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CESM Project

• The CESM project has been posted on the course webpage.  
Please have a look and let me know if you have any 
questions.  The project will be due on April 26th, 2019.

• Office hours for the class:  Monday 1:30pm-2:30pm.  Also 
available for virtual meetings on Tuesdays, Thursdays and 
Fridays.
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1. Introduction / Motivation

2. Explicit / Implicit Methods

3. Runge-Kutta Methods

4. Lagrangian / Semi-Lagrangian Methods

5. Numerical Stability

Outline
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Introduction
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Atmospheric Modeling – Question One

Eulerian Frame

�q

�t
+ u ·�q = 0

We considered 
this term.

Last Time: Spatial Discretizations

• How do we best represent continuous data when only a 
(very) limited amount of information can be stored?

• Equivalently, what is the best way to represent continuous 
data discretely?
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Atmospheric Modeling – Question Two

Eulerian Frame

�q

�t
+ u ·�q = 0

Let’s look at this 
term.

• How do we best represent the dynamic evolution of the 
atmosphere?  (how to deal with time?)

This Time: Temporal Discretizations
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• How do we best represent continuous data when only a 
(very) limited amount of information can be stored?

Atmospheric Modeling – Question One

Atmospheric Modeling – Question Two

• How do we best represent the dynamic evolution of the 
atmosphere?  (how to deal with time?)

These questions are inherently linked

Spatial and Temporal Discretizations
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So far we have discretized the spatial component of the 
equations:

Time evolution 
of data point j

Some function 
applied to all other 

data points

q is the vector of 
all discrete data 
values

�qj
�t

=
u

2�x
qj�1 �

u

2�x
qj+1

Example from finite-
differences:

�qj
�t

= Fj(q)

Spatial and Temporal Discretizations
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All the methods discussed in Lecture 3 are linear:
For a linear differential equation (e.g. advection equation) the 
function f can be represented as a matrix multiply.

Time evolution 
of data point j. “Spatial 

discretization” 
matrix.

q is the vector of 
all discrete data 

values.

�q

�t
= Aq

Spatial and Temporal Discretizations
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A =
u

2�x

0

BBBBBB@

0 �1 0 0 0 +1
+1 0 �1 0 0 0
0 +1 0 �1 0 0
0 0 +1 0 �1 0
0 0 0 +1 0 �1
�1 0 0 0 +1 0

1

CCCCCCA

�qj
�t

=
u

2�x
qj�1 �

u

2�x
qj+1

Example from finite-differences:
�q

�t
= Aq

Spatial and Temporal Discretizations
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A =
u

2�x

0

BBBBBB@

0 �1 0 0 0 +1
+1 0 �1 0 0 0
0 +1 0 �1 0 0
0 0 +1 0 �1 0
0 0 0 +1 0 �1
�1 0 0 0 +1 0

1

CCCCCCA

�qj
�t

=
u

2�x
qj�1 �

u

2�x
qj+1

• Example from finite-differences:
�q

�t
= Aq

Matrix is mostly 
zeroes!

Banded 
structure!

Spatial and Temporal Discretizations



12Paul Ullrich ATM 265: Lecture 04 April 10, 2019

• An evolution matrix which consist mostly of zeroes are 

referred to as sparse matrices.

• Finite-difference, finite-volume, spectral element 

methods all (typically) lead to a sparse evolution 

matrix.

• The spectral transform method leads to a dense 

evolution matrix.  That is, there are very few zeros.

Applications to Spatial Discretizations
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• As the accuracy of a numerical method increases, 
there are fewer zeros in the evolution matrix (they 
make use of more information).

• That is, accuracy implies the need for a dense matrix.

• But!  A more dense matrix is more computationally 
expense to apply in calculations.

• Hence, there is a trade-off between accuracy and 
efficiency.

Applications to Spatial Discretizations
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Explicit / Implicit Methods
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�q

�t
= Aq

Integrate these discretizations with respect to time:

�q

�t
= F(q)

qn+1 � qn =

Z tn+1

tn
Aqdt qn+1 � qn =

Z tn+1

tn
F(q)dt

The Time Step
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qn+1 � qn =

Z tn+1

tn
Aqdt

qn+1 � qn =

Z tn+1

tn
F(q)dt

The Time Step
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Consider the non-linear discretization 
of the evolution equation.

qn+1 � qn =

Z tn+1

tn
F(q)dttn+1

tn

Time

xj

qn+1
j

qnj

Space

The Time Step
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Non-linear discretization.

qn+1 � qn =

Z tn+1

tn
F(q)dt

tn+1

tn

Time

xj

qn+1
j

qnj

Space

Z tn+1

tn
F(q)dt ⇡ �t F(qn)

qn+1 = qn +�t F(qn)

�t = tn+1 � tn

A First Explicit Scheme
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Non-linear discretization.

qn+1 � qn =

Z tn+1

tn
F(q)dt

tn+1

tn

Time

xj

qn+1
j

qnj

Space

qn+1 = qn +�t F(qn)

Under the explicit discretization, the unknown is 
written explicitly in terms of known values.

�t = tn+1 � tn

A First Explicit Scheme
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Non-linear discretization.

qn+1 � qn =

Z tn+1

tn
F(q)dt

tn+1

tn

Time

xj

qn+1
j

qnj

Space

Z tn+1

tn
F(q)dt ⇡ �t F(qn+1)

qn+1 = qn +�t F(qn+1)

�t = tn+1 � tn

A First Implicit Scheme
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Non-linear discretization.

qn+1 � qn =

Z tn+1

tn
F(q)dt

tn+1

tn

Time

xj

qn+1
j

qnj

Space

Under the implicit discretization, one needs to 
solve a system of equations to find qn+1.

qn+1 = qn +�t F(qn+1)

�t = tn+1 � tn

A First Implicit Scheme
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In the linear case, the backward 
Euler method simplifies to

qn+1 � qn =

Z tn+1

tn
Aqdtqn+1 = qn +�t A qn+1

We can directly rewrite this in terms of qn+1:

qn+1 = (I ��t A)�1qn

Solving the linear system is 
potentially an expensive 
operation.

A First Implicit Scheme
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In the non-linear case, we can also 
linearize the update:

qn+1 � qn =

Z tn+1

tn
F(q)dt

F(qn+1) ⇡ F(qn) +
dF

dq
(qn+1 � qn)

qn+1 = qn +�t F(qn+1)

qn+1 = qn +�t

✓
I ��t

dF

dq
(qn)

◆�1

F(qn)

A First Implicit Scheme
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Q:  Clearly the explicit method is 

significantly more straightforward to 

evaluate.  Why would we choose an 

implicit method?

A: Stability!  We will see this more 

later, but the basic difference is as 

follows:

qn+1 = qn +�t F(qn+1)

qn+1 = qn +�t F(qn)

• Implicit schemes have no limit on the size of the time step size         .  

However, a larger time step size is less accurate.  Also: Implicit 

schemes generally require global communication.

• Explicit schemes impose a (strict) limit on the time step size        .  

Exceeding this limit will cause the method to “blow up”.

�t

�t

Explicit / Implicit Schemes
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tn+1tn
Time

F(q(xj , t)) Z tn+1

tn
F(q(xj , t))dt

Accuracy
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tn+1tn

Z tn+1

tn
F(q(xj , t))dt

tn+1tn

Forward Euler Backward Euler

Z tn+1

tn
F(q)dt ⇡ �t F(qn)

Z tn+1

tn
F(q)dt ⇡ �t F(qn+1)

F(q(xj , t))

Accuracy
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Forward Euler Backward Euler

Both the forward Euler method and backward Euler method are first-order 
accurate:  They are only exact when F is a constant.

First-order accuracy is typically insufficient.  We need to do better.

F(q(xj , t))

Accuracy
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The leap frog scheme is a traditional second-order accurate explicit 
method.  This means that the integral is exact if F is either constant or 
linear in time.

tn+1

tn

Time

xj

qn+1
j

qnj

Space

tn�1

qn+1 � qn�1 =

Z tn+1

tn�1

F(q)dt

qn�1
j

Leap frog requires knowledge of 
q from two time levels prior to 
the unknown level.

Leap Frog
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Leap Frog

Second-order accuracy for the leap frog method is 
attained by using the midpoint value.

F(q(xj , t))

tn+1tntn�1

qn+1 � qn�1 =

Z tn+1

tn�1

F(q)dt

Accuracy of Leap Frog
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The leap frog scheme has traditionally been used in combination with the 
spectral transform method.

tn+1

tn

Time

xj

qn+1
j

qnj

Space

tn�1 qn�1
j

The leap frog scheme possesses a computational 
mode since the odd and even time levels can 
separate.

This is usually fixed by using off-centering 
(Asselin filtering)

Leap Frog
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Runge-Kutta Methods
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Runge-Kutta methods are a popular method for attaining high-order 

accuracy in time without the need to store data from multiple time steps.

tn+1

tn

Time

xj

qn+1
j

qnj

Space

• Runge-Kutta methods are multi-stage, which 

means in order to advance by           the 

function Fmust be evaluated multiple times.

�q

�t
= F(q)

�t

Runge-Kutta Methods
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The second-order accurate predictor-corrector method is one of the most 
basic Runge-Kutta methods.

tn+1

tn

Time

xj

qn+1
j

qnj

Space

A first-order approximation to               is first 
computed (prediction step):

q⇤j

qn+1
j

q⇤ = qn +�t F(qn)

A second-order correction is then computed:

qn+1 =
1

2
qn +

1

2
q⇤ +

�t

2
F(q⇤)

Predictor / Corrector
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The predictor corrector scheme can also be written as follows:

qn+1 = qn +
�t

2
F(qn) +

�t

2
F(q⇤)

F(q(xj , t))

tn+1
tn

qn+1 = qn +

Z tn+1

tn
F(q)dt

q⇤jqnj

Predictor / Corrector
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One of the more popular Runge-Kutta methods is the SSPRK3 
scheme, which is a third-order accurate, three stage Runge-
Kutta method.

tn+1

tn

Time

xj

qn+1
j

qnj

Space

tn+1/2

q(1)j

q(2)j

q(1)
j = qn

j +�tF(qn)

q(2)
j =

3

4
qn
j +

1

4
q(1)
j +

�t

4
F(q(1))

qn+1
j =

1

3
qn
j +

2

3
q(2)
j +

2�t

3
F(q(2))

Stage one:

Stage two:

Final update:

Strong Stability Preserving RK3 (SSPRK3)
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Writing as a one-stage update equation:

qn+1 = qn +

Z tn+1

tn
F(q)dt

qn+1
j = qn

j +
�t

6

h
F(qn) + 4 F(q(2)) + F(q(1))

i

F(q(xj , t))

tn+1tn tn+1/2

qnj q(1)j

q(2)j

Strong Stability Preserving RK3 (SSPRK3)
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The CAM Spectral Element (CAM-SE) model uses a Runge-Kutta scheme 
closely modeled on the leap frog scheme discussed earlier:

tn+1

tn

Time

xj

qn+1
j

qnj

Space

q(1)j

q(2)j

Stage one:

Stage k+1:

Final update:

q(1)
j = qn

j +
�t0

2
F(qn

j )

q(k+1) = q(k�1)
j +�t0F(q(k)

j )

q(0) = qn
j

tn +�t0/2

tn +�t0

tn + 3�t0/2 q(3)j

qn+1 = q(N)

Synchronized Leap Frog
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Lagrangian and Semi-Lagrangian
Methods
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What does this mean?

q Tracer mixing ratio is constant 
following a fluid parcel.

q

Dq

Dt
= 0

Lagrangian Frame

Recall Lagrangian reference frame (follows a fluid parcel).

Lagrangian Methods
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…in the finite difference context

Lagrangian Methods

q1,1

q2,1

q3,1

q1,2

q2,2

q3,2

q1,3

q2,3

q3,3

q1,4

q2,4

q3,4

u

Uniform wind field

How is the field 
propagating in

time?

Lagrangian Frame

Continuous:

Discrete:
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…in the finite difference context

Lagrangian Methods

u

Uniform wind field

Location of the 
data at the 

previous time step

q1,1

q2,1

q3,1

q1,2

q2,2

q3,2

q1,3

q2,3

q3,3

q1,4

q2,4

q3,4

Lagrangian Frame

Continuous:

Discrete:
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…in the finite difference context

Semi-Lagrangian Methods

!3,3

u

Uniform wind field q1,1

q2,1

q3,1

q1,2

q3,2

q1,3

q2,3

q3,3

q1,4

q2,4

q3,4
The value of the field at the 

previous time step at the 
parcel’s old location can be 

interpolated from the gridded 
field at the previous time step.

Lagrangian Frame

Continuous:

Discrete:
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• The Lagrangian frame is, in some sense, the most natural way to think 
about the advection equation.

Dq

Dt
= 0

Lagrangian Frame
• But:  In practice it is difficult to follow around 

fluid parcels in presence of deforming flow.

Source: R.A. Pielke and 
M. Uliasz (1997).

Lagrangian Methods
…in the finite volume context
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• Instead:  Semi-Lagrangian methods follow a fluid parcel in time, then 
remap to a regular mesh.

Evolve Remap

Remap De-evolve

tn
tn+1 tn+1

tn+1

tn
tn

Semi-Lagrangian Methods
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The flux across the 
highlighted edge is 

desired.

Step 1:  Project velocity 
field backwards in time 
to obtain a “flux area.”

Step 2: Integrate over 
the flux area to obtain 
the flux through the 

edge.

Flux-Form Lagrangian Transport
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Deformational Flow Test
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Stability
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Numerical instability in a high-frequency computational mode:

Introduction to Stability
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• Recall definition of eigenvectors of B:  If v is an eigenvector of B, then it 

satisfies                         where      is the (complex) eigenvalue associated 
with v. 

• Theory:  If B is well behaved, then it will have N eigenvector / 

eigenvalue pairs, where N is the number of free parameters.

qn+1 = Bqn

Bv = �v �

qn =
NX

i=1

ani vi

Apply both time and space discretization:

Introduction to Stability
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qn+1 = Bqn

qn =
NX

i=1

ani vi

• Substitute this solution into the update equation:

qn+1 =
NX

i=1

ani Bvi

qn+1 =
NX

i=1

�ia
n
i vi

• Use properties of eigenvectors:

vi eigenvectors of B, with
associated eigenvalues λi.

Introduction to Stability
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qn+1 = Bqn

qn =
NX

i=1

ani vi

where

qn+1 =
NX

i=1

an+1
i vi

an+1
i = �ia

n
i

vi eigenvectors of B, with
associated eigenvalues λi.

Introduction to Stability
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qn+1 = Bqn

qn =
NX

i=1

ani vi

where                                  

Take absolute values:  

qn+1 =
NX

i=1

an+1
i vi

an+1
i = �ia

n
i

|an+1
i | = |�i| |ani |

|�i| > 1? |�i| < 1?

vi eigenvectors of B, with
associated eigenvalues λi.

Introduction to Stability
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qn+1 = Bqnvi eigenvectors of B, with
associated eigenvalues λi.

|�i| > 1 Instability!  The corresponding computational 
mode will blow up.

|�i| � 1 Stable!  The corresponding computational mode will 
either maintain its amplitude, or will decay with 
time (lose energy?)

Introduction to Stability
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qn+1 = BqnExample:  Forward Euler plus 
upwinding (first-order finite volume).

Corresponding evolution matrix:

B =

0

BBB@

1� � . . . �
� 1� �

� 1� �
. . .

. . .

1

CCCA

qn+1
j = qnj +

u�t

�x
(qnj � qnj�1) � =

u�t

�x

(vk)j = exp(ijk)

Eigenvectors and eigenvalues:

�k = 1� ⇥(1 + exp(�ik))

Stability: An Example
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qn+1 = BqnExample:  Forward Euler plus 
upwinding (first-order finite volume).

qn+1
j = qnj +

u�t

�x
(qnj � qnj�1) � =

u�t

�x

(vk)j = exp(ijk)

Eigenvectors and eigenvalues:

�k = 1� ⇥(1 + exp(�ik))

Absolute value of eigenvalues:

|�k|2 = 1� 2⇥(⇥ � 1)(cos(k)� 1)

max
k

|�k|2 = 1 + 4⌫(⌫ � 1)

Maximum eigenvalue:

Stability: An Example
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qn+1 = BqnExample:  Forward Euler plus 
upwinding (first-order finite volume).

qn+1
j = qnj +

u�t

�x
(qnj � qnj�1) � =

u�t

�x

max
k

|�k|2 = 1 + 4⌫(⌫ � 1)

Maximum eigenvalue:

0  ⌫  1

Stability: An Example


