ATM 265, Spring 2019

 Lecture 4Numerical Methods:
Temporal Discretizations April 10, 2019

Paul A. Ullrich (HH 251) paullrich@ucdavis.edu

CESM Project

- The CESM project has been posted on the course webpage. Please have a look and let me know if you have any questions. The project will be due on April $26^{\text {th }}, 2019$.
- Office hours for the class: Monday 1:30pm-2:30pm. Also available for virtual meetings on Tuesdays, Thursdays and Fridays.

Outline

1. Introduction / Motivation
2. Explicit / Implicit Methods
3. Runge-Kutta Methods
4. Lagrangian / Semi-Lagrangian Methods
5. Numerical Stability

Introduction

Last Time: Spatial Discretizations

Atmospheric Modeling - Question One

- How do we best represent continuous data when only a (very) limited amount of information can be stored?
- Equivalently, what is the best way to represent continuous data discretely?

This Time: Temporal Discretizations

Atmospheric Modeling - Question Two

- How do we best represent the dynamic evolution of the atmosphere? (how to deal with time?)

Let's look at this term.

1D Advection Equation
 Eulerian Frame
 $\frac{\partial q}{\partial t}$

Spatial and Temporal Discretizations

Atmospheric Modeling - Question One

- How do we best represent continuous data when only a (very) limited amount of information can be stored?

These questions are inherently linked

Atmospheric Modeling - Question Two

- How do we best represent the dynamic evolution of the atmosphere? (how to deal with time?)

Spatial and Temporal Discretizations

So far we have discretized the spatial component of the equations:

Example from finitedifferences:

$$
\frac{\partial q_{j}}{\partial t}=\frac{u}{2 \Delta x} q_{j-1}-\frac{u}{2 \Delta x} q_{j+1}
$$

Spatial and Temporal Discretizations

All the methods discussed in Lecture 3 are linear:
For a linear differential equation (e.g. advection equation) the function f can be represented as a matrix multiply.

Spatial and Temporal Discretizations

Example from finite-differences:

$$
\frac{\partial q_{j}}{\partial t}=\frac{u}{2 \Delta x} q_{j-1}-\frac{u}{2 \Delta x} q_{j+1}
$$

1D Evolution Equation $\frac{\partial \mathbf{q}}{\partial t}=A \mathbf{q}$

$$
A=\frac{u}{2 \Delta x}\left(\begin{array}{cccccc}
0 & -1 & 0 & 0 & 0 & +1 \\
+1 & 0 & -1 & 0 & 0 & 0 \\
0 & +1 & 0 & -1 & 0 & 0 \\
0 & 0 & +1 & 0 & -1 & 0 \\
0 & 0 & 0 & +1 & 0 & -1 \\
-1 & 0 & 0 & 0 & +1 & 0
\end{array}\right)
$$

Spatial and Temporal Discretizations

- Example from finite-differences:

$$
\frac{\partial q_{j}}{\partial t}=\frac{u}{2 \Delta x} q_{j-1}-\frac{u}{2 \Delta x} q_{j+1}
$$

1D Evolution Equation $\frac{\partial \mathbf{q}}{\partial t}=A \mathbf{q}$

$$
\underbrace{\begin{array}{c}
\text { Matrix is mostly } \\
\text { zeroes! }
\end{array}} \quad\left(\begin{array}{cccccc}
0 & -1 & 0 & 0 & 0 & +1 \\
+1 & 0 & -1 & 0 & 0 & 0 \\
0 & +1 & 0 & -1 & 0 & 0 \\
0 & 0 & +1 & 0 & -1 & 0 \\
\text { Banded } \\
\text { structure! }
\end{array} \quad\left(\begin{array}{cccc}
2 \Delta x \\
0 & 0 & 0 & +1 \\
-1 & 0 & 0 & 0 \\
+1 & 0
\end{array}\right)\right.
$$

Applications to Spatial Discretizations

- An evolution matrix which consist mostly of zeroes are referred to as sparse matrices.
- Finite-difference, finite-volume, spectral element methods all (typically) lead to a sparse evolution matrix.
- The spectral transform method leads to a dense evolution matrix. That is, there are very few zeros.

Applications to Spatial Discretizations

- As the accuracy of a numerical method increases, there are fewer zeros in the evolution matrix (they make use of more information).
- That is, accuracy implies the need for a dense matrix.
- But! A more dense matrix is more computationally expense to apply in calculations.
- Hence, there is a trade-off between accuracy and efficiency.

Explicit / Implicit Methods

The Time Step

$$
\begin{aligned}
& \text { Linear Discretization } \\
& \qquad \frac{\partial \mathbf{q}}{\partial t}=\mathrm{Aq}
\end{aligned}
$$

Integrate these discretizations with respect to time:

The Time Step

The Time Step

Consider the non-linear discretization of the evolution equation.

A First Explicit Scheme

Non-linear discretization.

Non-Linear Discretization

A First Explicit Scheme

Non-linear discretization.

Non-Linear Discretization

$$
\mathbf{q}^{n+1}-\mathbf{q}^{n}=\int_{t^{n}}^{t^{n+1}} \mathbf{F}(\mathbf{q}) d t
$$

Time

$$
\Delta t=t^{n+1}-t^{n}
$$

Forward Euler Method

Under the explicit discretization, the unknown is written explicitly in terms of known values.

A First Implicit Scheme

Non-linear discretization.

Non-Linear Discretization

$$
\mathbf{q}^{n+1}-\mathbf{q}^{n}=\int_{t^{n}}^{t^{n+1}} \mathbf{F}(\mathbf{q}) d t
$$

Time

$$
\Delta t=t^{n+1}-t^{n}
$$

$$
\int_{t^{n}}^{t^{n+1}} \mathbf{F}(\mathbf{q}) d t \approx \Delta t \mathbf{F}\left(\mathbf{q}^{n+1}\right)
$$

Backward Euler Method

$$
\mathbf{q}^{n+1}=\mathbf{q}^{n}+\Delta t \mathbf{F}\left(\mathbf{q}^{n+1}\right)
$$

A First Implicit Scheme

Non-linear discretization.

Non-Linear Discretization

$$
\mathbf{q}^{n+1}-\mathbf{q}^{n}=\int_{t^{n}}^{t^{n+1}} \mathbf{F}(\mathbf{q}) d t
$$

Time

$$
\Delta t=t^{n+1}-t^{n}
$$

A First Implicit Scheme

In the linear case, the backward Euler method simplifies to

$$
\mathbf{q}^{n+1}=\mathbf{q}^{n}+\Delta t \mathrm{~A} \mathbf{q}^{n+1}
$$

Linear Discretization

$$
\mathbf{q}^{n+1}-\mathbf{q}^{n}=\int_{t^{n}}^{t^{n+1}} \mathrm{~A} \mathbf{q} d t
$$

We can directly rewrite this in terms of \mathbf{q}^{n+1} :

$$
\begin{aligned}
\mathbf{q}^{n+1}= & \frac{(I-\Delta t \mathrm{~A})^{-1}}{\uparrow} \mathbf{q}^{n} \\
& \left(\begin{array}{l}
\text { Need to solve a } \\
\text { linear system! }
\end{array}\right.
\end{aligned}
$$

Solving the linear system is potentially an expensive operation.

A First Implicit Scheme

Backward Euler Method

$$
\mathbf{q}^{n+1}=\mathbf{q}^{n}+\Delta t \mathbf{F}\left(\mathbf{q}^{n+1}\right)
$$

Non-Linear Discretization

$$
\mathbf{q}^{n+1}-\mathbf{q}^{n}=\int_{t^{n}}^{t^{n+1}} \mathbf{F}(\mathbf{q}) d t
$$

In the non-linear case, we can also linearize the update:

$$
\mathbf{F}\left(\mathbf{q}^{n+1}\right) \approx \mathbf{F}\left(\mathbf{q}^{n}\right)+\frac{d \mathbf{F}}{d \mathbf{q}}\left(\mathbf{q}^{n+1}-\mathbf{q}^{n}\right)
$$

Linearly Implicit Backward Euler Method

$$
\mathbf{q}^{n+1}=\mathbf{q}^{n}+\Delta t\left(I-\Delta t \frac{d \mathbf{F}}{d \mathbf{q}}\left(\mathbf{q}^{n}\right)\right)^{-1} \mathbf{F}\left(\mathbf{q}^{n}\right)
$$

Again need to solve a linear system!

Explicit / Implicit Schemes

Q: Clearly the explicit method is significantly more straightforward to evaluate. Why would we choose an implicit method?

A: Stability! We will see this more later, but the basic difference is as follows:

Forward Euler Method

$$
\mathbf{q}^{n+1}=\mathbf{q}^{n}+\Delta t \mathbf{F}\left(\mathbf{q}^{n}\right)
$$

Backward Euler Method

$$
\mathbf{q}^{n+1}=\mathbf{q}^{n}+\Delta t \mathbf{F}\left(\mathbf{q}^{n+1}\right)
$$

- Implicit schemes have no limit on the size of the time step size Δt. However, a larger time step size is less accurate. Also: Implicit schemes generally require global communication.
- Explicit schemes impose a (strict) limit on the time step size Δt. Exceeding this limit will cause the method to "blow up".

Accuracy

Time Integral

$$
\int_{t n}^{t^{n+1}} \mathbf{F}\left(\mathbf{q}\left(x_{j}, t\right)\right) d t
$$

Accuracy

$\mathbf{F}\left(\mathbf{q}\left(x_{j}, t\right)\right)$

Time Integral

 $$
\mathbf{F}\left(\mathbf{q}\left(x_{j}, t\right)\right) d t
$$

t^{n+1}

$$
\int_{t^{n}}^{t^{n+1}} \mathbf{F}(\mathbf{q}) d t \approx \Delta t \mathbf{F}\left(\mathbf{q}^{n}\right)
$$

Accuracy

Both the forward Euler method and backward Euler method are first-order accurate: They are only exact when \mathbf{F} is a constant.

First-order accuracy is typically insufficient. We need to do better.

Leap Frog

The leap frog scheme is a traditional second-order accurate explicit method. This means that the integral is exact if \mathbf{F} is either constant or linear in time.

Accuracy of Leap Frog

Second-order accuracy for the leap frog method is attained by using the midpoint value.

Leap Frog

The leap frog scheme has traditionally been used in combination with the spectral transform method.

The leap frog scheme possesses a computational mode since the odd and even time levels can separate.

This is usually fixed by using off-centering (Asselin filtering)

Runge-Kutta Methods

Runge-Kutta Methods

Runge-Kutta methods are a popular method for attaining high-order accuracy in time without the need to store data from multiple time steps.

Non-Linear Discretization

$$
\frac{\partial \mathbf{q}}{\partial t}=\mathbf{F}(\mathbf{q})
$$

- Runge-Kutta methods are multi-stage, which means in order to advance by Δt the function \mathbf{F} must be evaluated multiple times.

Predictor / Corrector

The second-order accurate predictor-corrector method is one of the most basic Runge-Kutta methods.

A first-order approximation to q_{j}^{n+1} is first computed (prediction step):

$$
\mathbf{q}^{*}=\mathbf{q}^{n}+\Delta t \mathbf{F}\left(\mathbf{q}^{n}\right)
$$

A second-order correction is then computed:

$$
\mathbf{q}^{n+1}=\frac{1}{2} \mathbf{q}^{n}+\frac{1}{2} \mathbf{q}^{*}+\frac{\Delta t}{2} \mathbf{F}\left(\mathbf{q}^{*}\right)
$$

Predictor / Corrector

The predictor corrector scheme can also be written as follows:

$$
\mathbf{q}^{n+1}=\mathbf{q}^{n}+\frac{\Delta t}{2} \mathbf{F}\left(\mathbf{q}^{n}\right)+\frac{\Delta t}{2} \mathbf{F}\left(\mathbf{q}^{*}\right)
$$

$\mathbf{F}\left(\mathbf{q}\left(x_{j}, t\right)\right)$

Trapezoid rule for integration

$$
\mathbf{q}^{n+1}=\mathbf{q}^{n}+\int_{t^{n}}^{t^{n+1}} \mathbf{F}(\mathbf{q}) d t
$$

Non-Linear Discretization

Strong Stability Preserving RK3 (SSPRK3)

One of the more popular Runge-Kutta methods is the SSPRK3 scheme, which is a third-order accurate, three stage RungeKutta method.

Stage one:

$$
\mathbf{q}_{j}^{(1)}=\mathbf{q}_{j}^{n}+\Delta t \mathbf{F}\left(\mathbf{q}^{n}\right)
$$

Stage two:

$$
\mathbf{q}_{j}^{(2)}=\frac{3}{4} \mathbf{q}_{j}^{n}+\frac{1}{4} \mathbf{q}_{j}^{(1)}+\frac{\Delta t}{4} \mathbf{F}\left(\mathbf{q}^{(1)}\right)
$$

Final update:

$$
\mathbf{q}_{j}^{n+1}=\frac{1}{3} \mathbf{q}_{j}^{n}+\frac{2}{3} \mathbf{q}_{j}^{(2)}+\frac{2 \Delta t}{3} \mathbf{F}\left(\mathbf{q}^{(2)}\right)
$$

Strong Stability Preserving RK3 (SSPRK3)

Writing as a one-stage update equation:

$$
\mathbf{q}_{j}^{n+1}=\mathbf{q}_{j}^{n}+\frac{\Delta t}{6}\left[\mathbf{F}\left(\mathbf{q}^{n}\right)+4 \mathbf{F}\left(\mathbf{q}^{(2)}\right)+\mathbf{F}\left(\mathbf{q}^{(1)}\right)\right]
$$

$\mathbf{F}\left(\mathbf{q}\left(x_{j}, t\right)\right)$

Simpson's rule for integration

$$
\mathbf{q}^{n+1}=\mathbf{q}^{n}+\int_{t^{n}}^{t^{n+1}} \mathbf{F}(\mathbf{q}) d t
$$

Non-Linear Discretization

Synchronized Leap Frog

The CAM Spectral Element (CAM-SE) model uses a Runge-Kutta scheme closely modeled on the leap frog scheme discussed earlier:

Stage one:

$$
\mathbf{q}^{(0)}=\mathbf{q}_{j}^{n}
$$

$$
\mathbf{q}_{j}^{(1)}=\mathbf{q}_{j}^{n}+\frac{\Delta t^{\prime}}{2} \mathbf{F}\left(\mathbf{q}_{j}^{n}\right)
$$

Stage $\mathrm{k}+1$:

$$
\mathbf{q}^{(k+1)}=\mathbf{q}_{j}^{(k-1)}+\Delta t^{\prime} \mathbf{F}\left(\mathbf{q}_{j}^{(k)}\right)
$$

Final update:

$$
\mathbf{q}^{n+1}=\mathbf{q}^{(N)}
$$

Overall $2^{\text {nd }}$ order

Lagrangian and Semi-Lagrangian Methods

Lagrangian Methods

Recall Lagrangian reference frame (follows a fluid parcel).

Lagrangian Methods

...in the finite difference context

Uniform wind field

How is the field propagating in time?

Lagrangian Frame
Continuous: $\quad \frac{D q}{D t}=0$
Discrete: $\quad q_{i, j}^{n}=q_{\hat{i}, \hat{j}}^{n-1}$
$q_{1,3}$
$q_{1,4}$
$q_{2,4}$
$q_{3,4}$

Lagrangian Methods

...in the finite difference context

Lagrangian Frame

Continuous: $\quad \frac{D q}{D t}=0$
Discrete: $\quad q_{i, j}^{n}=q_{\hat{i}, \hat{j}}^{n-1}$

Semi-Lagrangian Methods

...in the finite difference context

Lagrangian Frame

Continuous: $\quad \frac{D q}{D t}=0$
Discrete: $\quad q_{i, j}^{n}=q_{\hat{i}, \hat{j}}^{n-1}$
Uniform wind field

$q_{1,1}$
$q_{1,2}$

$q_{1,3}$
$q_{1,4}$
$q_{2,2}^{n}$

The value of the field at the previous time step at the parcel's old location can be interpolated from the gridded field at the previous time step.

Lagrangian Methods

...in the finite volume context

- The Lagrangian frame is, in some sense, the most natural way to think about the advection equation.
- But: In practice it is difficult to follow around fluid parcels in presence of deforming flow.


```
Lagrangian Frame
```

 \(\frac{D q}{D t}=0\)
 Source: R.A. Pielke and M. Uliasz (1997).

Semi-Lagrangian Methods

- Instead: Semi-Lagrangian methods follow a fluid parcel in time, then remap to a regular mesh.

Flux-Form Lagrangian Transport

Deformational Flow Test

Tracer Concentration - Day 0.00

Stability

Introduction to Stability

Numerical instability in a high-frequency computational mode:

Introduction to Stability

Apply both time and space discretization:

Linear Update Equation

$$
\mathbf{q}^{n+1}=\mathrm{Bq}^{n}
$$

- Recall definition of eigenvectors of B : If \mathbf{v} is an eigenvector of B , then it satisfies $\mathrm{Bv}=\lambda \mathbf{v}$ where λ is the (complex) eigenvalue associated with \mathbf{v}.

Computational modes

- Theory: If B is well behaved, then it will have N eigenvector / eigenvalue pairs, where N is the number of free parameters.

$$
\mathbf{q}^{n}=\sum_{i=1}^{N} a_{i}^{n} \mathbf{v}_{i}
$$

Introduction to Stability

Linear Update Equation

\mathbf{v}_{i} eigenvectors of B , with associated eigenvalues λ_{i}.

$$
\mathbf{q}^{n+1}=B \mathbf{q}^{n}
$$

$$
\mathbf{q}^{n}=\sum_{i=1}^{N} a_{i}^{n} \mathbf{v}_{i}
$$

- Substitute this solution into the update equation:

$$
\mathbf{q}^{n+1}=\sum_{i=1}^{N} a_{i}^{n} \mathrm{Bv}_{i}
$$

- Use properties of eigenvectors:

$$
\mathbf{q}^{n+1}=\sum_{i=1}^{N} \lambda_{i} a_{i}^{n} \mathbf{v}_{i}
$$

Introduction to Stability

\mathbf{v}_{i} eigenvectors of B , with associated eigenvalues λ_{i}.

Linear Update Equation

$$
\mathbf{q}^{n+1}=\mathrm{Bq}^{n}
$$

$$
\mathbf{q}^{n}=\sum_{i=1}^{N} a_{i}^{n} \mathbf{v}_{i}
$$

$$
\mathbf{q}^{n+1}=\sum_{i=1}^{N} a_{i}^{n+1} \mathbf{v}_{i}
$$

where $a_{i}^{n+1}=\lambda_{i} a_{i}^{n}$

Each mode is amplified by its corresponding eigenvalue.

Introduction to Stability

Linear Update Equation

\mathbf{v}_{i} eigenvectors of B , with associated eigenvalues λ_{i}.

$$
\mathbf{q}^{n+1}=\mathrm{Bq}^{n}
$$

$$
\mathbf{q}^{n}=\sum_{i=1}^{N} a_{i}^{n} \mathbf{v}_{i} \quad \mathbf{q}^{n+1}=\sum_{i=1}^{N} a_{i}^{n+1} \mathbf{v}_{i}
$$

where $a_{i}^{n+1}=\lambda_{i} a_{i}^{n}$
Take absolute values: $\quad\left|a_{i}^{n+1}\right|=\left|\lambda_{i}\right|\left|a_{i}^{n}\right|$

$$
\begin{gathered}
\text { What happens if } \\
\left|\lambda_{i}\right|>1 ? \quad\left|\lambda_{i}\right|<1 ?
\end{gathered}
$$

Introduction to Stability

\mathbf{v}_{i} eigenvectors of B , with associated eigenvalues λ_{i}.

Linear Update Equation

$$
\mathrm{q}^{n+1}=\mathrm{Bq}^{n}
$$

$\left|\lambda_{i}\right|>1 \quad$ Instability! The corresponding computational mode will blow up.
$\left|\lambda_{i}\right| \leq 1 \quad$ Stable! The corresponding computational mode will either maintain its amplitude, or will decay with time (lose energy?)

Stability: An Example

Example: Forward Euler plus upwinding (first-order finite volume).

Linear Update Equation

$$
\mathrm{q}^{n+1}=\mathrm{Bq}^{n}
$$

$$
q_{j}^{n+1}=q_{j}^{n}+\frac{u \Delta t}{\Delta x}\left(q_{j}^{n}-q_{j-1}^{n}\right) \quad \nu=\frac{u \Delta t}{\Delta x}
$$

Corresponding evolution matrix:

$$
\mathrm{B}=\left(\begin{array}{ccccc}
1-\nu & & & \cdots & \nu \\
\nu & 1-\nu & & & \\
& \nu & 1-\nu & \\
& & \ddots & \ddots &
\end{array}\right)
$$

Eigenvectors and eigenvalues:

$$
\left(\mathbf{v}_{k}\right)_{j}=\exp (i j k) \quad \lambda_{k}=1-\nu(1+\exp (-i k))
$$

Stability: An Example

Example: Forward Euler plus upwinding (first-order finite volume).

Linear Update Equation

$$
q_{j}^{n+1}=q_{j}^{n}+\frac{u \Delta t}{\Delta x}\left(q_{j}^{n}-q_{j-1}^{n}\right) \quad \nu=\frac{u \Delta t}{\Delta x}
$$

Eigenvectors and eigenvalues:

$$
\left(\mathbf{v}_{k}\right)_{j}=\exp (i j k) \quad \lambda_{k}=1-\nu(1+\exp (-i k))
$$

Absolute value of eigenvalues:

$$
\left|\lambda_{k}\right|^{2}=1-2 \nu(\nu-1)(\cos (k)-1)
$$

Maximum eigenvalue:

$$
\max _{k}\left|\lambda_{k}\right|^{2}=1+4 \nu(\nu-1)
$$

Stability: An Example

Example: Forward Euler plus upwinding (first-order finite volume).

Linear Update Equation

$$
q_{j}^{n+1}=q_{j}^{n}+\frac{u \Delta t}{\Delta x}\left(q_{j}^{n}-q_{j-1}^{n}\right) \quad \nu=\frac{u \Delta t}{\Delta x}
$$

Maximum eigenvalue:

$$
\max _{k}\left|\lambda_{k}\right|^{2}=1+4 \nu(\nu-1)
$$

Stable as long as

$$
\begin{gathered}
0 \leq \nu \leq 1 \\
\text { (CFL Condition) }
\end{gathered}
$$

$$
\mathbf{q}^{n+1}=B \mathbf{q}^{n}
$$

