ATM 265, Spring 2019 Lecture 4 Numerical Methods: Temporal Discretizations April 10, 2019

Paul A. Ullrich (HH 251) paullrich@ucdavis.edu

CESM Project

- The CESM project has been posted on the course webpage.
 Please have a look and let me know if you have any questions. The project will be due on April 26th, 2019.
- Office hours for the class: Monday 1:30pm-2:30pm. Also available for virtual meetings on Tuesdays, Thursdays and Fridays.

Outline

- 1. Introduction / Motivation
- 2. Explicit / Implicit Methods
- 3. Runge-Kutta Methods
- 4. Lagrangian / Semi-Lagrangian Methods
- 5. Numerical Stability

Introduction

Paul Ullrich

ATM 265: Lecture 04

April 10, 2019

Last Time: Spatial Discretizations

Atmospheric Modeling – Question One

- How do we best represent continuous data when only a (very) limited amount of information can be stored?
- Equivalently, what is the best way to represent continuous data discretely?

This Time: Temporal Discretizations

Atmospheric Modeling – Question Two

• How do we best represent the dynamic evolution of the atmosphere? (how to deal with time?)

Atmospheric Modeling – Question One

 How do we best represent continuous data when only a (very) limited amount of information can be stored?

These questions are inherently linked

Atmospheric Modeling – Question Two

• How do we best represent the dynamic evolution of the atmosphere? (how to deal with time?)

So far we have discretized the spatial component of the equations:

All the methods discussed in Lecture 3 are linear: For a linear differential equation (e.g. advection equation) the function f can be represented as a matrix multiply.

Example from finite-differences:

$$\frac{\partial q_j}{\partial t} = \frac{u}{2\Delta x} q_{j-1} - \frac{u}{2\Delta x} q_{j+1}$$

1D Evolution Equation
$$\frac{\partial \mathbf{q}}{\partial t} = \mathbf{A}\mathbf{q}$$

$$\mathsf{A} = \frac{u}{2\Delta x} \begin{pmatrix} 0 & -1 & 0 & 0 & 0 & +1 \\ +1 & 0 & -1 & 0 & 0 & 0 \\ 0 & +1 & 0 & -1 & 0 & 0 \\ 0 & 0 & +1 & 0 & -1 & 0 \\ 0 & 0 & 0 & +1 & 0 & -1 \\ -1 & 0 & 0 & 0 & +1 & 0 \end{pmatrix}$$

Applications to Spatial Discretizations

- An evolution matrix which consist mostly of zeroes are referred to as sparse matrices.
- Finite-difference, finite-volume, spectral element methods all (typically) lead to a sparse evolution matrix.
- The spectral transform method leads to a dense evolution matrix. That is, there are very few zeros.

Applications to Spatial Discretizations

- As the accuracy of a numerical method increases, there are fewer zeros in the evolution matrix (they make use of more information).
- That is, accuracy implies the need for a dense matrix.
- But! A more dense matrix is more computationally expense to apply in calculations.
- Hence, there is a trade-off between accuracy and efficiency.

Explicit / Implicit Methods

Paul Ullrich

ATM 265: Lecture 04

April 10, 2019

The Time Step

Integrate these discretizations with respect to time:

The Time Step

The Time Step

Consider the non-linear discretization of the evolution equation.

In the linear case, the backward Euler method simplifies to

$$\mathbf{q}^{n+1} = \mathbf{q}^n + \Delta t \ \mathbf{A} \ \mathbf{q}^{n+1}$$

Linear Discretization

$$\mathbf{q}^{n+1} - \mathbf{q}^n = \int_{t^n}^{t^{n+1}} A\mathbf{q} dt$$

We can directly rewrite this in terms of \mathbf{q}^{n+1} :

$$\mathbf{q}^{n+1} = (I - \Delta t \ \mathsf{A})^{-1} \mathbf{q}^n$$

$$\boxed{\mathbf{Need to solve a}}$$

$$\boxed{\mathbf{linear system!}}$$

Solving the linear system is potentially an expensive operation.

Backward Euler Method

$$\mathbf{q}^{n+1} = \mathbf{q}^n + \Delta t \mathbf{F}(\mathbf{q}^{n+1})$$

In the non-linear case, we can also linearize the update:

$$\mathbf{F}(\mathbf{q}^{n+1}) \approx \mathbf{F}(\mathbf{q}^n) + \frac{d\mathbf{F}}{d\mathbf{q}}(\mathbf{q}^{n+1} - \mathbf{q}^n)$$

Linearly Implicit Backward Euler Method

$$\mathbf{q}^{n+1} = \mathbf{q}^n + \Delta t \left(I - \Delta t \frac{d\mathbf{F}}{d\mathbf{q}}(\mathbf{q}^n) \right)^{-1} \mathbf{F}(\mathbf{q}^n)$$

Again need to solve a linear system!

Paul Ullrich

Non-Linear Discretization

 $\mathbf{q}^{n+1} - \mathbf{q}^n = \int_{t_n}^{t^{n+1}} \mathbf{F}(\mathbf{q}) dt$

Explicit / Implicit Schemes

Q: Clearly the explicit method is significantly more straightforward to evaluate. Why would we choose an implicit method?

A: Stability! We will see this more later, but the basic difference is as follows:

Forward Euler Method

$$q^{n+1} = q^n + \Delta t \ F(q^n)$$

Backward Euler Method
 $q^{n+1} = q^n + \Delta t \ F(q^{n+1})$

- Implicit schemes have no limit on the size of the time step size Δt . However, a larger time step size is less accurate. Also: Implicit schemes generally require global communication.
- Explicit schemes impose a (strict) limit on the time step size Δt . Exceeding this limit will cause the method to "blow up".

Accuracy

Paul Ullrich

Accuracy **Time Integral** ct^{n+1} $\mathbf{F}(\mathbf{q}(x_j,t))dt$ J_{t^n} $\mathbf{F}(\mathbf{q}(x_j,t))$ **Backward Euler Forward Euler** t^{n+1} t^{n+1} t^n t^n $h t^{n+1}$ ht^{n+1} $\mathbf{F}(\mathbf{q})dt \approx \Delta t \ \mathbf{F}(\mathbf{q}^{n+1})$ $\mathbf{F}(\mathbf{q})dt \approx \Delta t \ \mathbf{F}(\mathbf{q}^n)$ J_{t^n} J_{t^n}

Paul Ullrich

Accuracy

Both the forward Euler method and backward Euler method are first-order accurate: They are only exact when ${f F}$ is a constant.

First-order accuracy is typically insufficient. We need to do better.

Leap Frog

The leap frog scheme is a traditional second-order accurate explicit method. This means that the integral is exact if ${f F}$ is either constant or linear in time.

Accuracy of Leap Frog

Second-order accuracy for the leap frog method is attained by using the midpoint value.

Leap Frog

The leap frog scheme has traditionally been used in combination with the spectral transform method.

The leap frog scheme possesses a computational mode since the odd and even time levels can separate.

This is usually fixed by using off-centering (Asselin filtering)

Runge-Kutta Methods

Paul Ullrich

ATM 265: Lecture 04

April 10, 2019

Runge-Kutta Methods

Runge-Kutta methods are a popular method for attaining high-order accuracy in time without the need to store data from multiple time steps.

Non-Linear Disc	cretization
$\frac{\partial \mathbf{q}}{\partial t} = \mathbf{F}$	(\mathbf{q})

• Runge-Kutta methods are multi-stage, which means in order to advance by Δt the function **F** must be evaluated multiple times.

Predictor / Corrector

The second-order accurate predictor-corrector method is one of the most basic Runge-Kutta methods.

A first-order approximation to q_j^{n+1} is first computed (prediction step):

$$\mathbf{q}^* = \mathbf{q}^n + \Delta t \ \mathbf{F}(\mathbf{q}^n)$$

A second-order correction is then computed:

$$\mathbf{q}^{n+1} = \frac{1}{2}\mathbf{q}^n + \frac{1}{2}\mathbf{q}^* + \frac{\Delta t}{2} \mathbf{F}(\mathbf{q}^*)$$

Predictor / Corrector

The predictor corrector scheme can also be written as follows:

Strong Stability Preserving RK3 (SSPRK3)

One of the more popular Runge-Kutta methods is the SSPRK3 scheme, which is a third-order accurate, three stage Runge-Kutta method.

Stage one:

$$\mathbf{q}_{j}^{(1)} = \mathbf{q}_{j}^{n} + \Delta t \mathbf{F}(\mathbf{q}^{n})$$

Stage two:

$$\mathbf{q}_{j}^{(2)} = \frac{3}{4}\mathbf{q}_{j}^{n} + \frac{1}{4}\mathbf{q}_{j}^{(1)} + \frac{\Delta t}{4}\mathbf{F}(\mathbf{q}^{(1)})$$

Final update:

$$\mathbf{q}_{j}^{n+1} = \frac{1}{3}\mathbf{q}_{j}^{n} + \frac{2}{3}\mathbf{q}_{j}^{(2)} + \frac{2\Delta t}{3}\mathbf{F}(\mathbf{q}^{(2)})$$

Strong Stability Preserving RK3 (SSPRK3)

Writing as a one-stage update equation:

MPAS

Synchronized Leap Frog

The CAM Spectral Element (CAM-SE) model uses a Runge-Kutta scheme closely modeled on the leap frog scheme discussed earlier:

Lagrangian and Semi-Lagrangian Methods

Paul Ullrich

ATM 265: Lecture 04

April 10, 2019

Lagrangian Methods

Recall Lagrangian reference frame (follows a fluid parcel).

Lagrangian Methods

... in the finite volume context

- The Lagrangian frame is, in some sense, the most natural way to think about the advection equation.
- But: In practice it is difficult to follow around fluid parcels in presence of deforming flow.

Source: R.A. Pielke and M. Uliasz (1997).

Semi-Lagrangian Methods

• Instead: Semi-Lagrangian methods follow a fluid parcel in time, then remap to a regular mesh.

Flux-Form Lagrangian Transport

Deformational Flow Test

Tracer Concentration - Day 0.00

Stability

Paul Ullrich

ATM 265: Lecture 04

April 10, 2019

Numerical instability in a high-frequency computational mode:

Apply both time and space discretization:

Linear Update Equation $\mathbf{q}^{n+1} = \mathsf{B}\mathbf{q}^n$

• Recall definition of eigenvectors of B: If v is an eigenvector of B, then it satisfies $Bv = \lambda v$ where λ is the (complex) eigenvalue associated with v.

• Theory: If B is well behaved, then it will have N eigenvector / eigenvalue pairs, where N is the number of free parameters.

$$\mathbf{q}^n = \sum_{i=1}^N a_i^n \mathbf{v}_i$$

 \mathbf{v}_i eigenvectors of B, with associated eigenvalues λ_i .

$$\mathbf{q}^n = \sum_{i=1}^N a_i^n \mathbf{v}_i$$

• Substitute this solution into the update equation:

$$\mathbf{q}^{n+1} = \sum_{i=1}^{N} a_i^n \mathsf{B} \mathbf{v}_i$$

• Use properties of eigenvectors:

$$\mathbf{q}^{n+1} = \sum_{i=1}^{N} \lambda_i a_i^n \mathbf{v}_i$$

Linear Update Equation $\mathbf{q}^{n+1} = \mathsf{B}\mathbf{q}^n$

 \mathbf{v}_i eigenvectors of B, with associated eigenvalues λ_i .

Linear Update Equation
$$\mathbf{q}^{n+1} = \mathsf{B}\mathbf{q}^n$$

$$\mathbf{q}^n = \sum_{i=1}^N a_i^n \mathbf{v}_i \qquad \mathbf{q}^{n+1} = \sum_{i=1}^N a_i^{n+1} \mathbf{v}_i$$

where
$$a_i^{n+1} = \lambda_i a_i^n$$

Each mode is amplified by its corresponding eigenvalue.

 \mathbf{v}_i eigenvectors of B, with associated eigenvalues λ_i .

Linear Update Equation
$$\mathbf{q}^{n+1} = \mathsf{B}\mathbf{q}^n$$

$$\mathbf{q}^n = \sum_{i=1}^N a_i^n \mathbf{v}_i \qquad \mathbf{q}^{n+1} = \sum_{i=1}^N a_i^{n+1} \mathbf{v}_i$$

where $a_i^{n+1} = \lambda_i a_i^n$ Take absolute values: $|a_i^{n+1}| = |\lambda_i| |a_i^n|$

What happens if $|\lambda_i| > 1? |\lambda_i| < 1?$

 \mathbf{v}_i eigenvectors of B, with associated eigenvalues λ_i .

Linear Update Equation
$$\mathbf{q}^{n+1} = \mathsf{B}\mathbf{q}^n$$

- $$\begin{split} |\lambda_i| > 1 \quad \text{Instability! The corresponding computational} \\ \text{mode will blow up.} \end{split}$$
- $$\begin{split} |\lambda_i| \leq 1 & \mbox{Stable! The corresponding computational mode will} \\ & \mbox{either maintain its amplitude, or will decay with} \\ & \mbox{time (lose energy?)} \end{split}$$

Stability: An Example

Example: Forward Euler plus upwinding (first-order finite volume).

Linear Update Equation $\mathbf{q}^{n+1} = \mathsf{B}\mathbf{q}^n$

$$q_j^{n+1} = q_j^n + \frac{u\Delta t}{\Delta x}(q_j^n - q_{j-1}^n) \qquad \nu = \frac{u\Delta t}{\Delta x}$$

Corresponding evolution matrix:

$$\mathsf{B} = \begin{pmatrix} 1 - \nu & \dots & \nu \\ \nu & 1 - \nu & & \\ & \nu & 1 - \nu & & \\ & & \ddots & \ddots & \end{pmatrix}$$

Eigenvectors and eigenvalues:

$$(\mathbf{v}_k)_j = \exp(ijk)$$
 $\lambda_k = 1 - \nu(1 + \exp(-ik))$

Stability: An Example

Example: Forward Euler plus upwinding (first-order finite volume).

Linear Update Equation $\mathbf{q}^{n+1} = \mathsf{B}\mathbf{q}^n$

$$q_j^{n+1} = q_j^n + \frac{u\Delta t}{\Delta x}(q_j^n - q_{j-1}^n) \qquad \nu = \frac{u\Delta t}{\Delta x}$$

Eigenvectors and eigenvalues:

$$(\mathbf{v}_k)_j = \exp(ijk)$$
 $\lambda_k = 1 - \nu(1 + \exp(-ik))$

Absolute value of eigenvalues:

$$|\lambda_k|^2 = 1 - 2\nu(\nu - 1)(\cos(k) - 1)$$

Maximum eigenvalue:

$$\max_{k} |\lambda_{k}|^{2} = 1 + 4\nu(\nu - 1)$$

Stability: An Example

Example: Forward Euler plus upwinding (first-order finite volume).

Linear Update Equation $\mathbf{q}^{n+1} = \mathsf{B}\mathbf{q}^n$

