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Definitions

• Taylor-Proudman Theorem

• Steric effects

In this section…

Questions

• How does the concept of balanced flow from 
atmospheric dynamics translate to the ocean?

• How do the thermodynamic properties of the
ocean determine its dynamical character?

• What is the effect of temperature and salinity 
on sea surface height?
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Balanced Flow in the Ocean
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Seawater Equation of State

Figure:  Density anomalies plotted 
against salinity and temperature.

Approximated equation of state by Taylor expansion

�(T, S) ⇡ �0 + ⇢ref
⇣
� ↵T [T � T0] + �S [S � S0]

⌘

↵T = � 1

⇢ref

@⇢

@T

����
T=T0,S=S0

Thermal expansivity: Effect of salinity on density:

�S =
1

⇢ref

@⇢

@S

����
T=T0,S=S0

T0 -1.5oC 5oC 15oC -1.5oC 3oC 13oC
𝛼 (x 10-4 K-1) 0.3 1 2 0.65 1.1 2.2
S0 (psu) 34 36 38 34 35 38
𝛽S (x 10-4 psu-1) 7.8 7.8 7.6 7.1 7.7 7.4
𝜎0 (kg m-3) 28 29 28 -3 0.6 6.9

Surface 1km Depth

Source:  Marshall and Plumb Table 9.4
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From the vertical momentum equation:

Dw

Dt
= �1

⇢

@p

@r
� g

Assuming vertically balanced flow: 

@p

@z
= �⇢g

Writing this in terms of the density anomaly:

@p

@z
= �g(⇢ref + �)

Hydrostatic Balance
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Neglecting the contribution from 𝜎, this equation can be integrated directly:

@p

@z
= �g(⇢ref + �)

Where 𝜂 is the height of the Ocean’s free surface, where p(⌘) = ps

p(z) = ps � g⇢ref(z � ⌘)

Observe the linear dependency of pressure with height.  How does this compare 
to the atmosphere?

Z ps

p
dp = �g⇢ref

Z ⌘

z
dz

Hydrostatic Balance
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The pressure at a depth of 1km in the ocean is thus about 107 Pa or 100 times 
atmospheric pressure.

Note that the the                        part of this pressure is dynamically inert (does not 
drive dynamical circulations at constant depth).

Horizontal pressure gradients are generally only associated with:

• Variations in the free surface height

• Time-mean horizontal variations in surface atmospheric pressure (small)

• Interior density anomalies (associated with T and S variations, neglected above)

�g⇢refz

Hydrostatic Balance
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D2�z

Dt2
+

g

T (z0)
(�d � �)�z = 0

g(�d � �)

T (z0)
> 0 Stable atmosphere

N 2 =
g(�d � �)

T (z0)

Brunt-Vaisala Frequency

Units of seconds2

�z = �z0 sin (N t+ �)

Oscillatory solutions (magnitude of 
oscillation depends on initial velocity)

Recall our derivation of the Brunt-Väisälä Frequency in the atmosphere: 

Buoyancy in the Ocean



Paul Ullrich Ocean Dynamics Spring 2020

Figure: Consider a fluid parcel initially 
located at height z1 in an environment 
whose density is 𝜌(z).  The fluid parcel 
has density 𝜌1 = 𝜌(z1).

It is now displaced adiabatically a small 
vertical distance z2 = z1 + δz.  By Taylor 
series:

⇢E = ⇢(z2) ⇡ ⇢1 +

✓
@⇢

@z

◆

z=z1

�z

abuoyant = �g
(⇢p � ⇢E)

⇢p

abuoyant =
g

⇢1

✓
@⇢

@z

◆

z=z1

�z

Buoyancy in the Ocean

De
pt

h

Stable Unstable

Figure:  Convectively stable and unstable 
vertical density profiles in the ocean.
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Stable ocean

Brunt-Vaisala Frequency

Units of seconds -2

�z = �z0 sin (N t+ �)

Oscillatory solutions (magnitude of 
oscillation depends on initial velocity)

How about in the ocean?

D2�z

Dt2
=

g

⇢E

@⇢E
@z

�z

g

⇢E

@⇢E
@z

< 0

N 2 = � g

⇢E

@�

@z

⇢E = ⇢ref + �

Buoyancy in the Ocean
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Brunt-Vaisala Frequency

Near the thermocline temperature 
gradients are much larger than 
salinity gradients, and so

N 2 = � g

⇢E

@�

@z

N 2 ⇡ g↵T
@T

@z
↵T Thermal expansion coefficient of water

↵T ⇡ 2⇥ 10�4 K�1In surface layer�T ⇡ 15�CUsing

�z ⇡ 1000 m

N ⇡ 5⇥ 10�3 s�1 Or about 20 min. period of oscillation

Buoyancy in the Ocean
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Recall the horizontal momentum equation:

Friction

Coriolis

Pressure Grad.Acceleration
(curvature)

In the ocean, the length scale is determined by the size of typical ocean 
gyres (about 2000 km).  Hence, the Rossby number is

Ro =
U

fL
=

(0.1 m/s)

(10�4 s�1)(2⇥ 106 m)
⇠ 10�3

Compare:  The atmosphere has a Rossby number of 0.1

Du

Dt
= �1

⇢
rp� fk⇥ u+ F

Geostrophic Balance



Paul Ullrich Ocean Dynamics Spring 2020

For small Rossby number, curvature of the flow can be neglected:

Friction

Coriolis

Pressure Grad.Acceleration
(curvature)

Du

Dt
= �1

⇢
rp� fk⇥ u+ F

This implies that geostrophic balance is an excellent approximation for the 
interior of the ocean away from the equator (where Coriolis force is large) and 
away from the surface, bottom and lateral boundaries (where friction is large). 

Geostrophic Balance
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In the ocean the geostrophic wind is given by

ug = � 1

f⇢ref

✓
@p

@y

◆

z

vg =
1

f⇢ref

✓
@p

@x

◆

z

Since density varies little throughout the ocean, one 
can replace 𝜌 with 𝜌ref in the denominator.

Geostrophic Balance
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In the ocean the geostrophic wind is given by

Thermal wind 
relationship:

ug = � 1

f⇢ref
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@y
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z

vg =
1

f⇢ref

✓
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@x
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z

@ug

@z
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f⇢ref

@�

@y
@vg
@z

= � g

f⇢ref

@�

@x

Differentiate with respect to z (approximate f as constant):

@ug

@z
= � 1

f⇢ref

@

@y

@p

@z

@vg
@z

=
1

f⇢ref

@

@x

@p

@z

Use hydrostatic relationship
@p

@z
= �g(⇢ref + �)

Thermal “Wind” in the Ocean
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Figure:  Annual-mean cross section of zonal average potential density σ.

Thermal “Wind” in the Ocean
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Question: Where are the major east-west 
oceanic currents?

@ug

@z
=

g

f⇢ref

@�

@y

z

ug ⇡ 0

Thermal “Wind” in the Ocean

?
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Question: Where are the major east-west 
oceanic currents?

@ug

@z
=

g

f⇢ref

@�

@y

z

ug ⇡ 0

Thermal “Wind” in the Ocean

? +−+− −
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Question: Where are the major east-west 
oceanic currents?

@ug

@z
=

g

f⇢ref

@�

@y

+−−+ −

ug ⇡ 0

Thermal “Wind” in the Ocean

z
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Figure:  Subtropical gyres and associated ocean currents (Source: NOAA)
Recall that the direction of shallow ocean currents is largely independent of depth.

Global Ocean Currents
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Thermal wind 
relationship:

@ug

@z
=

g

f⇢ref

@�

@y
@vg
@z

= � g

f⇢ref

@�

@x

Assuming that the Abyssal currents are weak, the mean surface 
geostrophic flow should be

usurface ⇠
g

f⇢ref

H��

L
⇠ 8 cm s�1

�� ⇠ 1.5 kg m�3 (between 20N and 40N)

L ⇠ 2000 km

H ⇠ 1000 m

Horizontal length scale

Vertical length scale

Thermal “Wind” in the Ocean
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Taylor-Proudman Theory
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Taylor-Proudman Theorem:

If flow is geostrophic and homogeneous (𝜌 = constant) then the flow is two 
dimensional and does not vary in the direction of the rotation vector.

ug = � 1

⇢f

✓
@p

@y

◆

z

vg =
1

⇢f

✓
@p

@x

◆

z

Proof:  From

Assume 𝜌 and f constant.  Then:

@ug

@z
= � 1

⇢f

@

@y

@p

@z
= � 1

⇢f

@

@y
(�⇢g) = 0

@vg
@z

=
1

⇢f

@

@x

@p

@z
=

1

⇢f

@

@x
(�⇢g) = 0

So the geostrophic flow does not vary in the direction z.

Taylor-Proudman
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Taylor-Proudman Theorem:

If flow is geostrophic and homogeneous (𝜌 = constant) then the flow is two 
dimensional and does not vary in the direction of the rotation vector.

Proof (more generally):  For low Rossby number flows (low curvature), 
acceleration can be neglected and so the dynamic primitive equations read

In other words, u does not vary in the direction 𝛀.

2⌦⇥ u+
1

⇢
rp�r(gz) = 0

Taking the curl of this expression, and using the fact that
and                                 then yields

r · ug = 0
r⇥rf = 0

(⌦ ·r)u = 0

Taylor-Proudman
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Taylor-Proudman Theorem:

If flow is geostrophic and homogeneous (𝜌 = constant) then the flow is two 
dimensional and does not vary in the direction of the rotation vector.

Figure: For slow, steady, 
frictionless flows the wind 
vectors do not vary along the 
direction of rotation.

Vertical columns of fluid (Taylor 
columns) remain vertical and 
undisturbed.  These columns 
cannot be tilted.

Taylor Columns
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Figure: Under the Taylor-
Proudman theorem flows must 
be along contours of constant 
fluid depth (otherwise the flow 
will lose its 2D character).

Placing an obstacle on the base 
of the tank in a rotating 
environment will reveal that 
the fluid above the obstacle 
will not mix with the 
environment.

Taylor Columns

Rotating fluid tank

Cylindrical obstacle
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Taylor Columns

Figure:  Taylor columns generated at the UCLA spinlab using a rotating 
turntable. https://www.youtube.com/watch?v=7GGfsW7gOLI

https://www.youtube.com/watch%3Fv=7GGfsW7gOLI


Paul Ullrich Ocean Dynamics Spring 2020

Near-Surface Flow and Flow at Depth
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Figure:  Consider a fluid parcel 
in the Gulf Stream being 
transported eastward.

To compensate for the 
southward-directed Coriolis
force there must be a pressure 
gradient force directed 
northward. 

�1

⇢
rp

�fk⇥ u

u

Near-Surface Flow
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This equation can be integrated as:

@p

@z
= �g(⇢ref + �)

Where η is the height of the Ocean’s free surface, where p(⌘) = ps

z depth
Z ps

p
dp = �g

Z ⌘

z
(⇢ref + �)dz

p(z) = ps + gh⇢i(⌘ � z)

h⇢i =
Z ⌘

z
(⇢ref + �)dz

Hydrostatic Balance

Mean layer density
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Figure:  Schematic showing the 
height of the free surface of the 
ocean and two reference horizontal 
surfaces.  One at the near surface
(z = z0) and one at depth (z = z1).

From hydrostatic balance we have

p(z) = ps + gh⇢i(⌘ � z)

In the near-surface, fractional 
variations in column depth are much 
greater than those of density (so we 
neglect the latter):

p(z) = ps � g⇢ref(z � ⌘)

Horizontal variations in pressure 
depend on (1) variations in 
atmospheric pressure and (2) 
variations in free-surface height.

Near-Surface Geostrophic Flow

Free surface
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Ignoring gradients in atmospheric surface pressure, since these occur on 
much shorter timescales:

And so, from geostrophic balance,

p(z) = ps � g⇢ref(z � ⌘) rp ⇡ g⇢refr⌘

(ug)surf =
g

f
k⇥r⌘

(ug)surf = � g

f

@⌘

@y
(vg)surf =

g

f

@⌘

@x

Analogous to geostrophic wind on constant geopotential surfaces

Near-Surface Geostrophic Flow
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In the atmosphere, geostrophic winds of 15 m/s are associated with tilts 
of pressure surfaces by about 800 m over a distance of 5000 km (verify).

Because oceanic flow is weaker than atmospheric flow, we expect to see 
much gentler tilt of the free surface.

(ug)surf = � g

f

@⌘

@y

�⌘ =
fLU

g

U = 0.1 m s�1

f = 10�4 s�1

L = 106 m

�⌘ ⇡ 1 mAnswer:

Near-Surface Geostrophic Flow
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Figure:  10-year mean height of the sea surface relative to the geoid (contoured every 
20 cm) as measured by satellite altimeter.

Sea Surface Height



Paul Ullrich Ocean Dynamics Spring 2020

At depth (at z = z1), variations in density 
can no longer be neglected compared to 
those of column depth.

From earlier, for a given oceanic column:

k⇥rp = gh⇢ik⇥r⌘ + g(⌘ � z)k⇥rh⇢i

p(z) = ps + gh⇢i(⌘ � z)

rp ⇡ gh⇢ir⌘ + g(⌘ � z)rh⇢i

Again ignoring variations in atmospheric 
surface pressure,

Geostrophic Flow at Depth

Free surface
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k⇥rp = gh⇢ik⇥r⌘ + g(⌘ � z)k⇥rh⇢i

From the geostrophic wind relationship:

ug =
1

f⇢ref
k⇥rp

Then using                              gives

ug =
1

f⇢ref

h
h⇢ir⌘ + g(⌘ � z)rh⇢i

i

h⇢i
⇢ref

⇡ 1

ug ⇡ g

f
k⇥r⌘ +

g(⌘ � z)

f⇢ref
k⇥rh⇢i

Geostrophic flow in 
the interior ocean

Geostrophic Flow at Depth
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ug ⇡ g

f
k⇥r⌘ +

g(⌘ � z)

f⇢ref
k⇥rh⇢i Geostrophic flow in 

the ocean

Observe that if density is uniform that the geostrophic velocity is 
purely a function of the free surface height and independent of depth.

In practice, geostrophic velocities are smaller at depth than at the 
surface, suggesting that these two terms balance each other.

Geostrophic Flow at Depth
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ug ⇡ g

f
k⇥r⌘ +

g(⌘ � z)

f⇢ref
k⇥rh⇢i

If geostrophic flow is nearly zero (as observed in the deep ocean), we must 
have that these two terms roughly balance each other:

H

⇢ref
|rh⇢i| ⇡ |r⌘| where H is the column height

N 2 = � g

⇢E

@�

@z
Divide through by

|r⇢z| ⇡
g

N 2H
⇥ |r⌘|

Geostrophic Flow at Depth

Isopycnal (surfaces of 
constant density) slope

Free surface slope
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|r⇢z| ⇡
g

N 2H
⇥ |r⌘|

Using                                                 N ⇡ 5⇥ 10�3 s�1

H = 1 km

For every meter the free surface tilts up, density surfaces must tilt 
down by about 400m. 

g

N 2H
⇡ 400

Geostrophic Flow at Depth
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Figure:  Warm subtropical columns of fluid expand relative to colder polar 
columns.  Thus the sea surface (measured relative to the geoid) is higher, by 
about 1 m, in the subtropics than at the poles.

Pressure gradients associated with sea surface tilt are largely compensated 
almost exactly by vertical thermocline undulations.  Consequently the abyssal 
circulation is much weaker than the surface.

Geostrophic Flow at Depth

North
Subpolar

Subtropical
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W
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Free surface
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Figure:  10-year mean height of the sea surface relative to the geoid (contoured every 
20 cm) as measured by satellite altimeter.

Sea Surface Height
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Figure:  Zonal average annual-
mean potential density 
anomaly in the world oceans.  
Note that darker colors 
indicate less dense fluid.  
Compare with zonal average 
annual-mean temperature.

Potential Density

� = ⇢� ⇢ref



Paul Ullrich Ocean Dynamics Spring 2020

Figure:  Depth in meters of the annual mean σ = 26.5 kg m-3 surface over the global ocean.

Depth of the 1026.5 kg/m3 Density Surface
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The spatial variations in the height of the ocean surface are controlled to a 
large degree by expansion of warm ocean water and contraction of cold 
ocean water (observe that sea surface heights are high over the tropics and 
low over the polar regions).

Further, salty columns of water are shorter than fresh columns 
(temperature and pressure being equal).

Definition:  Expansion and contraction of water columns due to T and S 
anomalies is known as the steric effect.

Steric Effects
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Using
H

⇢ref
|rh⇢i| ⇡ |r⌘|

And averaged equation of state

�(T, S) ⇡ �0 + ⇢ref
⇣
� ↵T [T � T0] + �S [S � S0]

⌘

h⇢i ⇡ ⇢ref [1� ↵T hT � T0i+ �ShS � S0i]

rh⇢i ⇡ ⇢ref [�↵TrhT i+ �SrhSi]

�⌘

H
⇡ ↵T�T � �S�S

Taking into account the fact that 
temperature increases thickness 
and salinity decreases thickness.

Steric Effects
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Over the meridional
extent of the subtropical 
ocean gyres, we estimate 

�T ⇡ 10�C

Steric Effects
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Over the meridional extent of the subtropical ocean gyres, we estimate 

�S ⇡ 0.5 psu

Steric Effects
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�⌘

H
⇡ ↵T�T � �S�S

�S ⇡ 0.5 psu

�T ⇡ 10�C

↵T ⇡ 2.0⇥ 10�4 �C�1

�S ⇡ 7.6⇥ 10�4 psu�1

�⌘

H
⇡

⇣
2 + (�0.38)

⌘
⇥ 10�3

Temperature 
expansion

Salinity
contraction

So over the top kilometer of the 
column, height variations due to salt are 
more than offset by approximately 2m 
of thermal expansion.

Steric Effects
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Figure:  SODA3 report mean height of the sea surface relative to the geoid 
(contoured every 10 cm).

Sea Surface Height
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