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1. Unique Aspects of the Vertical

2. Overview of Vertical Coordinate Systems

3. Terrain-following Variations

4. Vertical Computational Modes

5. Semi-Lagrangian Layers

Outline

Slides are based on Michael Toy’s talk on 
vertical discretizations from the DCMIP 
workshop (2012)



Radius of the Earth
6371.22 km

Atmosphere Depth
100 km

Troposphere Depth
10 km

Mountain Height
5 km
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Unique Aspects of the Vertical

Typical scales (in m/s2):

dw

dt
� u2 + v2

r
= �1

⇢

@p

@r
� g + 2⌦u cos�+ ⌫r2w

10-7 10-5 10 10 10-3 10-15

Gravity acts in the vertical (let’s look at the vertical momentum equation)

Dominant balance is between 
these two terms.

Hydrostatic balance
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Unique Aspects of the Vertical
For an approximately isothermal layer of the atmosphere,

�1

⇢

@p

@r
� g ⇡ 0

⇢ =
p

RdT0

Hydrostatic balance:

Ideal gas law:

RdT0

p

@p

@r
= �g

Approx. Solution: p = p0 exp

✓
�gz

RdT0

◆

Exponential decay of pressure and density with height!  Highly stratified!

z ⌘ r � a
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Unique Aspects of the Vertical
• Gradients are much 

stronger in the vertical:  It’s 
much colder 10km straight 
up (-50 C) and harder to 
breathe than 10km down 
the road.
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Unique Aspects of the Vertical
• Boundary conditions at r = a (surface) and r = ∞

No flow through the surface

Zero pressure up here

z
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Unique Aspects of the Vertical
Many distinct physical processes:

• Convection

• Boundary layer

• Viscous processes

• Radiation

• Waves

• Troposphere-Stratosphere Interaction

Some not-so physical processes:

• Model-top sponge layer (numerical viscosity)
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Numerical Considerations
• Choice of coordinate system 

• Height coordinates (Richardson 1922)

• Pressure coordinates (Eliassen 1949)

• Isentropic coordinates (Eliassen and Raustein 1968)

• Mass coordinates (Laprise 1992)

• Terrain-following or cut-cell?

• Ensure the hydrostatic relation is satisfied for a stratified atmosphere

• Staggering of variables?

• How to handle boundary conditions?
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Non-Hydrostatic Primitive Equations

d⇢

dt
= �⇢r · u

cv
dT

dt
+ p

d↵

dt
= J

p = ⇢RdT

Five prognostic equations, one constraint equation Shallow Atmosphere 
approximation assumed

d

dt
=

@

@t
+ uh ·rz + w

@

@z

du

dt
� uv tan�

a
= � 1

⇢a cos�

✓
@p
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◆

z

+ 2⌦v sin�
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+

u2 tan�

a
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z
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Hydrostatic Primitive Equations

p = ⇢RdT

Four prognostic equations, two constraint equation

d⇢

dt
= �⇢r · u

cv
dT

dt
+ p

d↵

dt
= J

0 = �1

⇢

@p

@z
� g

du

dt
� uv tan�

a
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⇢a cos�

✓
@p
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z

+ 2⌦v sin�
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dt
+

u2 tan�

a
= � 1
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✓
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� 2⌦u sin�

d

dt
=

@
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+ uh ·rz + w
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Z-Coordinates (Shallow Atmosphere)
Computing the vertical velocity w ⌘ dz

dt

dw

dt
= �1

⇢

@p

@z
� g

w = �
Z z

0
r · uhdz �

1

�

Z z

0

1

p
(B +Q)dz +

1

cp

Z z

0

J

T
dz

B =
1
�

R zT
0

Q
p dz �

1
cp

R zT
0

J
T dz +

R zT
0 r · uhdz

� 1
�

R zT
0

dz
p

Q = uh ·rp� g

Z zT

z
r · (⇢uh)dz

Non-hydrostatic (Predicted / Prognosed)

Hydrostatic (Diagnosed)

Examples:  
Kasahara and 

Washington (1967)
DeMaria (1995)

Hydrostatic dynamical 
cores rarely use z-
coordinates due to 

this mess

uh ⌘ (u, v)
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Vertical Coordinate Transforms
z(x, y, ⌘, t) ! ⌘(x, y, z, t)

Z

⌘

Transformation rules:

@

@z
=

@⌘

@z

@

@⌘
✓
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@x
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✓
@
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⌘
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⌘
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@⌘
✓
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✓
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⌘

�
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⌘

@⌘
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@

@⌘

⌘̇ ⌘ d⌘
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=

✓
@⌘
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z
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@⌘

@z

New generalized 
vertical velocity:
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Vertical Coordinate Transforms
z(x, y, ⌘, t) ! ⌘(x, y, z, t)

Z

⌘

Pretty much any quantity can be chosen for 
your vertical coordinate, but it must be 
monotone:

It must be either strictly increasing or 
decreasing as a function of height.

Eliminates options such as temperature 
from being used as a vertical coordinate.
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Non-Hydrostatic Equations

cv
dT

dt
+ p

d↵

dt
= J

Six prognostic equations, one constraint equation 
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p = ⇢RdT

✓
@m

@t

◆

⌘

+r⌘ · (muh) +
@

@⌘
(m⌘̇) = 0

dz

dt
= w

d

dt
=

@

@t
+ uh ·rz + w

@

@z
m ⌘ ⇢

@z

@⌘

New Mass Variable
(pseudo-density)

(General Coordinates)
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Non-Hydrostatic Equations

cv
dT

dt
+ p

d↵

dt
= J

Six prognostic equations, one constraint equation 
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Two-term horizontal 
pressure gradient!

dz

dt
= w z is predicted!

m ⌘ ⇢
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p = ⇢RdT
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Pressure Coordinates ⌘ = p ! ⌘ ⌘̇

dw

dt
= � 1

m
� g m = �1

g

✓
@m

@t

◆

p

+rp · (muh) +
@

@p
(m!) = 0 rp · (uh) +

@!

@p
= 0

HPGF =
1

m
rpz HPGF = �grpz

Non-Hydrostatic Equations Hydrostatic Equations

Vertical Momentum

Horizontal pressure gradient

Continuity Equation

Single term pressure gradient

Layer mass is 
constant

Diagnostic continuity equation

! ⌘ ṗ = �
Z p

0
rp · uhdpVertical velocity difficult to diagnose…
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Mass Coordinates
AKA Hydrostatic pressure coordinates (Laprise 1992)

⌘ = ⇡ ⇡(x, y, z, t) ⌘
Z 1

z
⇢(x, y, z0, t)gdz0

Arises from the hydrostatic pressure equation:
@p

@z
= �⇢g

Represents the mass of air above a given height.

For a hydrostatically balanced atmosphere this is the pressure p.
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Mass Coordinates

Non-Hydrostatic Equations Hydrostatic Equations

Pseudo-density

Horizontal pressure gradient

Continuity Equation

Layer mass is constant

Diagnostic continuity equation

m = ⇢
dz

d⇡
= �1

g

r⇡ · uh +
@⇡̇

@⇡
= 0

⇡̇ = �
Z ⇡

0
r⇡ · uhd⇡

HPGF = �1

⇢
r⇡p�

@p

@⇡
r⇡(gz)

Double term pressure gradient

Same as Non-Hydrostatic

Same as Non-Hydrostatic

Same as Non-Hydrostatic

✓
@p

@⇡
= 1

◆
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Isentropic Coordinates
AKA Adiabatic coordinates

The vertical velocity is proportional to the diabatic heating:

⌘ = ✓ (Potential temperature) ✓ = T

✓
p0
p

◆R/cp

✓̇ ⌘ d✓

dt
=

J

cp

✓
p0
p

◆R/cp

For an adiabatic atmosphere the “vertical motion” is zero and coordinate 
surfaces are material surfaces (a quasi-Lagrangain vertical coordinate)

This minimizes errors associated with vertical advection
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Isentropic Coordinates
In non-hydrostatic models at high horizontal resolution, static instabilities 
and turbulence present a challenge since the coordinate loses the 
monotonicity property.

Vertical cross-section of isentropes associated 
with a breaking mountain wave.

This is typically solved 
by hybridizing the 
coordinate with 
something which 
maintains monotonicity.
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Vertical Coordinates
Summary of four common vertical coordinates.

Coordinate Non-Hydrostatic
Models

Hydrostatic Models

Height (z) Suitable Not preferred
(difficult to diagnose w)

Pressure (p) Not preferred
(difficult to diagnose ω)

Suitable

Mass (π) Suitable Suitable
(identical to p coordinate)

Potential temperature (θ) Suitable
(some challenges)

Suitable
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Representation of Topography

Figure: Adcroft et al. (1997)

a) Step topography b) Terrain-following 
coordinates

c) Shaved cell / 
embedded boundary

• Step topography is the easiest to implement, but is inaccurate and 
tends to produce significant spurious oscillations.

• Terrain-following coordinates have been the standard for atmospheric 
modeling systems, but issues with accurate computations of the 
horizontal pressure gradient force have led to interest in alternatives…
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Representation of Topography
Advantages:
• No issues with small cells
• Accurate representation of horizontal 

pressure gradient force

Disadvantages:
• Poorly represents the underlying 

topography
• “Hard corners” create a lot of 

spurious noise

a) Step topography



c) Shaved cell / 
embedded boundary
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Representation of Topography
Advantages:
• Accurate treatment of pressure 

gradient force

• Accurate treatment of topography

Disadvantages:
• Small grid cells can affect the 

maximum timestep size (CFL 

condition)
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Representation of Topography
Advantages:
• Topography absorbed into evolution 

equations
• Very accurate for smooth topography

Disadvantages:
• Poor representation of horizontal 

pressure-gradient force near steep 
topography

�

p
�x

�grpz = 0 = �gr�z �
1

⇢
r�p

The discrete form of these terms 
don’t necessarily cancel!

�p = �⇢g�z

b) Terrain-following 
coordinates
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Representation of Topography
� ⌘ p

ps
Phillips (1957) Sigma coordinate

⌘z ⌘ z � zs
zT � zs

Gal-Chen and Somerville (1975)

⌘ =
⇡ � ⇡T

⇡S � ⇡T

Skamarock and Klemp (2008)
Normalized hydrostatic pressure

⌘ =
p

ps
+

✓
p

ps
� 1

◆✓
p

ps
� p

p0

◆ Simmons and Burridge (1981)
Hybrid coordinate

Schar et al. (2002) Hybrid coordinate
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Representation of Topography

Source: Schar et al. (2002)

Second-Order Advection over Topography

Sigma Coordinate

Simmons and Burridge (1981)
Hybrid coordinate

Schar (2002)
Hybrid coordinate
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Vertical Staggering
Lorenz (“L”) grid Charney-Phillips (“CP”) grid

Location of levels and 
interfaces is identical.  

Only difference is 
staggering of velocity 

and potential 
temperature.

Like an Arakawa A-grid Like an Arakawa C-grid

v, p

v, p

v, p

p
v
p
v
p
v
p
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Vertical Staggering
Lorenz (“L”) grid

Like an Arakawa A-grid

@w

@t
+

g

⇢
⇢+

1

⇢

@p

@z
= 0

Linearized vertical velocity equation:

Density perturbation 
(affects magnitude)

Pressure perturbation 
(affects propagation)

Ignore for now

@w

@t
+

1

⇢

✓
pk+1 � pk�1

zk+1 � zk�1

◆
= 0

Discretization on Lorenz grid:

v, p

v, p

v, p
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Vertical Staggering: Lorenz
Lorenz (“L”) grid

Like an Arakawa A-grid

@w

@t
+

g

⇢
⇢+

1

⇢

@p

@z
= 0

Linearized vertical velocity equation:

Discretization on Lorenz grid:
v, p

v, p

v, p

@wk

@t
+

1

⇢

✓
pk+1 � pk�1

zk+1 � zk�1

◆
= 0

Separation of odd/even modes:

• Vertical velocity evolution equation is 
unable to see 2Δz modes in the 
pressure field.

• Called a “Computational Mode”
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Vertical Staggering: Charney-Phillips

@w

@t
+

g

⇢
⇢+

1

⇢

@p

@z
= 0

Linearized vertical velocity equation:

Discretization on Charney-Phillips grid:

No separation of odd/even modes.
No computational mode supported.

Also see:
• Tokioka (1978)
• Arakawa and Moorthi (1988)
• Arakawa and Konor (1996)

Charney-Phillips (“CP”) grid

Like an Arakawa C-grid

p
v
p
v
p
v
p

@wk

@t
+

1

⇢

✓
pk+1/2 � pk�1/2

zk+1/2 � zk�1/2

◆
= 0
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Vertical Staggering
There are many possible choices of vertical 

staggering besides the ones chosen here:

• For non-hydrostatic system there are 5 

prognostic variables

• We can choose any two thermodynamic 

variables from ρ, p, T, θ, etc.

Some have computational modes.  Others do 

not.

• Accurate representation of waves (acoustic, 

inertia-gravity, Rossby) best achieved by 

minimizing finite differences over 2Δz.

• Analyzed by Thuburn and Woollings (2005) in 

three coordinate systems.

Charney-Phillips (“CP”) grid

p
v
p
v
p
v
p
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Semi-Lagrangian Coordinates
Instead of fixing the vertical coordinate, a common strategy is the use 
of semi-Lagrangian (or quasi-Lagrangian) vertical coordinates.

This is analogous to the semi-Lagrangian advection technique discussed 
last time, except only applied to the vertical.  Remapping to a fixed 
Eulerian grid is typically performed every 15 or 30 minutes.

Introduced by Starr (1945)
In models:
• Skamarock (1998)
• He (2002)
• Lin (2004)
• Zängl (2007)
• Toy and Randall (2009)
• Toy (2011)

Figure: Nair et al. (2009)
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Semi-Lagrangian Equations

cv
dT

dt
+ p

d↵

dt
= J

Six prognostic equations, one constraint equation 
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⇢
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⇢
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⌘

+
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@p

@⌘

✓
@z
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◆

⌘

#
� 2⌦u sin�
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= w z is predicted!

m ⌘ ⇢
@z

@⌘

p = ⇢RdT

d

dt
=

@

@t
+ uh ·r⌘ + ⌘̇

@

@⌘

If layers are floating with 
the vertical velocity, then 

there is no vertical 
advection through layer 

surfaces.
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Semi-Lagrangian Coordinates
Layer thickness becomes a prognostic variable:

Figure: Nair et al. (2009)

d(�pk)

dt
= ⌘̇k+1/2 � ⌘̇k�1/2

Before layer thicknesses can 
become too thin / thick, they 
are remapped back to the fixed 
Eulerian grid.

The remapping procedure takes 
the place of vertical advection.
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Timestep Limitations (Non-Hydrostatic)
Recall that stability of an explicit 
numerical method requires a CFL 
condition to be satisfied.  For example:

110km

100m

����
u�t

�x

����  1

Here u is the maximum wave speed of 
the system, Δx is the grid spacing and 
Δt is the time step size.

⇡ 342m/su ⇡
r

�p

⇢

In the atmosphere, the fastest waves 
are sound waves, with a maximum 
speed of

Only relevant for non-hydrostatic 
atmospheric models.  Hydrostatic 
models do not support vertically 

propagating sound waves!
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Timestep Limitations
CFL Condition:

110km

100m

����
u�t

�x

����  1

u ⇡ 342 m/swith

for �x = 110 km �t  321 s

�x = 100 mfor �t  0.3 s

?

?

In practice, limiting the time step size to be governed by the vertical 
coordinate is too severe!  Need a better approach…
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Overcoming Timestep Limitations
Filtered Equations:
• Anelastic approximation (Ogura and Phillips, 1962)

• Pseudo-Incompressible approximation (Durran, 1989)

• Unified approximation (Arakawa and Konor 2005)

(basic premise is to derive a new set of equations which do not contain 

sound waves and so maximum wave speed is limited by advection)

Numerical Methods:
• Implicit time stepping in the vertical


