ATM 265, Spring 2019 Lecture 09 Turbulence, Clouds and Moisture April 29, 2019

Paul A. Ullrich (HH 251) paullrich@ucdavis.edu

Reynold's Averaging

Three forms of the water vapor transport equation:

$$\begin{aligned} \frac{dq_v}{dt} &= 0 & \text{(Lagrangian form)} \\ \\ \frac{\partial q_v}{\partial t} &+ \mathbf{u} \cdot \nabla q_v = 0 & \text{(Eulerian form)} \\ \\ \\ \frac{\partial}{\partial t}(\rho q_v) &+ \nabla \cdot (\rho \mathbf{u} q_v) = 0 & \text{(Conservative form)} \end{aligned}$$

Reynold's Averaging

$$\frac{\partial}{\partial t}(\rho q_v) + \nabla \cdot (\rho \mathbf{u} q_v) = 0$$

This equation can be rewritten in split horizontal / vertical form:

$$\frac{\partial}{\partial t}(\rho q_v) + \nabla_h \cdot (\rho \mathbf{u}_h q_v) + \frac{\partial}{\partial z}(\rho w q_v) = 0$$

Introduce Reynold's averages, which represents a division of the field into mean (i.e. resolved) and perturbed (i.e. unresolved or sub-grid) components:

$$\mathbf{u}_h = \overline{\mathbf{u}_h} + \mathbf{u}'_h \qquad \qquad q_v = \overline{q_v} + q'_v$$

Rules:

$$\overline{\overline{x}} = \overline{x} \qquad \qquad \overline{x'} = 0 \qquad \qquad \overline{xy} = \overline{x}\,\overline{y} + \overline{x'y'}$$

$$\frac{\partial}{\partial t}(\rho q_v) + \nabla_h \cdot (\rho \mathbf{u}_h q_v) + \frac{\partial}{\partial z}(\rho w q_v) = 0$$
$$\mathbf{u}_h = \overline{\mathbf{u}_h} + \mathbf{u}'_h \qquad q_v = \overline{q_v} + q'_v$$

$$\frac{\partial}{\partial t} (\rho(\overline{q_v} + q'_v)) + \nabla_h \cdot \overline{(\rho(\overline{\mathbf{u}_h} + \mathbf{u}'_h)(\overline{q_v} + q'_v))} + \frac{\partial}{\partial z} \overline{(\rho(\overline{w} + w')(\overline{q_v} + q'_v))} = 0$$

Reynold's Averaging

Reynold's Averaging

Observation: Horizontal and vertical fluxes are comparable in magnitude.

But: Vertical fluxes convergence and diverge over much shorter distances than horizontal fluxes.

Reynold's Averaging

Kelvin-Helmholtz Instability

Small q_v

Numerical simulation of a Kelvin-Helmholtz instability representing turbulent mixing between two different density fluids. Observe how the small scale mixing acts similar to diffusion.

Source: Wikimedia (http://commons.wikimedia.org/wiki/File:KHI.gif)

Paul Ullrich

ATM 265: Lecture 09

Reynold's Averaging

First approximation treatment:

$$\frac{\partial}{\partial z} (\rho \overline{w' q'_v}) \approx \frac{\partial}{\partial z} \left(-\rho K_E \frac{\partial q_v}{\partial z} \right)$$

Parameterizations: High level design

Source: Rich Neale, Julio Bacmeister

- 1. Inputs and effects totally contained within single columns
 - Single grid point structures are believed
- 2. Most (may common) schemes do not possess a "memory"
 - Calculations only on instantaneous state of the system
- 3. Assume sufficient space-time volume in grid means for "good" statistics
- 4. For climate should be mass, momentum and energy conserving (limiters and fixers may be needed)
- 1, 2 and 3 cause trouble as resolution increases and time-step decreases

Dynamics-Parameterization Coupling

Process Split

All parameterizations work on the same state, provide tendencies for update

Dynamics Surface Fluxes Clouds Other phys...

Time Split

Parameterizations update state as they work

CAM Time Step

Source: Rich Neale, Julio Bacmeister

Large Scale Condensation

Paul Ullrich

ATM 265: Lecture 09

April 29, 2019

Large-Scale Condensation

Condensation rate:

$$\frac{\partial q_v}{\partial t} = -C$$

Heating due to condensation:

$$\frac{\partial T}{\partial t} = \frac{L}{c_p}C$$

Where *L* is the latent heat of vaporization and $\underline{c}_{\underline{p}}$ is the specific heat of dry air. The saturation specific humidity is determined via Claussius-Clapeyron:

$$q_{sat}(T,p) \approx \epsilon \frac{e_s(T)}{p} \approx \frac{\epsilon}{p} e_0^* \exp\left[-\left(\frac{L}{R_v}\right)\left(\frac{1}{T} - \frac{1}{T_0}\right)\right]$$

In the atmosphere, we never observe $q_v > q_{sat}$ so it is reasonable to assume that condensation occurs nearly instantaneously as a mechanism to reduce the water vapor to saturation.

Large-Scale Condensation

Approximate adjustment as follows:

$$q_v^{n+1} = q_v^n + \Delta q_v \qquad T^{n+1} = T^n + \Delta T$$

Where from the last slide we have:

$$\Delta T = -\frac{L}{c_p} \Delta q_v \qquad \qquad \Delta q_v = q_{sat}(T^{n+1}, p) - q_v^n$$

Note:

- In this formulation pressure does not change
- Saturated specific humidity must be evaluated at final temperature, since it's at this stage that we need to ensure $q_v \leq q_{sat}$

Large-Scale Condensation

To solve this set of nonlinear equations, we approximate saturation pressure at new temperature via first-order Taylor series:

$$q_{sat}(T^{n+1}, p) \approx q_{sat}(T, p) + \frac{dq_{sat}}{dT} \Delta T$$

Then solve:
$$T^{n+1} = T^n + \frac{L}{c_p} \left(\frac{q_v^n - q_{sat}(T, p)}{1 + \frac{L}{c_p} \frac{dq_{sat}}{dT}} \right)$$
$$q_v^{n+1} = q_v^n - \left(\frac{q_v^n - q_{sat}(T^n, p)}{1 + \frac{L}{c_p} \frac{dq_{sat}}{dT}} \right)$$

Condensation rate:

$$C = \frac{1}{\Delta t} \left(\frac{q_v^n - q_{sat}(T^n, p)}{1 + \frac{L}{c_p} \frac{dq_{sat}}{dT}} \right)$$

Cloud Parameterizations

Clouds

Source: Jim Benedict

Clouds

The treatment of clouds in global atmospheric models is arguably the biggest source of uncertainty.

Convective Clouds

- Deep
- Shallow

Stratiform clouds above the boundary layer

- Convective detrainment
- Frontal lifting
- Orographic lifting

Marine stratocumulus clouds

Source: David Randall

"Consider a horizontal area ... large enough to contain an ensemble of cumulus clouds, but small enough to cover only a fraction of a large-scale disturbance. The existence of such an area is one of the basic assumptions of this paper."

- Arakawa and Schubert (1974)

The inclusion of both convective updrafts and largescale subsidence in each grid cell is an assumption of most modern convective parameterizations.

Cumulus Entrainment

Source: David Randall

Paul Ullrich

What is Entrainment?

Source: David Randall

Entrainment is the active annexation of quiet fluid by turbulence.

Clouds don't entrain Turbulence entrains Clouds are turbulent

Paul Ullrich

Clouds: Outstanding Issues

Source: David Randall

The treatment of clouds in global atmospheric models is arguably the biggest source of uncertainty.

Microphysics

- How many water species?
- Aerosols?

Convective entrainment

- How many cloud "types"?
- What controls entrainment?

Convective closures

Coupling deep convection with the boundary layer

- Updrafts?
- Downdrafts?

Super-Parameterizations

YO DAWG, I HEARD YOU LIKE ATMOSPHERIC MODELS

SO WE PUT A MODEL WITHIN A MODEL SO YOU CAN MODEL WHILE YOU MODEL

Paul Ullrich

Super-Parameterizations

High resolution is already being sought via alternative avenues. Clouds, which are subgird-scale at current resolutions, can be resolved on finer scale sub-element grids.

Array of fine grid models

Cloud Fraction Challenge

