ATM 265, Spring 2019
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Numerical Methods:
Temporal Discretizations
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CESM Project

e The CESM project has been posted on the course webpage.
Please have a look and let me know if you have any
questions. The project will be due on April 26", 2019.

*  Office hours for the class: Monday 1:30pm-2:30pm. Also
available for virtual meetings on Tuesdays, Thursdays and
Fridays.
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Introduction
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Last Time: Spatial Discretizations

Atmospheric Modeling — Question One

Paul Ullrich

How do we best represent continuous data when only a
(very) limited amount of information can be stored?

Equivalently, what is the best way to represent continuous

data discretely?

/1 D Advection Equation\

Eulerian Frame

We considered
this term.

~\

- /
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This Time: Temporal Discretizations

Atmospheric Modeling — Question Two

e How do we best represent the dynamic evolution of the
atmosphere? (how to deal with time?)

r

\.

Let’s look at this
term.

Paul Ullrich

/1 D Advection Equation\
Eulerian Frame
u-Vg=>0
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Spatial and Temporal Discretizations

Atmospheric Modeling — Question One

* How do we best represent continuous data when only a
(very) limited amount of information can be stored?

@ [ These questions are inherently linked ]

Atmospheric Modeling — Question Two

e How do we best represent the dynamic evolution of the
atmosphere? (how to deal with time?)
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Spatial and Temporal Discretizations

So far we have discretized the spatial component of the
equations:

ﬁqj

(- )
\L q is the vector of

- all discrete data
T luti values
ime evolution \ y

g of data point | Some function
applied to all other
data points
g Y,
Example from finite- 0q; U U
differences: E 2N oA Ldi—-1— KQJ-H
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Spatial and Temporal Discretizations

All the methods discussed in Lecture 3 are linear:
For a linear differential equation (e.g. advection equation) the
function f can be represented as a matrix multiply.

— Aq )
N q is the vector of

all discrete data

r

T luti values.

ime evo u |op ~ \ y

of data point . y

g Spatial
discretization”
matrix.
\_ y,
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Spatial and Temporal Discretizations

Example from finite-differences:

8qj_ uo U
ot _2A$q‘7_1 2A$q‘7+1

+1 0
U 0 +1
A= —
2Ax 0 0
0 0
\ -1 0

Paul Ullrich
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Spatial and Temporal Discretizations

Example from finite-differences:

3qj_u. U
(975__2qu°7—1 Zﬁx%+1

Matrix is mostly
zeroes!

+1 0
U 0 +1
A=—
201 0 0
0 0
Banded \ 1 0
structure!

Paul Ullrich
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Applications to Spatial Discretizations

*  An evolution matrix which consist mostly of zeroes are
referred to as sparse matrices.

* Finite-difference, finite-volume, spectral element
methods all (typically) lead to a sparse evolution
matrix.

 The spectral transform method leads to a dense
evolution matrix. That is, there are very few zeros.
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Applications to Spatial Discretizations

Paul Ullrich

As the accuracy of a numerical method increases,
there are fewer zeros in the evolution matrix (they
make use of more information).

That is, accuracy implies the need for a dense matrix.

But! A more dense matrix is more computationally
expense to apply in calculations.

Hence, there is a trade-off between accuracy and
efficiency.
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The Time Step

d Linear Discretization A [Non-Linear Discretization\
Oq 30.[
= A = F
ot 4 G
\_ VAN J
Integrate these discretizations with respect to time:
d Linear Discretization N\ Non-Linear Discretization A
tn—i—l tn—|—1
q" —q" = / Aqdt || "' —q" = F(q)dt
_ ’T i U\ '\ " Y,
Current value of q Value of q in the
(known) future (unknown)
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The Time Step

d Linear Discretization A
tn—i—l
q"tt —q" = Aqdt
\_1 .
/ N\

|

Value of q in the
future (unknown)

of q (known) future, need to know the

-
Current value To connect present and
value of this integral!

Paul Ullrich

\

J

g
\ / 7
(& ¢ g1 / )
Q" —q" = / F(q)dt
t’l’b

Non-Linear Discretization
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The Time Step

Consider the non-linear discretization
of the evolution equation.

d Non-Linear Discretization A

Paul Ullrich ATM 265: Lecture 04

April 10, 2019



A First Explicit Scheme

Non-linear discretization. 4 Non-Linear Discretization
tn—|—1
[ At =" — t”] q"t —q" = / F(q)dt
Time g ” /
n n+1
t +1 q] tn—l—l

F(q)dt =~ At F(q™)

tn

Forward Euler Method

e q" - q"" =q" + At F(q")
J
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A First Explicit Scheme

Non-linear discretization. 4 Non-Linear Discretization
tn—|—1
[ At = " — t”] q" —q" = / F(q)dt
Time \_ " Y,
n-+1 "?’""1
t q;  Forward Euler Method |

- q"" =q" + At F(q")

- /1‘ 't\ /ﬂ Y,
[ Unknown ] [ Known ]
q; Under the explicit discretization, the unknown is

! > written explicitly in terms of known values.
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A First Implicit Scheme

Non-linear discretization. 4 Non-Linear Discretization
tn—|—1
[ At = " — t”] q"tt —q" = / F(q)dt
Time g - J
n-1 n+1
A q; i1

/ F(q)dt ~ At F(q™)

n

i Backward Euler Method A

t" -@-q - q"t =q" + At F(q")

> - J
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A First Implicit Scheme

Non-linear discretization. 4 Non-Linear Discretization
tn—|—1
[ At = " — t”] q" —q" = / F(q)dt
Time \_ " Y,
n-+1 "?’""1
t g; ( Backward Euler Method |

- qn—l—l _ qn i At F(qn—l-l)

\_ YA R R Y,

/ \ \

[ Unknown ][ Known ][ Unknown ]

q; Under the implicit discretization, one needs to
| > solve a system of equations to find q"*/.
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A First Implicit Scheme

In the linear case, the backward
Euler method simplifies to

qn—l—l _ qn 4+ At A qn—i—l

-

Linear Discretization A
tn +1
n+1 qn _ / A q dt
tn Y

We can directly rewrite this in terms of q"*/:

Q" =1 - AtA)'q"

\

Need to solve a
linear system!

Solving the linear system is
potentially an expensive
operation.
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A First Implicit Scheme

N
i Backward Euler Method d Non-Linear Discretization
n+1 __ _.n n+1 A
q =q" + At F(q
g ) J|a" —at = F(q)dt
tm j

In the non-linear case, we can also
linearize the update:

F(q"™) =~ F(q") + d—q(q —q")
4 . . )
Linearly Implicit Backward Euler Method
n—+1 n dF n - n
q"" =q" + At I—At@(Q) F(q")
\__ J

[ Again need to solve a linear system! ]
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Explicit / Implicit Schemes

4 N
Q: Clearly the explicit method is Forward Euler Method
significantly more straightforward to n+l _ 4" 1+ At F(q”
evaluate. Why would we choose an q a -+ (q )
implicit method? > /

Backward Euler Method

A: Stability! We will see this more ntl _ o7 1 A+ F(q™tH!
later, but the basic difference is as g 9 Q-+ (q ) )

follows:

« Implicit schemes have no limit on the size of the time step size At.
However, a larger time step size is less accurate. Also: Implicit
schemes generally require global communication.

e Explicit schemes impose a (strict) limit on the time step size At.
Exceeding this limit will cause the method to “blow up”.
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Accuracy

F(q(zj,1))

A

Paul Ullrich

Time

-

Area under the F

curve determines how
to update q
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Time Integral

tn

~

F(q(z;,t))dt
J
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Accuracy

F(q(zj,1))

A

Forward Euler

e Time Integral h
tn—l—l
tn
- /

Backward Euler

F(q)dt ~ At F(q")
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Accuracy
F(a(z;,t))

A A

Backward Euler

Forward Euler

__¢_¢_.

Both the forward Euler method and backward Euler method are first-order
accurate: They are only exact when F is a constant.

First-order accuracy is typically insufficient. We need to do better.
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Leap Frog

The leap frog scheme is a traditional second-order accurate explicit
method. This means that the integral is exact if F is either constant or

linear in time.
Time ( Two-Step Discretization
n+1 n+l_1 Unknown ] L
t q] qn—|—1 . qn—l _ / F(Q)dt
§ " Y
n n
t 5 (‘[ Known ] Leap frog requires knowledge of

q from two time levels prior to
the unknown level.
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Accuracy of Leap Frog

Second-order accuracy for the leap frog method is
attained by using the midpoint value.

F N
(q(mji )) [ ] ] ] \
Leap Frog Two-Step Discretization
tn-l—l
/ qn-l—l _qn—l _ / 1 F(q)dt
tm—
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Leap Frog

The leap frog scheme has traditionally been used in combination with the
spectral transform method.

The leap frog scheme possesses a computational

Ti . .
rme mode since the odd and even time levels can
n+1 q;?”rl separate.
This is usually fixed by using off-centering
L q" (Asselin filtering)
J
—1 n—l
t" oy
>
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Runge-Kutta Methods

Runge-Kutta methods are a popular method for attaining high-order
accuracy in time without the need to store data from multiple time steps.

(Non-Linear Discretization\
Time 5
q
n—+1 n+1 — =F
t q; ot ()
g )

* Runge-Kutta methods are multi-stage, which
means in order to advance by At the
function F must be evaluated multiple times.

mn n
t q;
>
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Predictor / Corrector

The second-order accurate predictor-corrector method is one of the most
basic Runge-Kutta methods.

Time A first-order approximation to q;.“rl is first
i1 computed (prediction step):
tn—i-l qj
q; q"=q" + At F(q")
A second-order correction is then computed:
1 1 At
n—l—l n * *
=-q"+-q"+—F
t q;
>
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Predictor / Corrector

The predictor corrector scheme can also be written as follows:

At At

Q"' =q" + - F(a") + —-F(d)
F(a(x;, 1)) \

A [ Trapezoid rule for integration ]

\
4 Y et )
q" =q" +/ F(q)dt

tn
Non-Linear Discretization
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Strong Stability Preserving RK3 (SSPRK3)

One of the more popular Runge-Kutta methods is the SSPRK3 [ MPAS ]
scheme, which is a third-order accurate, three stage Runge-
Kutta method.

Time qn+1 Stage one:
gl (71) ( = q; + AtF(q")
9;
Stage two:
7ffn,—l—l/Q q(Q) () 3 1 (1) At (1)
—F
J q; 4q] + 401 + — 1 (a*”)
Final update:
t" q; 1 2 2AL
I > q;%—l—l ng T 3q( )"|_ 3 F(q(Q))
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Strong Stability Preserving RK3 (SSPRK3)

- | [ MPAS ]
Writing as a one-stage update equation:
Q" = qj + 7 |Fla") +4F(a?) + Fq")]
F((](CCj, t)) \
4 [ Simpson’s rule for integration ]
\
4 A e )
q" =q" +/ F(q)dt
tn
Non-Linear Discretization
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Synchronized Leap Frog | CAM-SE (CESM1) |

The CAM Spectral Element (CAM-SE) model uses a Runge-Kutta scheme
closely modeled on the leap frog scheme discussed earlier:

Time Stage one: [q(o) — Q? ]
At
"t Qg a;) =aqj + — F(aj)
n / (3)
oA/ q; Stage k+1:
: (2)
"+ At 4; q(k+1) _ q§k 1) —I—At/F(qgk))
t" + At'/2 q(.l)
J Final update:
t" q"
| j» an = q<N ) [ Overall 2" order ]
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Lagrangian and Semi-Lagrangian
Methods
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Lagrangian Methods

Recall Lagrangian reference frame (follows a fluid parcel).

/ Lagrangian Frame \
D
Dq _
Dt

- /

What does this mean?

Tracer mixing ratio is constant
following a fluid parcel.
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Lagrangian Methods

...in the finite difference context

qi1,1 qi,2

- -

Uniform wind field

u dr1 q2,2

- -

qds31 qs,2

How is the field Q | Q

propagating in
time?

Paul Ullrich ATM 265: Lecture 04
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/Lagrangian Frame \
Dq
Continuous: — = ()
Dt
\Discrete: QG = qzlj_lj
qi1,3 qi,a

q23

qs,3

-

42,4

-

qs3,a

-
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/Lagrangian Frame \
Lagrangian Methods Dg
Continuous: — = ()
g g Dt
...in the finite difference context Discrete: gt = g !
- ),
Uniform wind field
qdi1 q1,2 qi1,3 qi,a
V f
(A (& (: s (: A
- G211 " G2 " 423 " 424
(2 (X (: # (: #
: - qs, B qs,2 B qs,3 B EW
Location of the 3
data at the
previous time step
(A (: A (: A (: A
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Semi-Lagrangian Methods

...in the finite difference context

Uniform wind field

u - -

Q\/Q

/Lagrangian Frame \
D
Continuous: ~4 0
Dt
. 1
Discrete: qz- j= qf"A.
\_ ’ o

-

-

/

The value of the field at the
previous time step at the
parcel’s old location can be
interpolated from the gridded
field at the previous time step.
N P >

~

-~
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Lagrangian Methods

...in the finite volume context

* The Lagrangian frame is, in some sense, the most natural way to think
about the advection equation.

/ Lagrangian Frame \
e But: In practice it is difficult to follow around D
fluid parcels in presence of deforming flow. _q — ()
Dt
- /

Source: R.A. Pielke and
M. Uliasz (1997).
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Semi-Lagrangian Methods

* Instead: Semi-Lagrangian methods follow a fluid parcel in time, then
remap to a regular mesh.

[ Forward Semi-Lagrangian ]

tnE ‘

Evolve

[ Backward Semi-Lagrangian ]

i

De-evolve
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Flux-Form Lagrangian Transport

-

~

Flux

o

The flux across the
highlighted edge is
desired.

/

4 N

Step 1: Project velocity
field backwards in time
to obtain a “flux area.”

N /

-

o

Step 2: Integrate over
the flux area to obtain
the flux through the
edge.

/

Paul Ullrich
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Deformational Flow Test

Tracer Concentration — Day 0.00

90N

60N

30N

Latitude
o

30S

60S

90S
0 60E 120E 180 120W 60W 0

Longitude
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Xy

Paul Ullrich

ATM 265: Lecture 04

April 10, 2019



Introduction to Stability

Numerical instability in a high-frequency computational mode:

60N

llllll
IIIIII

30N

o
1

30S

60S

llllll

| I [ I l |
60E 120E 180 120W 60W

N [ ] .
700 850 1000 1150 1300

Paul Ullrich ATM 265: Lecture 04 April 10, 2019



Introduction to Stability

Apply both time and space discretization:

\_

Linear Update Equation\

qn—l—l _ Bqn

J

e Recall definition of eigenvectors of B: If v is an eigenvector of B, then it
satisfies Bv = Av where \ is the (complex) eigenvalue associated

with v.

\{ Computational modes ]

* Theory: If Bis well behaved, then it will have N eigenvector /
eigenvalue pairs, where N is the number of free parameters.

N

n n
q —E a, V;

1=1
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Introduction to Stability

Linear Update Equation\

Vv, eigenvectors of B, with qn+1 — Bq"
associated eigenvalues A, g

N
n mn
q :E a, V;
1=1

e  Substitute this solution into the update equation:

N
qn—i—l — E CL,?BV,,;
1=1

 Use properties of eigenvectors:

N
n+1 n
q = E )\iaqj V;
=1
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Introduction to Stability

v, eigenvectors of B, with

associated eigenvalues A.. g

N N

Linear Update Equation\

qn—l—l _ Bqn

1
q" = E a; Vi q"tl = g a] v,

1
where a] "' = \;al

\

its corresponding
eigenvalue.

-

g Each mode is amplified by R

J
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Introduction to Stability

v, eigenvectors of B, with

associated eigenvalues A, g

N N

Linear Update Equation\

qn—l—l _ Bqn

1
q" = E a; Vi q"tl = g a] v,

1
where a] "' = \;al

Take absolute values: ]a?Jrl\ = ’)\z’ lam

\

What happens if
Ai| > 17 |\ < 17
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Introduction to Stability

Linear Update Equation\

v, eigenvectors of B, with qn_'_1 = Bq"
associated eigenvalues A.. \_ )

])\,L-] > 1 Instability! The corresponding computational
mode will blow up.

P\i‘ < 1 Stable! The corresponding computational mode will
either maintain its amplitude, or will decay with

time (lose energy?)
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Stability: An Example

Example: Forward Euler plus
upwinding (first-order finite volume).

;" = qf + (g — g

Corresponding evolution matrix:

(1—V

U 1l —v

\

Eigenvectors and eigenvalues:

Linear Update Equation\

qn—l—l _ Bqn
u\t
V= —
Ax

(vi); = exp(ijk) A = 1 —v(1 + exp(—ik))
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Stability: An Example

Linear Update Equation\

Example: Forward Euler plus q" = Bq"
upwinding (first-order finite volume). \_ )
il ult ult

+——(q — V= ——
q] q] ACIZ’ (q QJ 1) AZC

Eigenvectors and eigenvalues:
(vi); = exp(ijk) A =1 —v(1 4 exp(—ik))
Absolute value of eigenvalues:
Me|? =1 —2v(v — 1)(cos(k) — 1)
Maximum eigenvalue:

max Me|? =14+ 4v(v—1)
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Stability: An Example

(Linear Update Equation\

Example: Forward Euler plus q" = Bq"
upwinding (first-order finite volume). \_
1 uAt uAt
;" ZCJ?JFA—(CI?—CI;M) V=
Maximum eigenvalue: \ ) {f;’
/
max [A\g|° =1+ 4v(v—1) | !ﬁ}
]C 'EI ’f‘
‘\H\ ffsf
- Stable as long as \/7 \ /
0<v<l \ /
_ (CFLCondition) | \ 4

Paul Ullrich
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