# ATM 265, Spring 2019 Lecture 8 Variable Resolution Modeling April 24, 2019

### Paul A. Ullrich (HH 251) paullrich@ucdavis.edu

Slides are based on Colin Zarzycki's talk on variable resolution from the DCMIP workshop (2016)

# **High-Resolution Modeling**

#### Why do we want higher resolution?

- Improved resolution of land-surface processes (snowpack, runoff)
- Resolution of transient eddies (synoptic-scale frontal systems, local convective systems)
- Resolution of extreme weather events
- Improvement in representation of geographic features (mountain ranges and islands)



The California coastal ranges have a profound effect on regional climate which is poorly captured in current climate models.

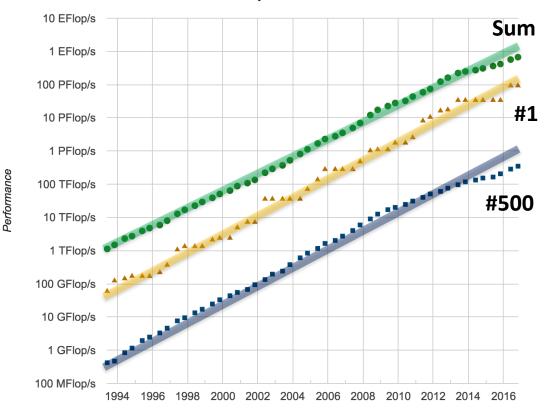
### **Computing Power vs. Resolution**

Computational power doubles approximately every 1.2 years.

To obtain a factor of 2 horizontal refinement, numerical models require 8x the computational power.

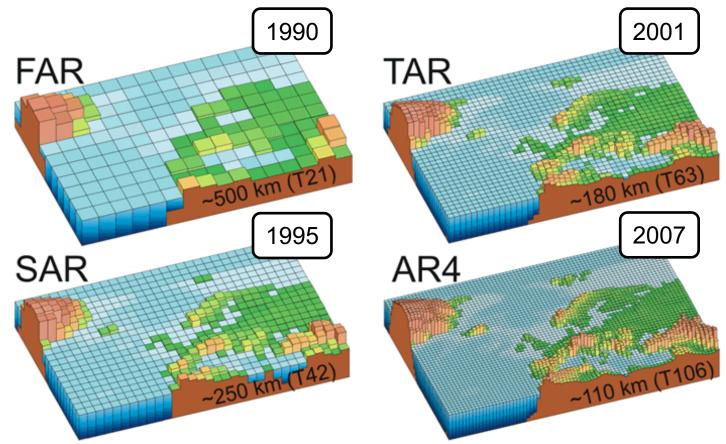


Doubling of horizontal resolution every 3.6 years?



#### **Performance Development**

### **Climate Model Resolution**



AR5 (2013) included some model simulations at ~50km, but most runs were at 110km.

AR6 (2019) will rely on CMIP6 runs, which include many runs at 25-50km global resolution.

### **Computing Power vs. Resolution**

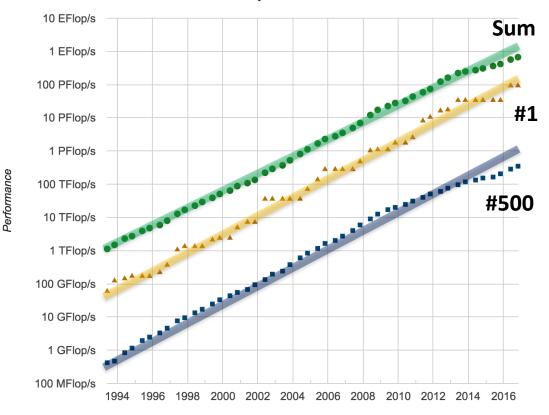


Doubling of horizontal resolution every 3.6 years?

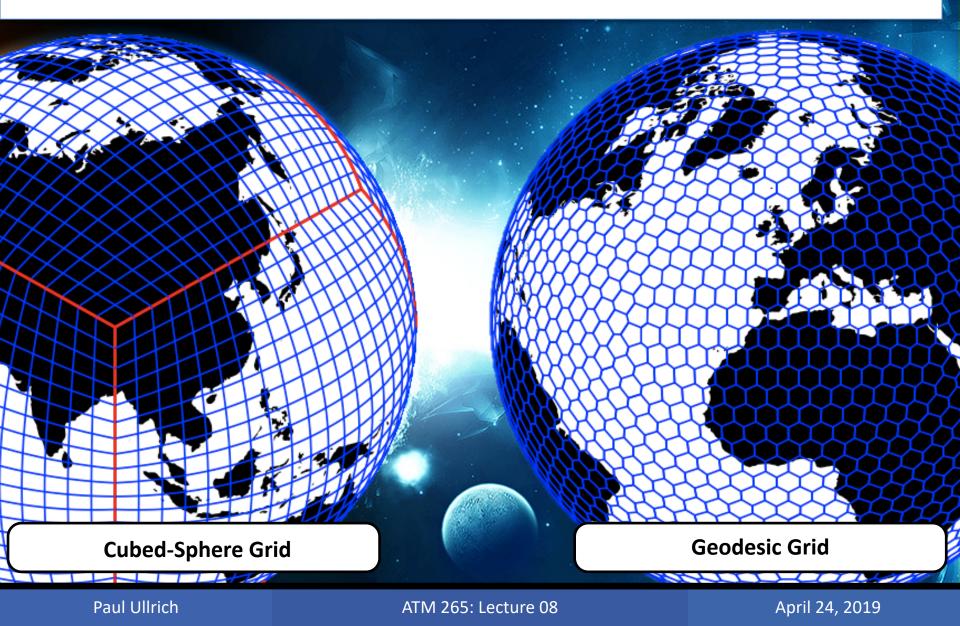
Reality is quite different – doubling of resolution is closer to every 10 years.

### Why?

High resolution models are expensive to run. This implies they are hard to tune, and so it is difficult to demonstrate significant improvements in simulation quality. **Performance Development** 

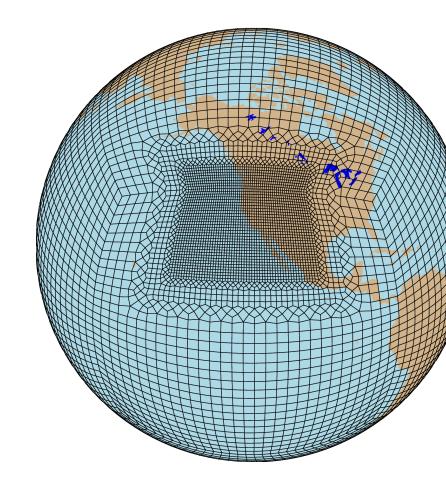


### **Quasi-Uniform Grids**



# Variable Resolution (VR) Models

- VR allows for **fewer computational resources** to be spent sparingly on a single problem.
- Fully coupled global modeling system, useful for seasonal to subseasonal forecasting.
- More ensemble members can be produced for a particular region (uncertainty quantification).
- Resolution where you need it.



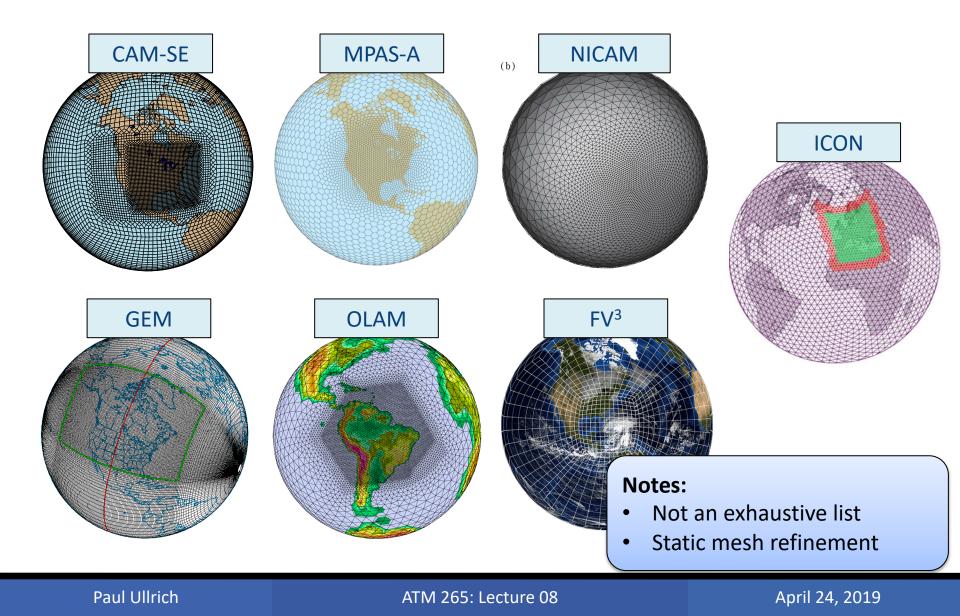
### Variable Resolution Models



Paul Ullrich

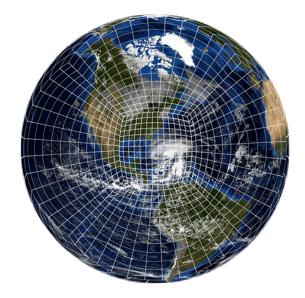
ATM 265: Lecture 08

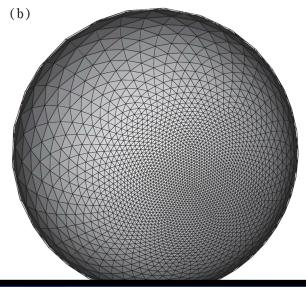
# A Sampling of VR Models



# Stretched Grids

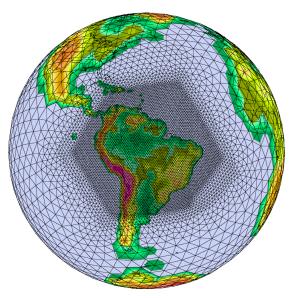
- Examples going back nearly 40 years (e.g., Schmidt, 1977; Staniforth and Mitchell, 1978)
- Generally pole-symmetric dilation
- Benefits
  - Numerical modifications trivial
  - Grid structurally unchanged
- Drawbacks
  - At high stretching factors, far field quickly under-resolved
  - Stretching beyond ~7x problematic (Caian and Geleyn, 1997)

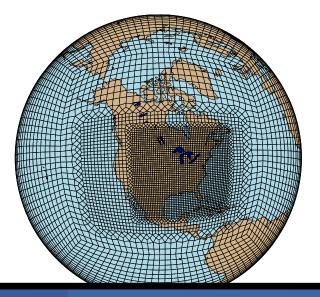




# Unstructured / Nested Refinement

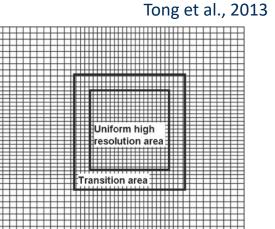
- Many "next-generation" VRGCMs adopting more flexible avenues
  - Add cells in area of interest
- Require more "local" stencils capable of operating on arbitrary grids
- *h*-refinement
- Benefits
  - Doesn't coarsen far-field
  - Multiple regions, flexibility in shape of refinement patches
- Drawbacks
  - Adds cells (cost containment), requires unstructured grids
  - Load balancing, communication (connectivity) may not be as trivial

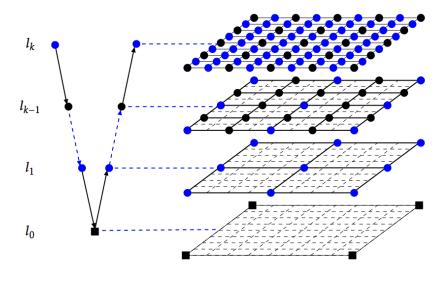




# **One Other Distinction**

- "Single-grid" or "uni-grid" variableresolution
  - Every lat/lon point is covered by one and only one grid cell
  - No remapping/interpolation between grid scales
  - Trivial conservation
- "Multi-grid" variable-resolution
  - More analogous to two-way nesting
  - High-resolution nest "overlays" coarser grid
  - Difference from embedded RGCM? Same model, "single direction" timestepping



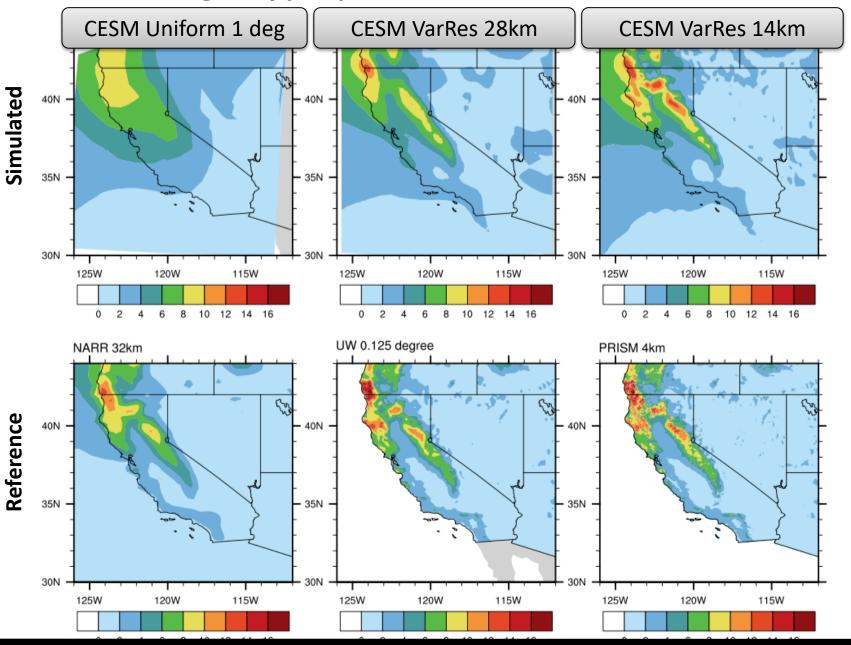


Wenqiang Feng, U. Tenn.

#### Paul Ullrich

#### ATM 265: Lecture 08

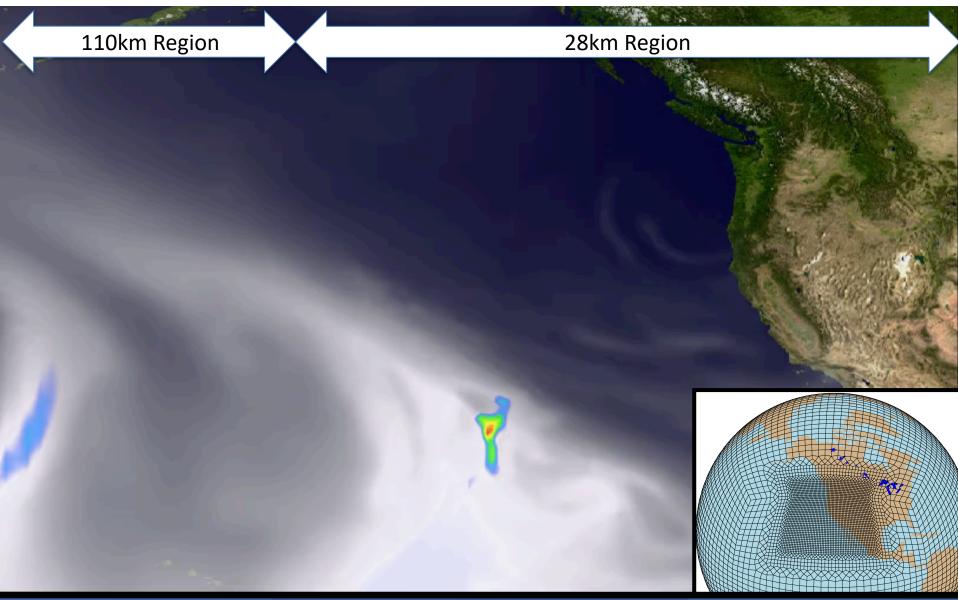
#### Average daily precipitation rate DJF 1980-1986 unit:mm/d



Paul Ullrich

ATM 265: Lecture 08

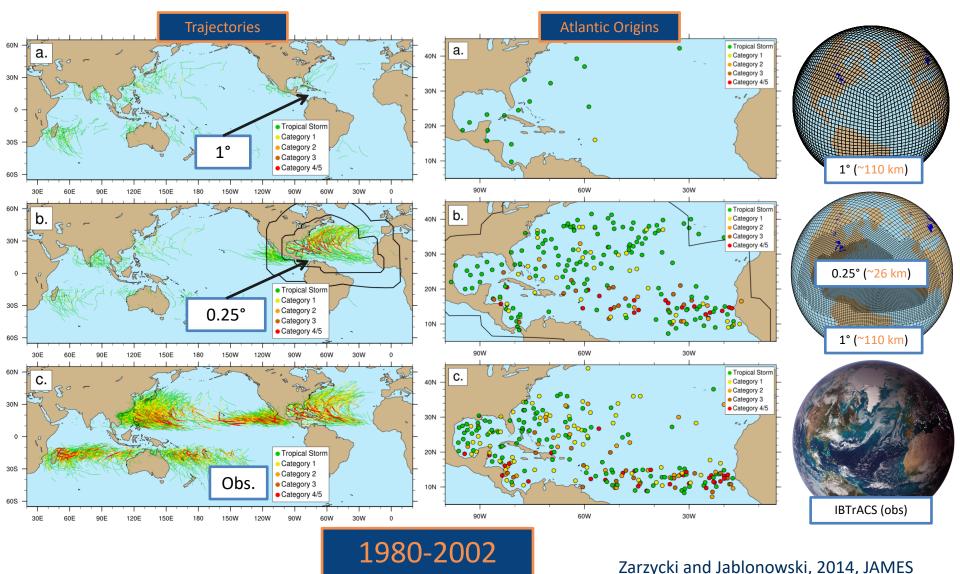
### **Applications: Atmospheric Rivers**



Paul Ullrich

ATM 265: Lecture 08

## Applications: Tropical Cyclone Climatology



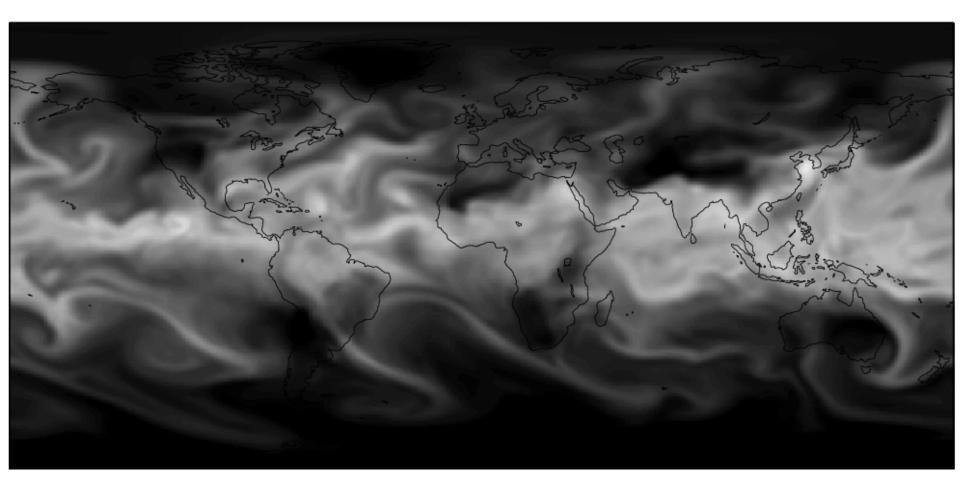
ATM 265: Lecture 08

April 24, 2019

Paul Ullrich

## Applications: Tropical Cyclone Climatology

**Uniform-Resolution Global Simulation** 

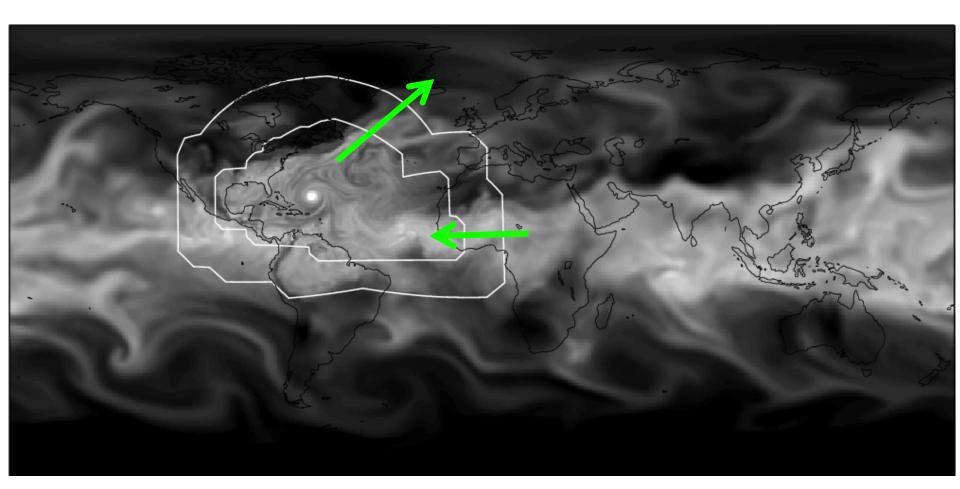


Paul Ullrich

ATM 265: Lecture 08

## Applications: Tropical Cyclone Climatology

**Uniform-Resolution Global Simulation** 

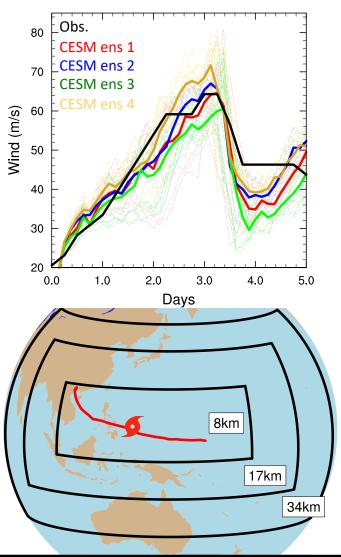


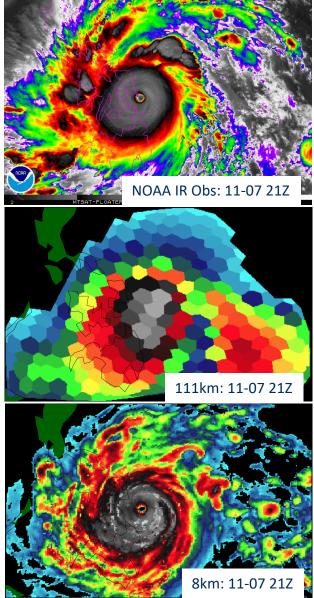
Paul Ullrich

ATM 265: Lecture 08

# Applications: Typhoon Haiyan Forecasts

- VR-CESM produces realistic track, intensity and structure
- Computationally inexpensive within coupled earth system model



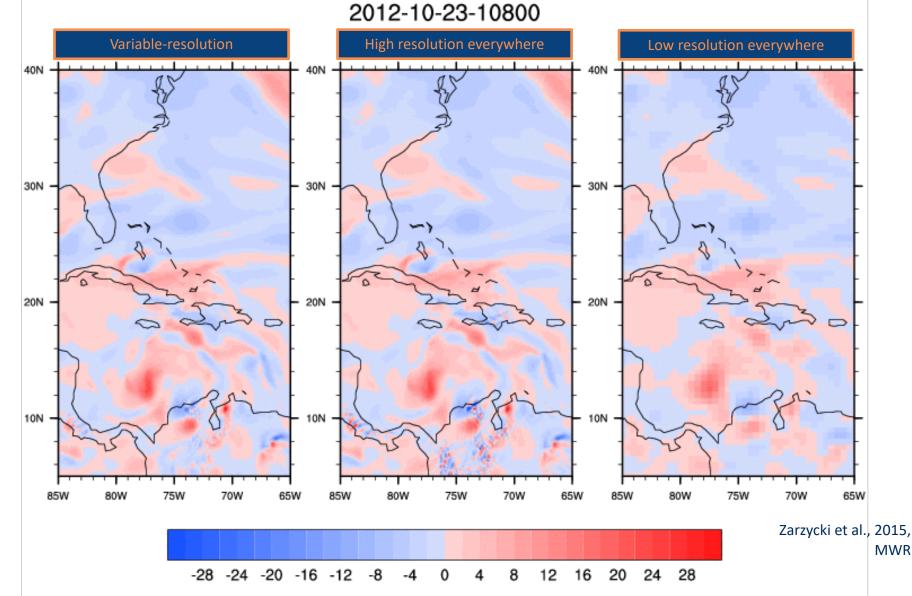


#### Paul Ullrich

ATM 265: Lecture 08

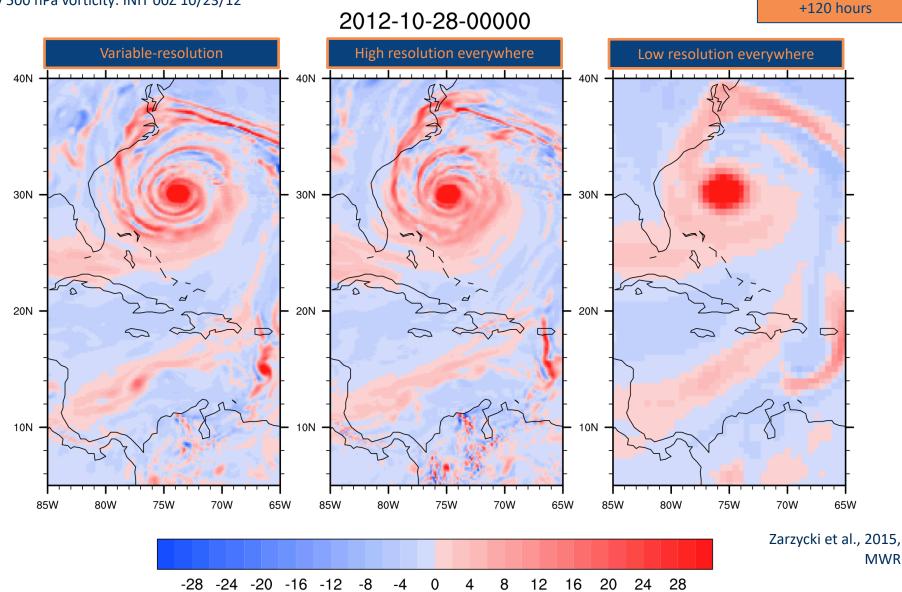
### **Applications: Hurricane Sandy Forecast**

#### Sandy 500 hPa vorticity: INIT 00Z 10/23/12



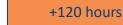
### **Applications: Hurricane Sandy Forecast**

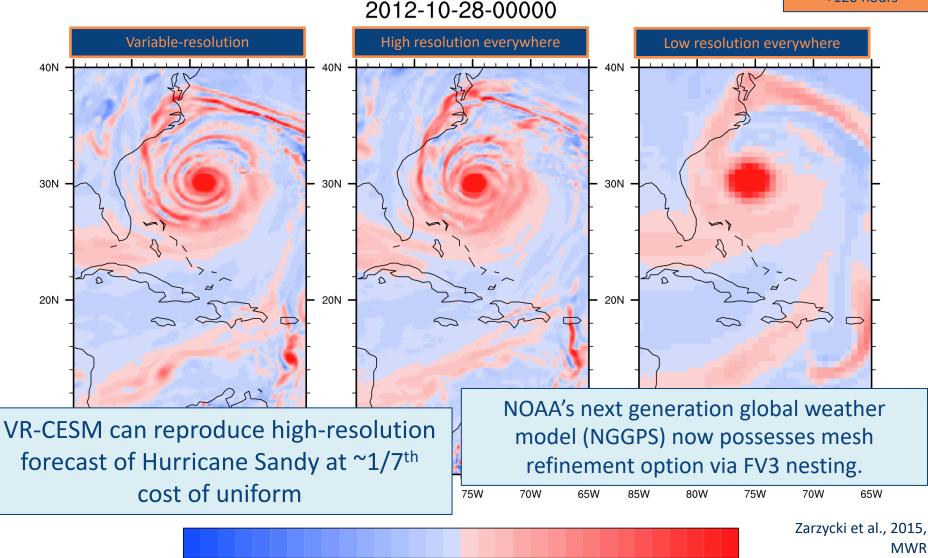
#### Sandy 500 hPa vorticity: INIT 00Z 10/23/12



### **Applications: Hurricane Sandy**

#### Sandy 500 hPa vorticity: INIT 00Z 10/23/12





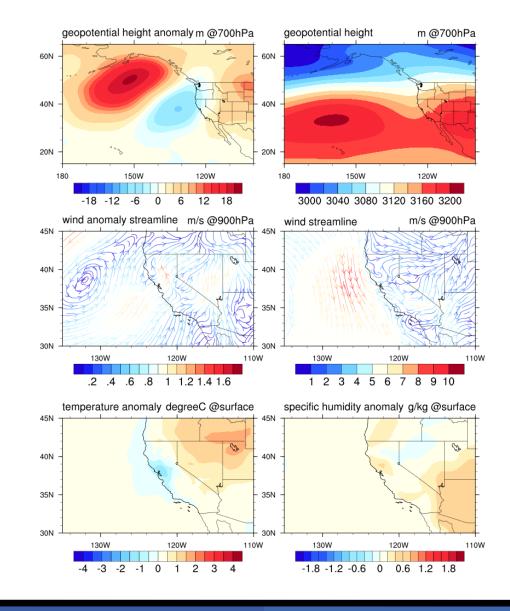
-28 -24 -20 -16 -12 -8 -4 0 4 8 12 16 20 24 28

### **Applications: Marine Air Intrusion**

Central Valley Delta Breeze events are important for cooling and ventilating the central valley, and bringing relief from heat waves

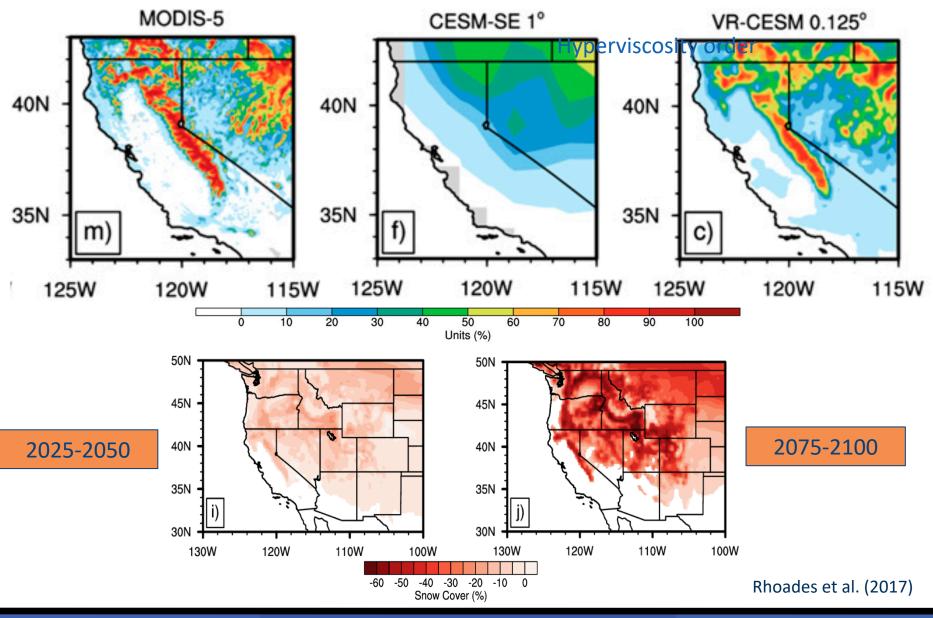
These are regional meteorological features driven by large-scale meteorological patterns (LSMPs).

Variable-resolution ensembles have been used to isolate the LSMPs associated with Delta Breeze events, allowing them to be predicted based on simulations that only resolve the large-scale flow.



ATM 265: Lecture 08

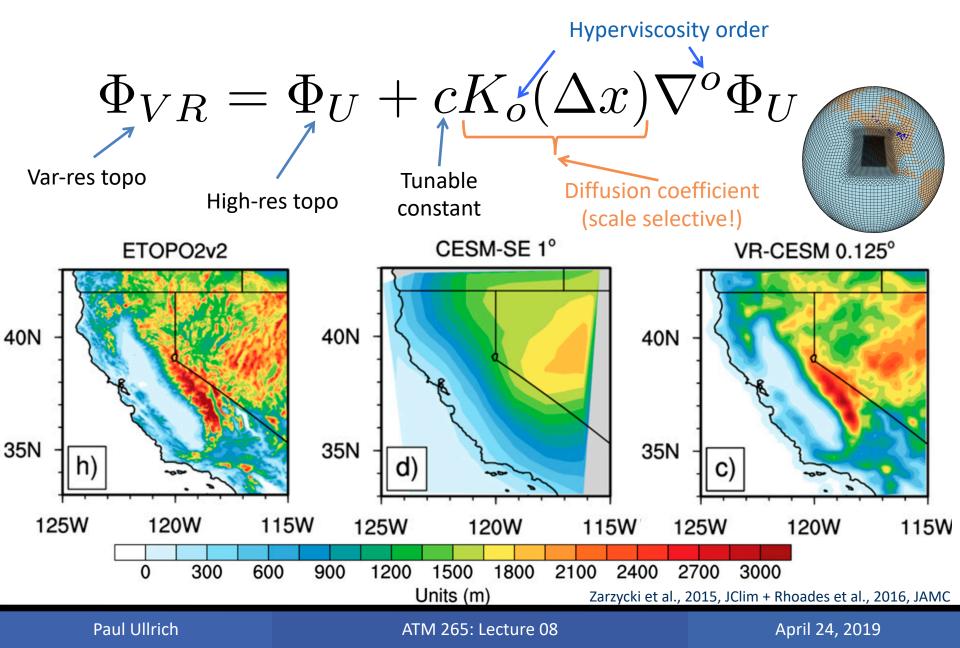
### **Applications: Snowpack**

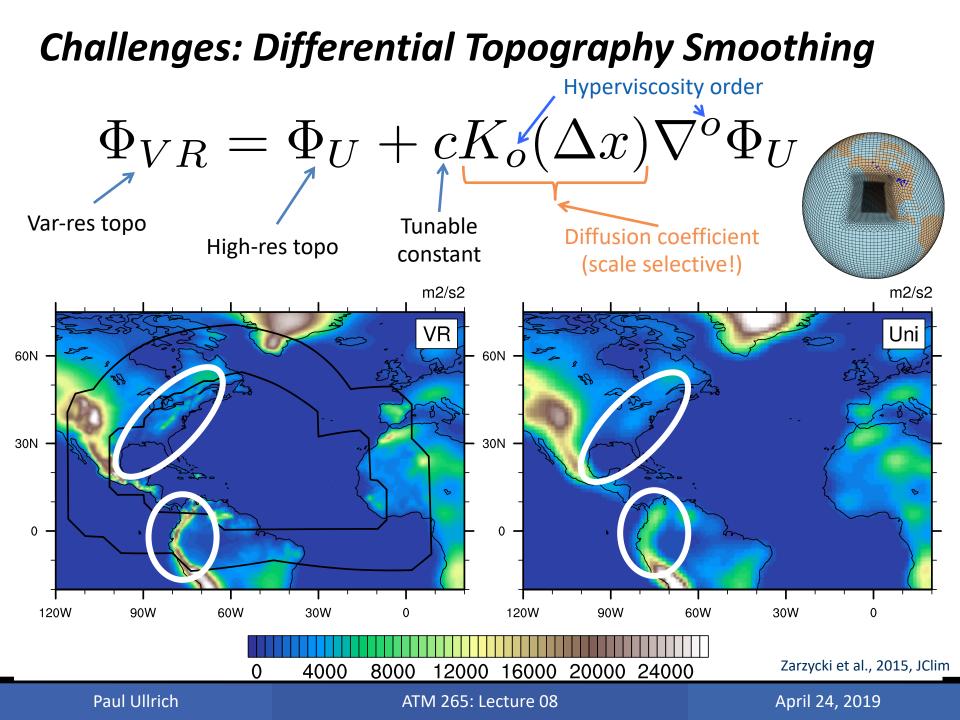


Paul Ullrich

ATM 265: Lecture 08

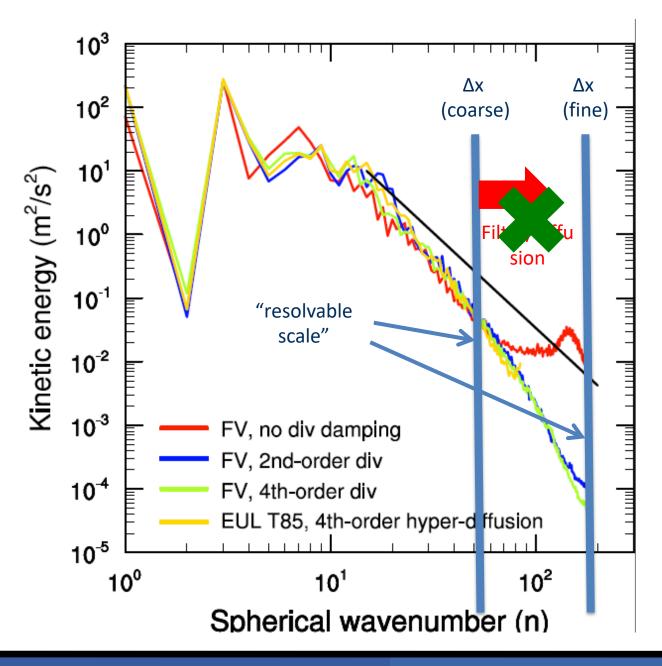
### Challenges: Differential Topography Smoothing





# Challenges: Diffusion

Has been covered that models generally need some form of diffusion to **remain stable** and **produce realistic results** 



# **Challenges: Diffusion**

- Some schemes have enough implicit diffusion that they don't require additional filtering
  - Implicit diffusion inherently scale-selective
- Other models require explicit diffusion for numerical stability and to remove grid-scale noise
  - Smagorinsky
    - Controlled by deformation/stability of local flow
  - (Hyper)-viscosity
    - Applied as forcing term in relevant state equations
- Explicit diffusion requires careful care to <u>only operate on spurious energy</u> <u>near grid scale (e.g., numerical noise, wave reflection, etc.)</u>

# Challenges: Diffusion 701

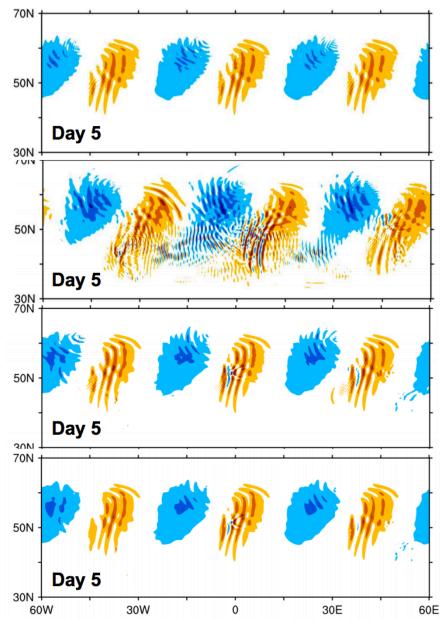
Uniform mesh ( $\Delta x = 30$  km) Smagorinsky

TR10 mesh ( $\Delta x = 90-30$  km) Smagorinsky,  $\Delta x^2$  scaling

TR10 mesh ( $\Delta x = 90-30$  km) background K<sub>4</sub> = 1x10<sup>12</sup> m<sup>4</sup>s<sup>-1</sup> (30 km mesh value,  $\Delta x^4$  scaling)

TR10 mesh ( $\Delta x = 90-30$  km) background K<sub>4</sub> =  $3x10^{12}$  m<sup>4</sup>s<sup>-1</sup> (30 km mesh value,  $\Delta x^4$  scaling)

Skamarock, 2012, PDES



Paul Ullrich

ATM 265: Lecture 08

**Challenges: Diffusion** 

CAM-SE, Zarzycki et al., 2014, JClim

Paul Ullrich

$$K_{4}(\Delta x) = K_{4}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{4}(\Delta x) = K_{4}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{4}(\Delta x) = K_{4}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{4}(\Delta x) = K_{4}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{5}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{6}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{6}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{6}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{6}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{6}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{6}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{6}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{6}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{6}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{6}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{6}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{6}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{6}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{6}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{6}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{6}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{6}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{7}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{7}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{7}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{7}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{7}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{7}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{7}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{7}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{7}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{7}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{7}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{7}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{7}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{7}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{7}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{7}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{7}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{7}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{7}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{7}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{7}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{7}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

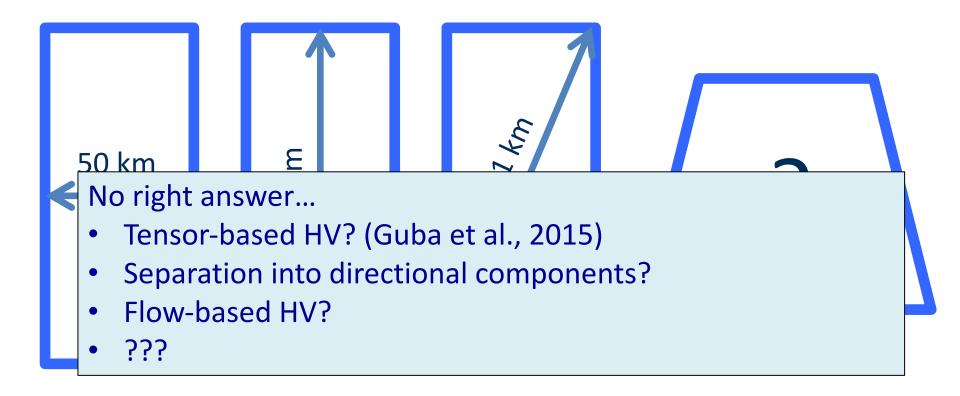
$$K_{7}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

$$K_{7}(\Delta x_{ref}) \begin{pmatrix} \Delta x \\ \Delta x_{ref} \end{pmatrix}^{y}$$

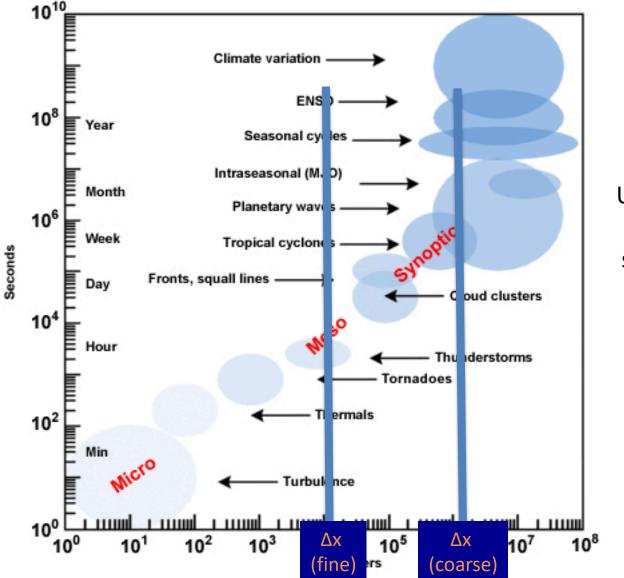
$$K_{7}(\Delta x_{re}$$

# **Challenges: Diffusion**

- Works well for meshes with undistorted elements
- But what happens when you have odd shapes?



### Challenges: Scale-Aware Physics

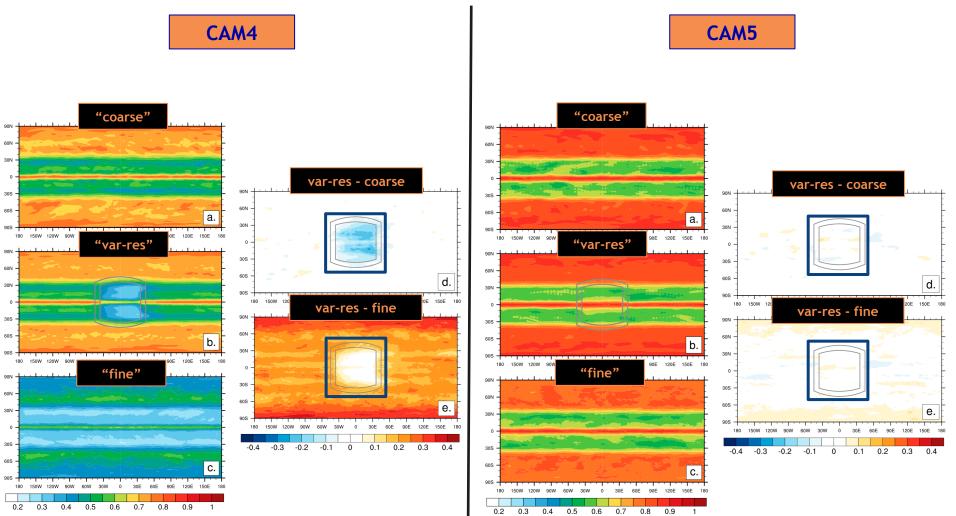


Unified model setups need to be able to properly estimate subgrid properties in all cells

Challenging when spanning large spatial scale gaps...

©The COMET Program

### Challenges: Scale-Aware Physics



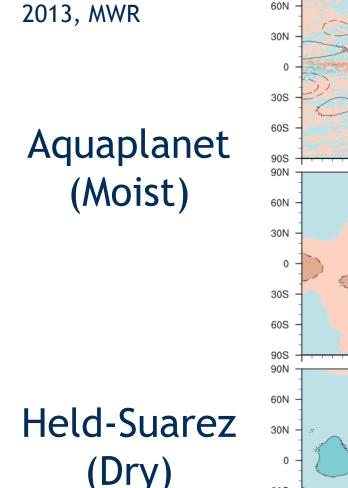
### Mean annual cloud fraction

Zarzycki et al., 2014, JClim

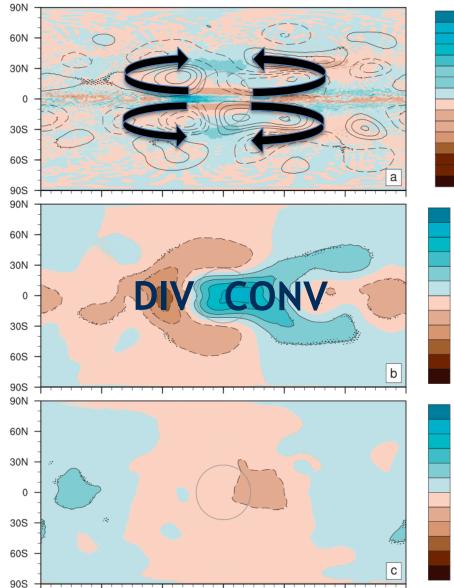
Paul Ullrich

ATM 265: Lecture 08

# Challenges: Scale-Aware Physics



Rauscher et al.,



Precip. anom./ Streamlines

6

3

0 -1

-3

-6

0.25

0.2 0.15

0.1

0.05

0 -0.05

-0.1 -0.15 -0.2

-0.25

0.25

0.2

0.15

0.1

0.05

0

-0.05

-0.1

-0.2

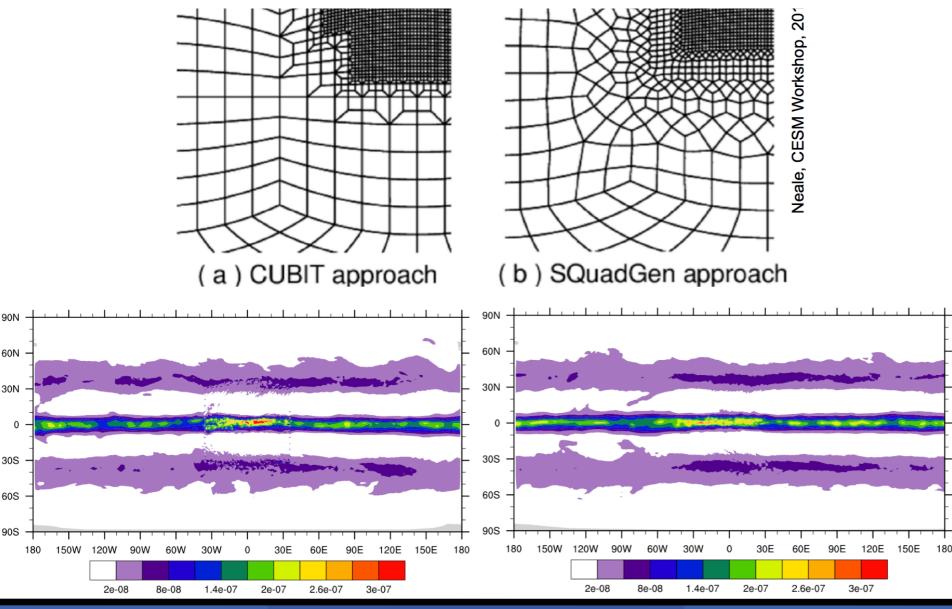
-0.25

200 hPa Eddy Velocity Potential 200 hPa

eddy Velocity Potential

ATM 265: Lecture 08

### **Challenges: Grid Generation**



Paul Ullrich

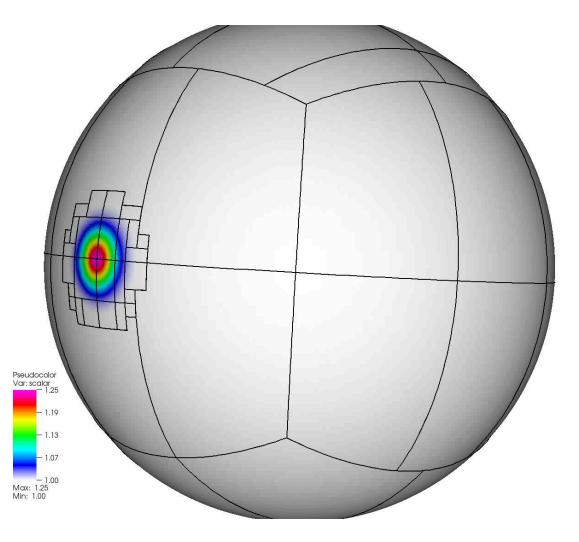
ATM 265: Lecture 08

# Adaptive Mesh Refinement (AMR)

With Hans Johansen, Phillip Colella and many others (LBNL)

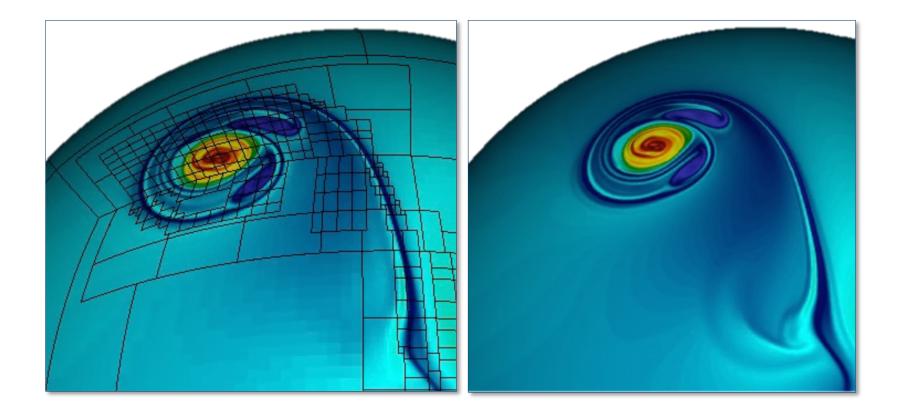
Features of interest can be tracked via adaptive mesh refinement (AMR), which automatically places additional refinement in regions of interest.

In this case, we use the Chombo global circulation model, developed at Lawrence Berkeley National Lab.



# Adaptive Mesh Refinement (AMR)

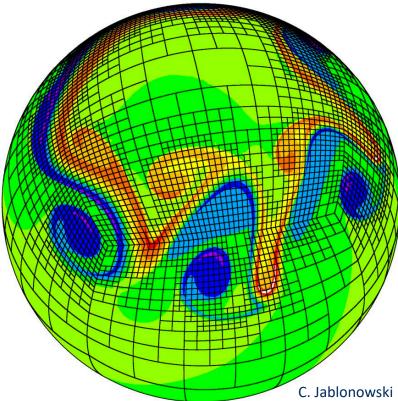
Adaptive mesh refinement poses a particular challenge for future exascale applications due to the need for dynamic load-balancing.



# Adaptive Mesh Refinement (AMR)

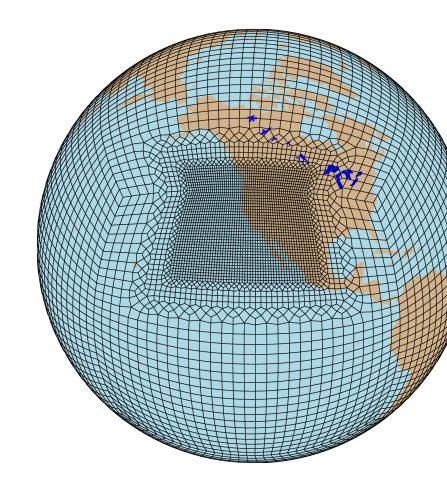
### AMR introduces new challenges

- How to "tag" regions to refine (don't want to under-refine or over-refine)
- Load balancing on parallel computing systems
- Need to be able to change configuration "on the fly"
  - Topography
  - Diffusion
  - Sub-grid physics
  - Etc.



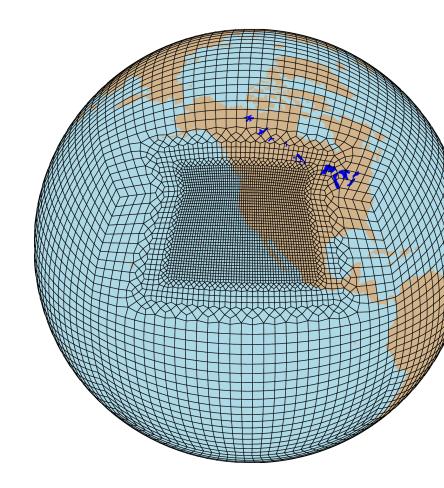
# Summary: Variable Resolution Models

- VR allows for **fewer computational resources** to be spent sparingly on a single problem.
- Fully coupled global modeling system, usable for seasonal to subseasonal forecasting.
- More ensemble members can be produced for a particular region (uncertainty quantification).
- Resolution where you need it.



# Summary: Variable Resolution Models

- Variable-resolution dynamical cores offer ability to have fine regional resolution in a global modeling framework
- Demonstrated fidelity with tropical cyclones, orographic precipitation, mesoscale convection
- New challenges (hint: avenues for research!)
  - Numerical techniques
  - Scale-aware physics
  - Grid and refinement choices
  - Software engineering



#### Paul Ullrich