1.0% Low wind
SC 10 DJF MAM 2.8% - 0.4% Onshore flow

Cluster MAM JJA SON DJF
fh
i ∆fi fh

i ∆fi fh
i ∆fi fh

i ∆fi

NC 1 17.5% - 0.9% 1.1% - 0.8% 15.7% - 5.1% 20.5% + 0.8%
NC 2 9.3% - 2.6% 0.1% 0.0% 7.0% -1.1% 24.5% - 1.3%
NC 3 7.1% - 1.7% 1.0% - 0.9% 15.2% - 6.4% 21.7% - 3.9%
NC 4 17.8% + 0.5% 5.8% - 4.0% 20.8% - 0.1% 9.4% + 1.6%
NC 5 2.3% + 1.3% 15.7% - 0.9% 3.0% + 0.7% 0.0% + 0.1%
NC 6 17.5% -0.5% 19.1% + 6.2% 11.7% + 3.8% 2.3% + 0.2%
NC 7 11.7% + 2.4% 27.3% - 3.1% 8.1% + 0.7% 1.8% + 0.8%
NC 8 4.3% + 1.9% 16.8% + 3.3% 10.5% + 3.2% 0.3% + 0.1%
NC 9 10.6% - 1.1% 0.2% - 0.1% 6.7% + 2.1% 19.5% + 1.7%
NC 10 1.9% + 0.7% 12.9% + 0.3% 1.2% + 2.3% 0.0% 0.0%

SC 1 22.7% - 1.4% 2.2% - 0.6% 13.3% - 3.5% 18.4% + 1.0%
SC 2 19.5% + 3.1% 45.9% - 6.4% 21.4% + 2.0% 5.2% 0.0%
SC 3 12.2% - 2.6% 0.2% 0.0% 16.5% - 1.3% 21.4% + 5.5%
SC 4 17.2% + 4.0% 30.8% + 5.3% 12.9% + 1.5% 0.8% + 0.7%
SC 5 2.5% + 0.2% 0.0% 0.0% 1.9% - 0.5% 10.7% - 1.7%
SC 6 4.0% - 1.7% 0.0% + 0.1% 10.4% - 4.4% 21.1% - 3.0%
SC 7 2.8% + 2.1% 18.0% + 1.9% 7.7% + 4.2% 0.5% - 0.2%
SC 8 10.8% - 3.9% 0.2% + 0.2% 4.9% - 0.3% 12.9% - 2.8%
SC 9 5.8% + 0.8% 2.7% - 0.5% 8.8% + 2.8% 2.3% + 1.1%
SC 10 2.4% - 0.5% 0.0% + 0.1% 2.0% - 0.5% 6.8% - 0.5%
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4.3.2 Synoptic-scale character of prominent clusters

This section describes the synoptic-scale character of the select clusters from Ta-

ble 4.1. We focus on analyzing the mean meteorological fields, including the 700hPa

geopotential height, and the wind field at 80m above the ground. The 700hPa geopo-

tential height field was chosen as it is reflective of the general circulation, with wind

flow at this level being largely geostrophic but still strongly connected with near-

surface winds. Because of the terrain-following coordinate, the lowest model level in

CESM is everywhere below the 80m level, and so all wind speeds are interpolated.

NC 1 and NC 2: Reduced ventilation from westerly winds

Clusters NC 1 (westerly wind) and NC 2 (stronger westerly wind) in the NC

domain are frequent (13.6% and 10.2%) wind patterns that peak in frequency during

the winter season (20.5% and 24.5% frequency in DJF). They are accompanied

by relatively large annual frequency changes (-1.5% and -1.3%), with the largest

decreases occurring in the spring and fall. Further analysis of these patterns is

beneficial to explain decreases in wind energy output during DJF, described later

in the paper (Table 4.6). Among the two, cluster 2 shows higher wind speed in NC

domain than cluster 1, and thus will be analyzed here.

The synoptic-scale fields for NC 2 are depicted in Figure 4.3. The 700hPa geopo-

tential height field shows a trough over the Gulf of Alaska that promotes flow di-

rected perpendicular to the coast and hence on-shore ventilation through the NC

domain. As discussed later, NC 2 tends to produce the highest wind speeds at the

Shiloh and Altamont Pass wind plants among all clusters, and so a reduction in the

frequency of this pattern will be associated with decreasing NC capacity factors in

DJF. Comparing end-of-century to historical within this cluster, two effects appear

to be prominent: First there is an increase in the geopotential gradient in the mid-

Pacific which drives up wind speeds over the open ocean. However, simultaneously

increased overland temperatures (not shown) appear to be promoting an increase
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Figure 4.3: Meteorological fields from cluster NC 2. (top left) Historical mean
700hPa geopotential height; (top right) 80m historical wind field; (bottom left)
700hPa geopotential height change; (bottom middle) end-of-century minus historical
wind speed change due to change in cluster frequency (Ui∆fi/fi); and (bottom right)
end-of-century minus historical wind speed change within cluster (U e

i − Uh
i ).

in the overland geopotential height (thicker air masses from warmer temperature).

This second factor drives a reduction in onshore flow, and consequently we observe

decreasing wind speeds within this cluster across the NC domain.

NC 3: Reduced offshore blocking

Figure 4.4 depicts the synoptic-scale fields from NC 3, which again peaks in the

winter season and exhibits a frequency decrease of 3.2% through end-of-century.

This cluster corresponds to offshore blocking along the California coast. In oppo-

sition to NC 6 (associated with summertime marine air penetration), this cluster

exhibits a pronounced ridge over the Eastern Pacific, leading to a strong northerly
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wind flow parallel to the California coastline that is associated with the second

largest wind speeds at the NC wind plants. Within this cluster, the 700hPa geopo-

tential height field exhibits a broad increase in end-of-century; however, the change

in geopotential height is larger at lower latitudes and smaller over the Northern

Pacific. This leads to a weakening of the northerly flow, in turn causing an overall

decrease in offshore and onshore wind speeds. Overall, the decrease in frequency and

character of this pattern drives weaker wind speeds at both Shiloh and Altamont

Pass.

Note that other studies (i.e., Wang and Schubert [30]) noted an increased trend

in blocking over the 20th century, particularly in the Gulf of Alaska, which seems

contrary to our observations in this section (particularly given that NC 3 is repre-

sentative of this offshore blocking pattern). To assess if this trend is present in the

VR-CESM data, we counted blocking days at each grid point over each DJF season,

defined as days where the geopotential at a given point exceeded the climatological

geopotential for that period plus one standard deviation (separately calculated for

historical and end-of-century). Note that the blocking days were selected outside the

clustering framework, using only the aforementioned criterion. The results of this

analysis are plotted in Figure 4.5, and are inconsistent with an increased blocking

frequency.

NC 6-8 and NC 10: Increased summertime marine air penetration (MAP)

Figure 4.6 depicts the synoptic-scale fields of cluster 6 in the NC domain, which

is expected to increase in frequency by 2.4% through end-of-century. The change in

frequency of this cluster appears to occur in conjunction with a decreasing frequency

of the NC 4 cluster, associated with low wind events. NC 6 is indicative of a typical

summertime marine air penetration (MAP) condition [31, 32, 33]. Notably, the

increasing frequency of summertime MAP events from these clusters agrees with

the findings of Wang and Ullrich [31]. MAP events feature an off-shore trough
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Figure 4.4: As Figure 4.3 but for NC domain cluster 3.

Figure 4.5: Total number of days each grid point exceeds the mean plus one standard
deviation of 500hPa geopotential height field for (Left) historical and (Center) end-
of-century. (Right) Difference between end-of-century and historical.
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and geopotential height contour lines perpendicular to coastline, allowing cool and

moist marine air to penetrate inland. It is the location of the off-shore trough that

is directly responsible for driving marine air through the San Francisco Bay Delta.

Within this cluster and relative to the historical period, the magnitude of the

700hPa geopotential height field under the end-of-century increases, as a direct

consequence of low-level warming (not shown). This low-level warming drives a

thickening of air layers and thus an increase in the 700hPa geopotential height field.

However, this increase is less pronounced over the Northern Pacific, which drives

a weakening of the typically northerly wind pattern that traces the coastline in

Northern California, and an increase in the on-shore flow pattern driven by the

general circulation. This in turn leads to an increase in wind speeds through the

San Francisco Delta region during MAP days (and at Shiloh and Altamont Pass in

NC domain). A shift in this particular synoptic-scale pattern also drives increased

ventilation in the SC domain.

These changes to frequency and wind pattern suggest the tendency towards

more MAP days and more intense MAP winds are primary drivers for increased

summertime wind speeds in the San Francisco Bay region.

SC 1: More seasonally concentrated strong alongshore wind

Moving to the SC domain, cluster SC 1 captures days of strong alongshore wind

off the U.S. west coast (Figure 4.7) that appear most prominently between the fall

and spring seasons. The alongshore flow weakens south of the SC domain, and so

is associated with a strong inland flow of the marine air through the Los Angeles

region. This pattern is associated with some of the highest historical capacity factors

for the Alta wind plant (see table 4.8). Due to the location of Alta wind plant, which

sits in the pass between in the Tehachapi mountains, the ventilation from the San

Joaquin valley to the Mojave also contributes to the high capacity factors. It is also

a frequent pattern, and one that has been projected to decrease in frequency by 1.1%
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Figure 4.6: As Figure 4.3 but for NC domain cluster 6.
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Figure 4.7: As Figure 4.3 but for SC domain cluster 1.

annually; however, this change in frequency is primarily because of an increase in

seasonality – the pattern sees an increase in frequency in DJF but decrease in MAM

and SON. Within this cluster, the 700hPa geopotential height field change shows

an inhomogenous pattern that favors overland warming, and reduces the alongshore

gradient, thus leading to a weakening of the flow. The net result of these changes is

a reduction in spring and winter wind speeds in the SC region.

SC 4: Increased summertime marine air penetration

Spring and summertime marine air penetration is also reflected in the SC domain

via cluster SC 4, and its increased frequency through end-of-century supports our

prior observations with cluster NC 6 (marine air penetration). As shown in Figure

4.8, a local trough sits off-shore with a 700hPa geopotential contour perpendicular

to the shoreline in SC domain, leading to onshore marine air. The end-of-century
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Figure 4.8: As Figure 4.3 but for SC domain cluster 4.

change to the 700hPa geopotential height surface also produces a small enhancement

in wind speeds parallel to the shore. Consequently both the increased frequency of

SC 4 and slightly increased onshore winds within SC 4 leads to increased ventilation

of the SC domain.

SC 5: Less frequent wintertime southwesterly wind

SC 5 represents wintertime southwesterly wind from an offshore trough sitting

near the U.S. west coast. This cluster brings relatively high wind speeds, but is

becoming less frequent during the winter season. By the end-of-century, the offshore

trough intensifies, leading to higher wind speeds over the Pacific. Simultaneously,

the 700hPa geopotential height anomaly center over the SC domain acts to block

the onshore wind, leading to wind speeds decreasing over almost all areas within

California.
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Figure 4.9: As Figure 4.3 but for SC domain cluster 5.
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Figure 4.10: As Figure 4.3 but for SC domain cluster 6.

SC 6: Less frequent and weaker Santa Ana winds in fall/winter

The second largest change in cluster frequency for the SC domain occurs in

cluster 6, which is 2.3% less frequent by end-of-century. The synoptic fields for

these days is depicted in Figure 4.10, and corresponds to a typical wind pattern

from Santa Ana events [34, 35]. The relatively high 700hPa geopotential height

field over the western US, along with the high center sitting off-shore, leads to the

northeasterly wind field throughout the SC region. The end-of-century change in

700hPa geopotential height field indicates a weakening of the onshore ridge, in turn

producing slightly weaker winds during Santa Ana events. The decrease in cluster

frequency around Fall season is also consistant with findings from Miller and Schlegel

[3], where decreasing frequency of Santa Ana occurrence was also projected in early

Fall through the end-of-century.
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Figure 4.11: As Figure 4.3 but for SC domain cluster 7.

SC 7: More frequent and less seasonal weakened onshore flow

SC cluster 7, which corresponds to weakened onshore flow in the summer and fall

seasons, also shows a significant increase in frequency by 2.0%. The synoptic-scale

fields of this cluster are depicted in Figure 4.11. By the end-of-century, the high

700hPa geopotential height anomaly center sitting offshore to the California coast

acts to increase the northerly flow parallel to the coastline in Northern California,

and blocks northerly flow in SC domain. This leads to a weakening of the offshore

flow throughout the SC domain.

SC 8: Less frequent westerly wind in winter/spring

SC cluster 8 represents a steady westerly marine flow directed onshore (Figure

4.12), and appears most prominently in the winter season. This cluster is less
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Figure 4.12: As Figure 4.3 but for SC domain cluster 8.

frequent (7.2%) but has been projected to decrease by 1.7% in its frequency under

end-of-century, with most of the decrease occurring in winter and spring. Similar to

the previously described clusters, the 700hPa geopotential height field in cluster 8

is also increasing, although with a magnitude that is reduced over the area centered

around the offshore region near Baja California. The net result of this change in the

geopotential height field is a reduced wind field throughout the whole California, and

also a reduction in onshore marine flow. Consequently the changes in this cluster

produce a reduction in wind speeds throughout the SC domain.

4.3.3 Trends in wind energy production

In this section, projected changes in wind energy production are considered in

light of the cluster analysis. Before proceeding, we first assess projected changes
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in wind energy production from model output. Wind fields from VR-CESM runs

were interpolated to each wind plant location so as to directly compute wind energy

capacity factor (CF in %) changes between historical and end-of-century (details

of this calculation and mid-century differences can be found in Wang, Ullrich, and

Millstein [1]). Before calculating CF based on the wind fields from VR-CESM, a

constant bias correction factors of 1.3 (Section 4.2.1) was applied to the wind fields

to reduce the low wind speed bias from VR-CESM. Then CF were calculated from

the bias-corrected wind fields. Table 4.2 through 4.9 are all based on the bias-

corrected CF values. CFs are commonly defined as actual power output divided by

the maximum wind power output that can be generated through the wind turbine

system. The relationship between wind speed and CF is nonlinear, and is calculated

via different characteristic power curves at each wind plant location (see Table 3.2),

and do not include electrical losses during the power generation process. Table 4.2

lists overall seasonal and annual CF differences at each location without using the

clustering methodology. Percentage changes in the lowermost table are calculated

with end-of-century CF minus historical CF, divided by historical CF, and written

as a percentage change by multiplying 100. Overall, CFs are observed to increase in

summer season (JJA), whereas winter (DJF) seasons exhibit a CF decrease. Here

the overall seasonal trends from end-of-century during JJA and DJF are consistent

with mid-century trends reported in Wang, Ullrich, and Millstein [1], but with an

increased magnitude. CF changes based on the original wind fields (without bias

correction) are given in section 3 in Table 4.3.

Our goal is to now explain the statistically significant CF changes observed in

Table 4.2. In each of the following subsections we decompose the CF from each wind

plant into the contribution from each cluster, and further decompose the change

in CF into frequency changes and within-cluster changes following section 4.2.3.
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Table 4.2: Historical seasonal and annual capacity factor (%) (upper table), absolute
change in capacity factors (middle table), and percentage capacity factors changes
under end-of-century comparing to historical (lower table) at each wind plant sites
across California. Absolute changes are calculated with end-of-century CF minus
historical CF. Percentage changes are calculated with end-of-century CF minus his-
torical CF, divided by historical CF, and multiplied by 100 to write as percentages.
Shiloh and Altamont Pass are located in NC domain, and the other three wind
plants are in SC domain. All CF values are based on bias-corrected wind fields from
VR-CESM.

Boldface indicates a percent change above the 95% significance level.

Wind plant MAM JJA SON DJF Annual

Shiloh 33.45 50.41 30.60 27.47 35.53
Altamont Pass 23.84 40.67 19.22 14.11 24.52
Alta 44.43 40.02 34.25 38.75 39.38
San Gorgonio 19.87 23.59 12.70 11.77 17.02
Ocotillo 37.06 39.82 20.67 12.09 27.50

Wind plant MAM JJA SON DJF Annual

Shiloh + 0.98 + 2.44 - 1.65 - 3.68 - 0.46
Altamont Pass + 1.63 + 3.81 + 0.39 - 1.36 + 1.13
Alta - 1.54 + 1.02 - 5.29 - 3.67 - 2.35
San Gorgonio + 0.10 + 1.91 - 1.32 - 2.14 - 0.35
Ocotillo + 1.21 + 3.57 - 1.33 - 0.47 + 0.76

Wind plant MAM JJA SON DJF Annual

Shiloh + 2.92% + 4.84% - 5.39% - 13.39% - 1.29%
Altamont Pass + 6.82% + 9.37% + 2.04% - 9.65% + 4.62%
Alta - 3.46% + 2.54% - 15.44% - 9.47% - 5.98%
San Gorgonio + 0.52% + 8.09% - 10.37% - 18.14% - 2.04%
Ocotillo + 3.27% + 8.97% - 6.42% - 3.89% + 2.77%
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Table 4.3: Historical seasonal and annual capacity factor (%) (upper table), ab-
solute change in capacity factors (middle table), and percentage capacity factors
changes under end-of-century comparing to historical (lower table) at each wind
plant sites across California. Absolute changes are calculated with end-of-century
CF minus historical CF. Percentage changes are calculated with end-of-century CF
minus historical CF, divided by historical CF, and multiplied by 100 to write as
percentages. Shiloh and Altamont Pass are located in NC domain, and the other
three wind plants are in SC domain. Boldface indicates a percent change above the
95% significance level under t-statistics.

Wind plant MAM JJA SON DJF Annual

Shiloh 15.51 23.62 14.61 15.23 17.26
Altamont Pass 10.40 20.17 8.36 6.17 11.31
Alta 24.50 19.45 17.80 20.51 20.57
San Gorgonio 8.21 9.89 5.01 4.77 6.98
Ocotillo 20.28 24.72 11.11 5.31 15.42

Wind plant MAM JJA SON DJF Annual

Shiloh + 0.30 + 1.56 - 1.62 - 2.67 - 0.60
Altamont Pass + 0.91 + 2.51 + 0.24 - 0.84 + 0.72
Alta - 1.47 + 0.77 - 3.81 - 2.23 - 1.68
San Gorgonio 0.00 + 0.94 - 0.57 - 1.05 - 0.16
Ocotillo + 1.84 + 3.00 - 0.45 - 0.22 + 1.06

Wind plant MAM JJA SON DJF Annual

Shiloh + 1.92% + 6.59% - 11.12% - 17.54% - 3.46%
Altamont Pass + 8.75% + 12.46% + 2.88% - 13.55% + 6.34%
Alta - 6.00% + 3.97% - 21.39% - 10.89% - 8.15%
San Gorgonio - 0.01% + 9.51% - 11.42% - 22.06% - 2.36%
Ocotillo + 9.06% + 12.14% - 4.06% - 4.15% + 6.85%

116



Namely, we apply

∆CF =
∑
i

CFi∆fi︸ ︷︷ ︸
(a)

+ (CF e
i − CF h

i )fi︸ ︷︷ ︸
(b)

+h.o.t., (4.5)

where CF h
i and CF e

i are the historical and end-of-century average CF for cluster

i and CFi = (CF h
i + CF e

i )/2. Here h.o.t. denotes higher-order terms that are

negligible in the decomposition.

NC JJA (Shiloh and Altamont Pass)

Both NC wind plant locations experience a significant increase in JJA CF, driven

by essentially two factors. First, from Table 4.1 we see that there is a significant

reduction in the frequency of low wind days (NC 4), and an accompanying increase

in summertime MAP days (NC 6 and NC 8). Second, there is a significant increase

in the wind speeds on MAP days (NC 6, 7, and 8), as explained in section 4.3.2 –

in fact, the increase in wind speeds actually compensates for a reduced frequency

of the NC 7 cluster of MAP days. Table 4.4 identifies the 6 clusters responsible for

98.1% and 98.6% of the historical wind energy production for Shiloh and Altamont

Pass.

NC SON (Shiloh)

In accordance with Table 4.1, there is a decrease in the frequency of NC 1 and

3, associated with westerly wind and blocked offshore wind, and a compensating

increase in the frequency of NC 6, 8, and 9, corresponding to MAP days and low

southerly wind. As discussed in sections 4.3.2 and 4.3.2 inhomogeneity in the chang-

ing geopotential field has the further effect of reducing the wind speeds within the

NC 1 and NC 3 clusters, further driving down CFs. Curiously, Altamont Pass does

not experience a corresponding decrease in total CF, as historical CF at this wind

plant during NC 1 and NC 3 days are much lower than NC 6 and NC 8 and so the
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Table 4.4: Historical mean CF in select clusters (CF h
i )(%), historical contribution

to total seasonal CF (CF h
i f

h
i ), end-of-century CF change due to changes in cluster

frequency (∆CF (a)), and within-cluster change in wind speeds (∆CF (b)) for the
NC JJA season. Boldface in the (∆CF (a)) column indicates clusters with significant
change in frequency (see Table 4.1). Boldface in the (∆CF (b)) column indicates a
significant within-cluster change in CF at the 95% significance level obtained from
t-statistics. The values in the “Total” row indicate how much total CF and CF
change is attributed to this subset of clusters (compared to Table 4.2).

NC JJA (top 6 clusters)

Cluster Wind plant CF h
i CF h

i f
h
i ∆CF (a) ∆CF (b)

4
Shiloh 36.79 2.13 - 1.55 + 0.12
Altamont Pass 26.80 1.55 - 1.16 + 0.14

5
Shiloh 53.71 8.45 - 0.46 - 0.34
Altamont Pass 25.39 3.99 - 0.22 - 0.12

6
Shiloh 52.11 9.95 + 3.25 + 0.31
Altamont Pass 49.27 9.41 + 3.10 + 0.44

7
Shiloh 47.51 12.96 - 1.52 + 0.80
Altamont Pass 52.10 14.21 - 1.70 + 1.32

8
Shiloh 60.09 10.08 + 2.00 + 0.05
Altamont Pass 38.12 6.39 + 1.34 + 0.86

10
Shiloh 45.58 5.87 + 0.15 + 0.32
Altamont Pass 35.14 4.53 + 0.11 + 0.09

Total
Shiloh 49.45 + 1.85 + 1.27
Altamont Pass 40.09 + 1.47 + 2.74
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Table 4.5: As Table 4.4, except for NC SON.

NC SON (top 6 clusters)

Cluster Wind plant CF h
i CF h

i f
h
i ∆CF (a) ∆CF (b)

1
Shiloh 24.66 3.87 - 1.12 - 0.73
Altamont Pass 16.39 2.57 - 0.74 - 0.51

2
Shiloh 38.15 2.67 - 0.39 - 0.35
Altamont Pass 22.07 1.55 - 0.22 - 0.24

3
Shiloh 38.49 5.84 - 2.33 - 0.49
Altamont Pass 13.76 2.09 - 0.78 - 0.36

6
Shiloh 37.67 4.42 + 1.42 - 0.15
Altamont Pass 33.97 3.98 + 1.30 - 0.01

8
Shiloh 43.05 4.53 + 1.33 - 0.32
Altamont Pass 25.53 2.68 + 0.82 + 0.05

9
Shiloh 13.95 0.93 + 0.29 - 0.03
Altamont Pass 7.77 0.52 + 0.16 + 0.04

Total
Shiloh 22.27 - 0.80 - 2.06
Altamont Pass 13.40 + 0.53 -1.12

shifting cluster frequencies actually drive up average CF. Unlike the summer and

winter seasons, the transitional fall and spring seasons do not feature a prominent

subset of wind clusters. However, low wind days (NC 4) are much more likely to

occur in the future during these seasons – we thus see that Shiloh is projected to see

a decrease in CF in the fall. The breakdown of the contributions from the six most

prominent clusters to Shiloh’s CF is given in Table 4.5, which accounts for 72.8% of

the wind energy production for this season. However, changes in these six clusters

effectively explain the observed change in wind speed in this season.

NC DJF (Shiloh and Altamont Pass)

Both wind plants experience a significant decline in total CF over this season.

The observed change can be largely attributed to a decrease in the frequency of

NC 2 and NC 3 (strong westerly wind and blocked offshore wind), which have the

highest average CF at Shiloh, and an increase in the frequency of NC 1, 4, and 9

clusters, which are each associated with lower wind speeds and CF. There is further a

significant decrease in the wind speeds of cluster NC 2, the most frequent wintertime

pattern, as described in section 4.3.2 to be attributed to higher overland pressures.
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Table 4.6: As Table 4.4, except for NC DJF.

NC DJF (top 5 clusters)

Cluster Wind plant CF h
i CF h

i f
h
i ∆CF (a) ∆CF (b)

1
Shiloh 19.96 4.08 + 0.16 - 0.29
Altamont Pass 12.24 2.50 + 0.10 - 0.07

2
Shiloh 48.93 11.98 - 0.62 - 1.47
Altamont Pass 27.62 6.76 - 0.34 - 1.14

3
Shiloh 27.14 5.90 - 1.05 - 0.05
Altamont Pass 8.54 1.85 - 0.34 + 0.05

4
Shiloh 11.32 1.06 + 0.16 - 0.25
Altamont Pass 4.97 0.47 + 0.08 - 0.02

9
Shiloh 19.07 3.72 + 0.29 - 0.74
Altamont Pass 10.12 1.98 + 0.16 - 0.07

Total
Shiloh 26.74 - 1.06 - 2.80
Altamont Pass 13.56 - 0.34 - 1.24

NC wintertime is associated with 5 clusters that describe 97.4% and 96.1% of total

seasonal wind energy productions at Shiloh and Altamont Pass, respectively.

SC JJA (San Gorgonio and Ocotillo)

These two wind plants experience a pronounced increase in CF over this season

attributed to two factors. First, a strengthening of the onshore flow (when it occurs)

that leads to a reclassification of SC 2 days (weak onshore flow) to SC 4 and SC

7(onshore flow) days (Table 4.1). Second, an increase in the overall strength of SC

2 days when they do occur and SC 7 days, generally associated with an increase

in onshore flow speeds associated with a stronger land/sea temperature gradient.

The three clusters in Table 4.7 describe 97.1% and 96.9% of total JJA wind energy

productions for San Gorgonio and Ocotillo, respectively.

SC SON (Alta and San Gorgonio)

Wind speeds are projected to decrease throughout the SC domain in the fall

season leading to a significant decrease in CF at Alta and San Gorgonio. As observed

in Table 4.8 this can be attributed to a widespread drop in wind speeds within

essentially all clusters. This is accompanied by a significant drop in frequency of
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Table 4.7: As Table 4.4, except for SC JJA.

SC JJA (top 3 clusters)

Cluster Wind plant CF h
i CF h

i f
h
i ∆CF (a) ∆CF (b)

2
San Gorgonio 19.15 8.78 - 1.33 + 1.34
Ocotillo 33.00 15.13 - 2.26 + 1.89

4
San Gorgonio 32.99 10.16 + 1.73 - 0.19
Ocotillo 56.36 17.36 + 2.99 + 0.16

7
San Gorgonio 19.39 3.48 + 0.37 + 0.01
Ocotillo 29.36 5.27 + 0.58 + 0.40

Total
San Gorgonio 22.42 + 0.77 + 1.15
Ocotillo 37.76 + 1.31 + 2.45

Table 4.8: As Table 4.4, except for SC SON.

SC SON (top 7 clusters)

Cluster Wind plant CF h
i CF h

i f
h
i ∆CF (a) ∆CF (b)

1
Alta 61.71 8.20 - 2.10 - 0.45
San Gorgonio 15.77 2.10 - 0.56 + 0.03

2
Alta 38.25 8.19 + 0.71 - 1.08
San Gorgonio 11.75 2.51 + 0.23 - 0.11

3
Alta 19.32 3.19 - 0.22 - 0.71
San Gorgonio 4.89 0.81 - 0.06 - 0.15

6
Alta 43.08 4.49 - 1.90 - 0.05
San Gorgonio 18.03 1.88 - 0.74 - 0.22

7
Alta 16.16 1.24 + 0.72 + 0.22
San Gorgonio 7.03 0.54 + 0.32 + 0.12

8
Alta 40.18 1.98 - 0.09 - 0.37
San Gorgonio 16.89 0.83 - 0.04 - 0.14

9
Alta 22.25 1.97 + 0.58 - 0.38
San Gorgonio 7.93 0.70 + 0.19 - 0.26

Total Alta 29.26 - 2.30 - 2.81
San Gorgonio 9.37 - 0.66 - 0.72

SC 1 (strong alongshore winds) and SC 6 (Santa Ana winds) and accompanying

increase in SC 7 (weak onshore wind) and SC 9 (low wind) – whereas SC 1 and SC 6

days correspond to the highest and third-highest CFs, SC 7 and SC 9 are the lowest

and third lowest producers.

SC DJF (Alta and San Gorgonio)

As in the NC region, overland warming across SC leads to a widespread weaken-

ing of the within-cluster winds and a reduction in CF across the board. This process
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Table 4.9: As Table 4.4, except for SC DJF.

SC DJF (top 6 clusters)

Cluster Wind plant CF h
i CF h

i f
h
i ∆CF (a) ∆CF (b)

1
Alta 55.26 10.14 + 0.54 + 0.06
San Gorgonio 13.97 2.56 + 0.13 - 0.24

3
Alta 19.31 4.12 + 1.00 - 0.48
San Gorgonio 4.20 0.90 + 0.21 - 0.19

5
Alta 43.82 4.67 - 0.65 - 1.02
San Gorgonio 9.31 0.99 - 0.14 - 0.21

6
Alta 41.27 8.73 - 1.23 - 0.37
San Gorgonio 18.27 3.86 - 0.52 - 0.44

8
Alta 39.31 5.06 - 1.05 - 0.39
San Gorgonio 13.12 1.69 - 0.32 - 0.38

9
Alta 19.46 0.44 + 0.20 -0.09
San Gorgonio 3.48 0.08 + 0.04 + 0.03

Total
Alta 33.16 - 1.19 - 2.29
San Gorgonio 11.22 - 0.60 - 1.43

further drives an increase in the frequency of SC 3 (low wind), which is associated

with one of the lowest CF values, at the expense of SC 6 (Santa Ana winds) and

SC 8 (westerly winds), which have among the highest CF values. There is further a

substantial drop in the within-cluster wind speeds of SC 5 (southwesterly winds), as

explained in section 4.3.2. Table 4.9 identifies the six clusters responsible for 85.6%

and 85.7% of wind energy productions at Alta and San Gorgonio, respectively.

4.4 Discussion and Summary

This study utilized the state-of-the-art climate model CESM in its variable-

resolution configuration to analyze California wind patterns change under the future

climate. The agglomerative clustering algorithm was applied to the climate model

output to group different weather patterns into separate clusters within the NC and

SC domains. We defined ten wind clusters from each domain, and analyzed changes

to within cluster wind speeds and also changes to the frequency of occurrence of each

cluster by the end-of-century. Additionally, we analyzed the synoptic-scale patterns

that accompany each cluster. The changes to these patterns can then be used to
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identify some of the causes of changes to within cluster wind speeds. Moreover,

some of these synoptic scale changes (e.g., changes to the land – sea temperature

contrast) are directly tied to global warming, which allows us to tie a specific portion

of the forecasted future change in wind resources directly to identified climate change

phenomena. That being said, much of the forecasted change to wind resources

is linked to changing frequency of weather patterns or clusters. The changes to

frequency of each cluster type is tied to global circulation patterns, and possibly to

climate modes and other teleconnections. Determining the specific mechanisms that

cause the shifts to the cluster frequency is therefore out of scope within this study,

but remains an intriguing target for future work.

Below we list the most important changes we observe to clusters by the end-of-

century.

4.4.1 Northern California

Westerly winds (NC 1 and NC 2): These two clusters are among the most

frequent winter season cluster, and have been projected to become less frequent

with lower within cluster wind speed. The reduction in within-cluster wind speed is

associated with the change in geopotential height field over the Pacific, and overland

warming under the future climate. Both factors contribute to the decrease in within

cluster wind speed.

Offshore blocking (NC 3): This is another wintertime cluster with a projected

decreasing frequency and weaker within cluster wind speeds. The latter is related to

the change in geopotential height pattern, driving a weaker northerly flow offshore,

thus leading to weaker within cluster wind speeds.

Marine air penetration (NC 6-8 and NC 10): These clusters peak in frequen-

cies during summertime. All have been projected to become more frequent with

stronger within cluster wind speeds. The increase in within-cluster wind speeds is

123



associated with changes in the geopotential height pattern, which leads to a weak-

ening of the offshore northerly wind, and promoting the onshore flow pattern. This

increase in wind speeds contributes to the projected greater wind power during the

summer season.

4.4.2 Southern California

Strong alongshore wind (SC 1): This cluster produced some of the highest

capacity factors due to its frequent occurrences in all seasons only except summer,

and its high within cluster wind speed. It has been projected to become more

seasonally concentrated with its occurrences shifting from spring and fall to winter.

For within-cluster wind speeds change, the change in the geopotential height field

pattern reduces the alongshore gradient, leading to a weaker alongshore flow, and a

decrease in wind speeds statewide.

Marine air penetration (SC 4): This cluster peaks in frequency during sum-

mertime. It has been projected to become more frequent with slightly increased

onshore winds. The latter is caused by the increase in the geopotential height pat-

tern which drives up wind speeds offshore, creating a better ventilation condition.

Santa Ana winds (SC 6): This is the second most frequent wintertime cluster,

and has been projected to decrease in frequency with weaker within-cluster wind

speeds. This reduction of the within-cluster wind speeds during Santa Ana events

is associated with the weakening of the onshore ridge during end-of-century.

Weakened onshore flow (SC 7): This cluster is the third most frequent sum-

mertime cluster, with a projected increase in frequency. Under end-of-century, the

geopotential height anomaly acts to strengthen the northerly wind offshore in North-

ern California, while blocks the offshore flow in Southern California.
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Westerly wind (SC 8): This is a prominent cluster during winter and spring

seasons, and its frequencies during these two season both decrease under end-of-

century, along with weaker within cluster wind speeds. The latter is driven by large-

scale dynamical changes that cause a weakening of wind speeds across California,

including suppressed onshore flow in Southern California.

4.4.3 Changes in capacity factor

Along with changes to cluster frequency and within cluster wind speeds, we

found statistically significant changes to energy generation (specifically to estimated

capacity factor, or CF) at all wind plants.

There is an increase in the within cluster wind speeds during JJA driven by an

increase land/sea temperature contrast and a subsequent tendency towards more

frequent marine air penetration events for both NC and SC. This increasing fre-

quency in marine air penetration events is accompanied by a frequency decrease

from NC 4 (low wind) and SC 2 (weak onshore flow). Therefore, beside the within

cluster wind speed increase, this frequency shift from low wind cluster to high wind

clusters further contributes to the capacity factors increase during summertime.

This pattern is reversed in the winter season, with a smaller land/sea contrast

that contributes to a decrease in within cluster wind speeds in both NC and SC.

During the winter season, we observe an overland warming, that leads to an increase

in the geopotential height field, and decrease in wind speeds statewide. The 700hPa

geopotential height over Northern Pacific decreases in winter. This change in the

general circulation also contributes to the wind speed decrease in winter. There

is also a clusters frequency shift from high wind speed clusters to low wind speed

clusters during winter season for both two domains (a frequency shift from NC 2

and NC 3 to NC 1, NC 4 and NC9 in the NC domain, and from SC 6 and SC 8

to SC 3 in the SC domain). So both the cluster frequency changes, and the within

cluster wind speed changes contribute to the decrease in capacity factors during the
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winter season.

The overall seasonal CF trends in JJA and DJF from the end-of-century were

consistent with the trends from the mid-century [1], though the magnitudes of the

changes are larger. Findings from this study are also consistent with the increasing

frequency of marine air penetration events from Wang and Ullrich [31], decreasing

wind speed during fall and winter seasons from Duffy et al. [5], and decreasing

frequency of Santa Ana winds during early fall from Miller and Schlegel [3].
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Chapter 5

Conclusions and Future Work

This thesis bridges the gap between the relatively well-understood future change

of the synoptic-scale weather systems and the less well-studied climate change impact

on the regional-scale. By studying a typical summertime wind regime, the MAP

(Chapter 2), in the San Francisco Delta region, we project its future change by

analyzing the localized meteorological features of MAP, and associate the change

to the synoptic backgrounds. Then, we analyze the regional climate change impact

from the perspective of California wind energy resources (Chapter 3). This study

improves our understanding of the physical mechanisms that are driving the changes

in wind resources under the future climate. Last but not the least, we expand our

horizon from Chapter 3 by extending our analysis to the end-of-century (Chapter

4). A statistical method is developed to help distinguish different wind patterns,

and have a detailed classification of future change in each wind cluster at each wind

farm site. Below sections describe conclusions from each Chapter. Future work and

potential research topics are also discussed.
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5.1 Marine Air Penetration in California’s Cen-

tral Valley

5.1.1 Summary

In Chapter 2, we developed an objective criteria to identify marine air penetra-

tion (MAP) events in the San Francisco Delta from both observational and reanalysis

data. This criteria includes a temperature difference along the Central Valley, which

captures the cooling effect from MAP; and a onshore wind component, which mea-

sures the wind speed coming inland. We then characterized the synoptic-scale fields

that are associated with MAP, and developed five large-scale indicators of MAP:

a positive geopotential anomaly in the Gulf of Alaska; a negative geopotential ten-

dency off the Oregon coast; an inland surface temperature anomaly in the northwest

part of the continental United States; an offshore geopotential height difference; an

offshore wind speed anomaly. With this set of large-scale feature, we built a logistic

regression model to predict the occurence of MAP under future climate, and iso-

lated its frequency trend. Based on the results from this probabilistic model, we

detected a weak positive trend of 0.2 days/century under RCP8.5 of sufficiently

strong summertime MAP days.

5.1.2 Future work

This study provides insight into the meteorological features associated with MAP

events around the San Francisco delta. The suite of synoptic-scale features, accom-

panied by local meteorological measurements, can possibly be used to provide short-

term forecast of MAP events. This short-term forecasting will be valuable for local

electric power planning. Though the synoptic-scale features developed in this study

may be tuned to the localized MAP events in the San Francisco delta, we argue that

similar methodologies can be applied to study such events in other places around
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the globe.

Possible future studies can focus on detecting factors that are important for the

emergence of MAP but not investigated here, including but not limited to local mete-

orological conditions, large-scale teleconnections, coastal upwelling, and interactions

with climate modes such as North Pacific Oscillation, Pacific Decadal Oscillation,

and El Niño–Southern Oscillation. Furthermore, since fog along coastlines is often

associated with sea breezes, interactions between the two meteorological features

remains a topic for future studies.

5.2 The future of wind energy in California

5.2.1 Summary

In Chapter 3, our goal is to assessed the future change of wind field and its

impact on wind energy. To approach this, we utilized the state-of-the-art climate

model variable-resolution CESM. We first thoroughly evaluated VR-CESM model

performance from the historical simulation against a high-resolution simulation from

WRF, several widely used reanalysis datasets, and publicly available observations.

Our comparison suggested that even though VR-CESM exhibits a bias towards

slower wind speeds inland, it is able to capture the monthly climatology and the

spatial patterns of wind fields. This led us to conclude that VR-CESM is correctly

representing the key regional and synoptic-scale processes that are relevant for wind

speed forecasts. Based on the model simulations, we then interpolated the wind

speed to hub-height level at 80m, and analyzed the meteorological patterns associ-

ated with large-scale shifts in wind character. Significant seasonal changes in capac-

ity factors were observed at almost all five wind farm locations during mid-century

under RCP8.5, with an increase in summertime (JJA) resources and a decrease in

fall (SON) and winter (DJF). Synoptic-scale drivers were also identified, and sug-

gested climate change may favor synoptic patterns that lead to higher wind speed
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during JJA, and lower wind speed during SON and DJF.

5.2.2 Future work

This study utilized the state-of-the-art climate model to improve the characteri-

zation of the future change in California wind energy resources till the mid-century.

By analyzing the synoptic-scale meteorological patterns that are associated with

large shifts in wind fields, the result improves our understanding of the physical

mechanisms related to the trends in wind resource variability.

Besides the synoptic-scale patterns that were analyzed in this study, climate

modes such as Pacific Decadal Oscillation, and El Niño–Southern Oscillation, North

Atlantic Oscillation may have impact on changes in California wind resources as

well, and will require further investigation. Intense and extreme winds can cause

damage to wind turbines, and future study can focus on analyzing the capacity of

models to capture future change of extreme winds. Forecasting trends and variations

in wind energy using other statistical time series model, such as ARIMA or Prophet,

remain a possible direction for future studies as well.

5.3 Clustering analysis of wind patterns in Cali-

fornia

5.3.1 Summary

In Chapter 4, we expands the horizon from Chapter 2 and Chapter 3 by extending

the time frame of our analysis to the end-of-century, and including a complete set

of California wind patterns besides the marine air penetration. We utilized the

same model as in Chapter 3 and extended the simulation time frame to the end-of-

century (2080-2100). To distinguish different wind patterns from unlabeled modeling

output, we applied the agglomerative clustering algorithm to 80m wind fields in
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Northern and Southern California domains separately, which produced ten wind

clusters for each domain. We then analyzed the analyzed the frequency changes of

each cluster by the EoC and the synoptic-scale patterns that accompany each cluster.

CF changes at all five wind farm locations under each cluster were also assessed.

Our result suggests the overall seasonal CF at all five wind farms are increasing

during summertime (JJA), and decreasing in winter (DJF), which is consistent with

the trends in Chapter 3. Statistically significant CF changes are identified at all

wind farms from different clusters.

5.3.2 Future work

This study provides a statistical method to identify different wind patterns from

unlabeled data without requiring any prior knowledge of various wind types. The

synoptic-scale analysis on wind clusters improves our understanding of the variability

in space and time of California wind energy resources by end-of-century.

The statistical method in this study can be applied to future studies involving

pattern detection from unlabeled data. Future work can focus on detecting the

impact from various climate modes on wind energy resources in California. Other

statistical models and machine learning algorithms can be applied for short-term

wind energy forecasting from meteorological fields.
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