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Sources of Uncertainty in GCMs

Structural Uncertainty
Choice of dynamical core

Choice of physical parameterizations
Model resolution (horizontal and vertical)

…

Data Uncertainty
Initial data

Observational error
Boundary data (SSTs)

Parameter Uncertainty
Physics tuning

Physical constants
Diffusion coefficients
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Test Hierarchy

2D Shallow 
Water Test 

Cases

3D Dry 
Dynamical 
Core Test 

Cases

3D 
Dynamical 

Core + 
Simplified 

Physics Test 
Cases  

3D Aqua-
Planet 

Experiments 
(APE)

3D 
Atmospheric 
Model Inter-
comparison 

(AMIP)

Deterministic Tests Statistical Tests

Williamson et al.
Galewsky et al.

Nair et al.

Increasing complexity

Intermediate complexity2D Shallow Water 
plus physics

(Jablonowski et al.)

3D Aqua-Planet 
plus real 

topography
(Lauritzen et al.)



Deformational Flow
(Advection Test)

2D Shallow Water 
Test Cases

Deformational flow on the sphere (tests accuracy of the numerical method, 
preservation of monotonicity and functional relationships)

4Paul Ullrich ATM 265: Lecture 12 May 6, 2019



Source: Ullrich, Jablonowski and van 
Leer (2010) “High-order finite-volume 
methods for the shallow-water 
equations on the sphere.” J. Comp. 
Phys.

Steady-state geostrophically
balanced flow which is not 
aligned with the grid.  Errors are 
measured after five days against 
the initial state.
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Williamson Test Case 2
2D Shallow Water 

Test Cases
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Galewsky et al. Shallow-Water 
Barotropic Instability

Galewsky et al.:  Geostropically balanced shallow water jet which is 
perturbed and leads to the development of a vortical instability.

2D Shallow Water 
Test Cases



MCore FVcubed

HOMMEEUL

3D Dry Dynamical 
Core Test CasesBaroclinic Instability
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Source: Ullrich, Jablonowski and van Leer (2010) “High-order finite-volume 
methods for the shallow-water equations on the sphere.” J. Comp. Phys.
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Flow over Topography
3D Dry Dynamical 

Core Test Cases



Source: Ullrich, Jablonowski and van Leer (2010) “High-order finite-volume 
methods for the shallow-water equations on the sphere.” J. Comp. Phys.

Conservation of Invariants
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3D Dry Dynamical 
Core Test Cases



Non-Hydrostatic Mountain Waves
3D Dry Dynamical 

Core Test Cases

Tests the response of atmospheric models to topography in the 
non-hydrostatic regime.
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Held-Suarez Climatology
3D Dynamical Core + 

Simplified Physics Test Cases  

Held-Suarez:  Heating is prescribed plus a simple velocity relaxation scheme.  
Climatology is measured using statistics over a 1000 day simulation.
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Reed Tropical Cyclone
3D Dynamical Core + 

Simplified Physics Test Cases  

Reed Tropical Cyclone:  Simplified physics package (surface fluxes, boundary 
layer and large-scale condensation) plus an isolated low pressure system
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Aqua-Planet Experiments

Zonal mean 3-year mean zonal wind:  Snapshots of 4 GCMs that participated in 
the Aqua-Planet Experiment (APE).

3D Aqua-Planet 
Experiments (APE)

3D aqua planet tests evaluate the interaction between the dynamical core and 
complex physical parameterizations using a simplified lower boundary (flat ocean-
covered Earth with analytically prescribed sea-surface temperatures (SSTs)

Source:  Williamson et al., NCAR 
Technical Note TN-484+STR (2012)
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Aqua-Planet Experiments 3D Aqua-Planet 
Experiments (APE)

3D aqua planet tests give insights into the characteristics of moisture processes.  
What drives these differences?

Source: Christiane Jablonowski, DCMIP 2012
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AMIP Simulations 3D Atmospheric Model 
Intercomparison (AMIP)

3D AMIP tests evaluate the interaction between the dynamical core and complex 
physical parameterizations (maybe even including chemistry packages) using a 
complex but prescribed lower boundary (orography, prescribed observation-based 
SSTs and sea-ice) over 25-year time frames

Source: Christiane Jablonowski, DCMIP 2012
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AMIP Simulations
Michael Wehner et al.:
Total column-integrated water vapor.
http://www.youtube.com/watch?v=MrRpSzHkx40

1979 Hurricane Season:
Total column-integrated water vapor.
http://www.youtube.com/watch?feature=endscreen&v=VKoZCzlBoDk&NR=1

3D Atmospheric Model 
Intercomparison (AMIP)

http://www.youtube.com/watch?v=MrRpSzHkx40
http://www.youtube.com/watch?feature=endscreen&v=VKoZCzlBoDk&NR=1
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Fully Coupled
• The most complex GCM evaluations utilize a fully coupled atmosphere

(ocean – ice – land – chemistry – carbon-cycle – Earth system) 
sometimes with prescribed greenhouse gas concentrations are used 
(CLIVAR runs)

• Fully coupled simulations of past time periods are typically compared 
against observations, sometimes in the form of re-analysis data

• Differences between simulations are very hard to understand due to the 
complexity and non-linear interactions

• Fully coupled GCMs are used for the assessment of future climate 
scenarios (e.g. for the Intergovernmental Panel on Climate Change, IPCC, 
assessments)

Fully Coupled Simulations

Source: Christiane Jablonowski, DCMIP 2012
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Ensembles
• Ensembles are one way to assess the robustness of the simulations, and to 

gain insight into the uncertainty of the model simulations.

Source: Christiane Jablonowski, DCMIP 2012

Perturbed Parameter Ensembles
• Variations of empirical tuning factors in the physical parameterizations
• Diffusion coefficients or physical constants in the dynamical core

Initial Data and Boundary Value Ensembles
• Slight variations in the initial data
• Different topography datasets
• Different sea-surface temperatures

Multi-Model Ensembles
• Different atmospheric models (or different versions of the same model)



Model Parameters

modelSection_modelVariable variable description low value default high value

cldfrc_rhminh Threshold RH for fraction high stable clouds 0.65 0.8 0.85
cldfrc_rhminl Threshold RH for fraction low stable clouds 0.8 0.8875 0.99
cldwatmi_ai Fall speed parameter for cloud ice 350 700 1400
cldwatmi_as Fall speed parameter for snow 5.86 11.72 23.44

cldwatmi_cdnl Cloud droplet number limiter 0 0 1e+06
cldwatmi_dcs Autoconversion size threshold for ice to snow 0.0001 0.0004 0.0005
cldwatmi_eii Collection efficiency aggregation of ice 0.001 0.1 1

cldwatmi_qcvar Inverse relative variance of sub-grid cloud water 0.5 2 5
dust_emis_fact Dust emission tuning factor 0.21 0.35 0.86

eddydiff_a2l Moist entrainment enhancement parameter 10 30 50
micropa_wsubimax Maximum sub-grid vertical velocity for ice nucleation 0.1 0.2 1
micropa_wsubmin Minimum sub-grid vertical velocity for liquid nucleation 0 0.2 1

uwshcu_criqc Maximum updraft condensate 0.0005 0.0007 0.0015
uwshcu_kevp Evaporative efficiency 1e-06 2e-06 2e-05
uwshcu_rkm Fractional updraft mixing efficiency 8 14 16
uwshcu_rpen Penetrative updraft entrainment efficiency 1 5 10
zmconv_alfa Initial cloud downdraft mass flux 0.05 0.1 0.6

zmconv_c0_lnd Deep convection precipitation efficiency over land 0.001 0.0059 0.01
zmconv_c0_ocn Deep convection precipitation efficiency over ocean 0.001 0.045 0.1
zmconv_dmpdz Parcel fractional mass entrainment rate 0.0002 0.001 0.002

zmconv_ke Evaporation efficiency parameter 5e-07 1e-06 1e-05
zmconv_tau Convective time scale 1800 3600 28800

Deep 
Conv.

Shallow 
Conv.

PBL Turb.

Large-
Scale 
Cloud

Aerosol

Large-Scale Cloud

CAM5 2o, 22 parameters, 1100 simulations, 5 year AMIP
Latin Hyper-Cube Sampling 

Perturbed Physics Ensembles
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Source: Richard Neale



CAM5 CAM4
CAM3

• CAM performs well and is 
improving

• No exceptional scores

• Good models 
Good physics
High resolution

• Does not give broad 
indication of performance

• Some “red-line” poor 
performance may be 
crossed e.g., ENSO
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Source: Rich Neale, DCMIP 2016

Model Intercomparison: Z Scores



Summary
• How do we define success?

• Metrics are hard, diagnostics are too many

• Hierarchy of approaches for validation

• Examine variability and process oriented diagnostics

• “Red-line” diagnostics (ENSO, 20th C, sea-ice) 

• Model complexity -> more ways to ‘fail’ 

• The better things get the easier it is to make things worse
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Example: UNICON vs. CLUBB



o Unifies deep and shallow convection schemes
o Generates forced/free/dry shallow convection + deep convection
o Removes quasi-equilibrium and small area approximations 
o Accounts for sub-grid mesoscale flows (prognostic)

UNICON: Unified Convection Scheme
Park 2014a,2014b, 
J. Climate
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Source:  
Rich Neale



o Unifies moist and dry turbulence (except deep convection)
o Unifies microphysics
o High order closures (1 third order, 9 second order) 
o Use two Gaussians to described the sub-grid multivariate PDF: P=P(w,qt,θL)

Zhang 
McFarlane

(ZM)

CLUBB: Cloud Layers Unified by Binormals
Golaz 2002b, 
J. Atmos. Sci.
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CERES-EBAF

UNICON

CLUBB

CAM5.3 ANN

Clouds: Short-wave cloud forcing (AMIP)
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TRMM CLUBB

UNICONCAM5.3

o Madden Julian Oscillation 
peak improved (still too 
weak)

o Kelvin wave too strong in 
UNICON

o Kelvin waves very damped 
in CLUBB rainfall

o UNICON captures westward 
gravity waves 

Precipitation: Equatorial Waves
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TRMM CLUBB

UNICONCAM5.3

o Diurnal cycle peak remains too early
o Shifts from 12pm to 4pm over land (both)
o Shifts from 2am to 8am over ocean (UNICON better)
o US mid-western rainfall still deficient (at 1°)

JJA

Precipitation Diurnal Cycle: Better Phase
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HADISST CLUBB

UNICONCAM5.3

5

5 5

2

3

2

3

2

3

5

23

– ENSO not well simulated
– UNICON too strong 

amplitude at too wide a 
frequency

– CLUBB has very weak 
amplitude and no 
preferred frequency

ENSO: Cause for concern?
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HADISST CLUBB

UNICON

5

5

2
3

2

3
5

2
3

– ENSO not well simulated
– UNICON too strong 

amplitude at two wide a 
frequency

– CLUBB has very weak 
amplitude and no 
preferred frequency

CAM5.35

2

3

ENSO: Updated
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Evaluating Against Observations
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Does your model reflect reality?
Direct measurements

• Satellite data products (TRMM, MODIS, etc.)

• In-situ measurements (NOAA meteorological stations, buoys, tethersondes)

Reprocessed products

• Gridded data products (PRISM, CPC, etc.)
• i.e. interpolated versions of direct measurements.

• Reanalysis data (CFSR, JRA-55, ERA-Interim, MERRA2)
• Model runs which are initialized with data assimilation and/or “nudged” to 

be close to direct measurements.
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Data Assimilation
Data assimilation is a process for merging observations and model predictions to 
provide a superior state estimate.

Observations of state (temperature, wind, soil moisture, etc.) are blended with the 
state of the system as forecast by a model based on the previous set of 
observations.  It provides a dynamically consistent estimate of the state of the 
system using a blend of past and current observations.

Assimilation Assimilation Assimilation …

Observations Observations Observations

Forecast Forecast Forecast

Medium-Range Forecast

Source:  Kevin Trenberth
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Data Assimilation
Four dimensional data analysis (3D space + time) is used to assimilate observations 
that are sparse in space and staggered in time.

This requires complicated assimilation strategies (i.e. 4DVAR)

“Reanalysis has been applied to atmospheric data covering the past five decades.  
Although the resulting products have proven very useful, considerable effort is 
needed to ensure that reanalysis products are suitable for climate monitoring 
applications.”

- From Executive Summary of “The Second Report on the Adequacy of The Global 
Observing Systems for Climate in Support of the UNFCCC”

Source:  Kevin Trenberth
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Atmospheric Reanalyses
Source:  Kevin Trenberth

Reanalysis Horiz. Res. Dates Vintage Status

NCEP/NCAR R1 T62 (191km) 1948-now 1995 Ongoing

NCEP-DOE R2 T62 (191km) 1979-now 2001 Ongoing

CFSR (NCEP) T382 (31km) 1979-now 2009 Ongoing

C20r (NOAA) T62 (191km) 1875-2008 2009 Complete

ERA-40 T159 (75km) 1957-2002 2004 Done

ERA-Interim T255 (46km) 1979-now 2009 Ongoing

JRA-25 T106 (112km) 1979-now 2006 Ongoing

JRA-55 T319 (37km) 1958-2012 2009 Underway

MERRA (NASA) 0.5° (55km) 1979-now 2009 Ongoing

MERRA2 (NASA) 0.5° (55km) 1980-now
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More Information
Climate Data Guide:  https://climatedataguide.ucar.edu/

Reanalysis.org:  http://reanalyses.org/
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https://climatedataguide.ucar.edu/
http://reanalyses.org/

