ATM 241, Spring 2020 Lecture 3 Atmospheric Structure

Paul A. Ullrich

paullrich@ucdavis.edu

Marshall & Plumb

Ch. 1, 3.1

Paul Ullrich

In this section...

Definitions

- Keeling curve
- Troposphere
- Stratosphere
- Mesosphere
- Thermosphere
- Tropopause
- Stratopause
- Mesopause
- Clausius-Clapeyron
- Dew point temperature

Questions

- What are the chemical constituents of the Earth's atmosphere?
- How do these constituents influence climate?
- What are the layers of the Earth's atmosphere and how are they distinguished?
- What are the characteristics of each layer of the Earth's atmosphere?
- Why does water vapor in the atmosphere decay rapidly with height?
- Why is tropical air moister than air at the poles?

Paul Ullrich

Total Mass of the Atmosphere 5.26 x 10^{18} kg = 5.79 x 10^{15} tons (5.79 quadrillion tons

Air Density at Surface 1.235 kg / m³

Global Average Surface Temperature 288 K = 15 °C = 58.7 °F

Air Pressure at Surface 101300 Pa = 1 atm = 1 bar **Earth Radius** 6371 kilometers

Altitude of Highest Peak 8.85 kilometers (Mt. Everest)

> **Troposphere Depth** 10-18 kilometers

Atmospheric Depth (Distance to Space) ~ 100 kilometers

Paul Ullrich

Atmospheric Structure

Spring 2020

The chemistry of the	Species	Molecular Mass (g/mol)	Proportion by volume	Species	Molecular Mass (g/mol)	Proportion by volume
plays a major role in determining the balance of energy in the Earth system.						
Knowledge of its constituents is thus important for understanding energy in the climate system.						

	Species	Molecular Mass (g/mol)	Proportion by volume	Species	M
Together, nitrogen gas (N_2)	N ₂	28.01	78%		
and oxygen gas (O ₂) represent approximately	02	32.00	21%		
99% of the total gaseous composition of the atmosphere.					

Species	Molecular Mass (g/mol)	Proportion by volume

	Species	Molecular Mass (g/mol)	Proportion by volume
Argon (Ar) is the oft-	N ₂	28.01	78%
forgotten third most abundant component of	02	32.00	21%
the Earth's atmosphere. It	Ar	39.95	0.93%
it is largely unreactive and unimportant to climate.			

Species	Molecular Mass (g/mol)	Proportion by volume

	Species	Molecular Mass (g/mol)	Proportion by volume	Species
Water vapor (H ₂ O)	N ₂	28.01	78%	
concentration varies significantly throughout	02	32.00	21%	
the atmosphere.	Ar	39.95	0.93%	
Practically all water vapor is confined to the lower 10km of the atmosphere. Whereas the warmest tropical air is almost 4% water vapor by volume, in polar regions water vapor may be as low as 0.2%.	H ₂ O	18.02	~ 0.5%	

Species	Molecular Mass (g/mol)	Proportion by volume

	Species	Molecular Mass (g/mol)	Proportion by volume	Specie
Carbon dioxide (CO ₂) is the	N ₂	28.01	78%	
next most abundant gas, presently making up 410	02	32.00	21%	
parts per million (ppm) of the atmosphere (1 ppm =	Ar	39.95	0.93%	
0.0001%). This means for	H ₂ O	18.02	~ 0.5%	
every one million air molecules, approximately	CO ₂	44.01	~ 410 ppm	
CO ₂ levels continue to rise from preindustrial levels of 280ppm as a result of human activity.				

Species	Molecular Mass (g/mol)	Proportion by volume

Atmospheric Chemistry (Carbon Dioxide)

The **Keeling Curve** is named after Charles David Keeling, who started the CO_2 monitoring program at Mauna Loa Observatory in 1958 and supervised it until his death in 2005.

Carbon dioxide levels typically reach a maximum in the Northern Hemisphere Spring and minimum in the Northern Hemisphere Fall.

As of 2020, CO_2 has reached approximately 410ppm concentration. This is above preindustrial levels of 280ppm and glacial periods when CO_2 concentration was closer to 180ppm.

https://en.wikipedia.org/wiki/Keeling Curve

Monthly mean CO2 concentration, Mauna Loa 1958-2019

Scripps CO2 Program (http://scrippsco2.ucsd.edu). Accessed 2019-07-20

	Species	Molecular Mass (g/mol)	Proportion by volume
Of the next five most	N ₂	28.01	78%
abundant gases, neon (Ne), Helium (He), and Krypton	02	32.00	21%
(Kr) are unreactive.	Ar	39.95	0.93%
Only methane (CH ₄) is relevant to energy balance. Its concentration in the Earth's atmosphere has also been increasing because of human activity (approximately 1800ppb in 2020, compared with	H ₂ O	18.02	~ 0.5%
	CO2	44.01	~ 410 ppm
	Ne	20.18	19 ppm
	Не	4.00	5.2 ppm
	CH ₄	16.04	1.8 ppm
720ppb in preindustrial).	Kr	83.8	1.1 ppm
	H ₂	2.02	~ 500 ppb

Species	Molecular Mass (g/mol)	Proportion by volume

	Species	Molecular Mass (g/mol)	Proportion by volume
Excluding trace species, the remaining gases include: ozone (O ₃) nitrous oxide (N ₂ O)	N ₂	28.01	78%
	02	32.00	21%
	Ar	39.95	0.93%
	H ₂ O	18.02	~ 0.5%
ammonia (NH3)	CO ₂	44.01	~ 410 ppm
nitrogen dioxide (NO ₂) chlorofluorocarbons*	Ne	20.18	19 ppm
sulphur dioxide (SO ₂) hydrogen sulfide (H ₂ S)	Не	4.00	5.2 ppm
	CH ₄	16.04	1.8 ppm
* no natural sources	Kr	83.8	1.1 ppm
	H ₂	2.02	~ 500 ppb

Species	Molecular Mass (g/mol)	Proportion by volume
O ₃	48.00	~ 500 ppb
N ₂ O	44.01	310 ppb
СО	28.01	120 ppb
NH ₃	17.03	~ 100 ppb
NO ₂	46.00	~ 1 ppb
CCl ₂ F ₂	120.91	480 ppt
CCl ₃ F	137.37	280 ppt
SO ₂	64.06	~ 200 ppt
H ₂ S	34.08	~ 200 ppt
AIR	28.97	

Paul Ullrich

	Species	Molecular Mass (g/mol)	Proportion by volume
The gases highlighted in	N ₂	28.01	78%
red are the infamous greenhouse gases, which	02	32.00	21%
are particularly important	Ar	39.95	0.93%
energetics of the Earth's	H ₂ O	18.02	~ 0.5%
atmosphere.	CO ₂	44.01	~ 410 ppm
They include water vapor , carbon dioxide, methane,	Ne	20.18	19 ppm
ozone, nitrous oxide, and	Не	4.00	5.2 ppm
	CH ₄	16.04	1.8 ppm
	Kr	83.8	1.1 ppm
	H ₂	2.02	~ 500 ppb

Species	Molecular Mass (g/mol)	Proportion by volume
O ₃	48.00	~ 500 ppb
N ₂ O	44.01	310 ppb
СО	28.01	120 ppb
NH ₃	17.03	~ 100 ppb
NO ₂	46.00	~ 1 ppb
CCl ₂ F ₂	120.91	480 ppt
CCl₃F	137.37	280 ppt
SO ₂	64.06	~ 200 ppt
H ₂ S	34.08	~ 200 ppt
AIR	28.97	

Vertical Structure of the Earth's Atmosphere

The Earth's atmosphere roughly consists of four distinct layers: from bottom to top they are the **troposphere**, the **stratosphere**, the **mesosphere**, and the **thermosphere**.

These layers are distinguished by how temperature changes with altitude, and separated by regions of relatively constant temperatures: the **tropopause** (above the troposphere), the **stratopause** (above the stratosphere), and the **mesopause** (above the mesosphere).

Temperature Profile of the Earth's Atmosphere

Temperature Profile of the Earth's Atmosphere

Figure: Vertical temperature profiles from Mars, Earth and Venus. Copyright Nick Strobel [http://www.astronomynotes.com/solarsys/s3c.htm]

Vertical Structure (Thermosphere)

Thermosphere: (Edge of Space) Temperature is very high and variable. Short wavelength ultraviolet radiation is absorbed here by oxygen. Molecules are dissociated with highenergy ultraviolet radiation from the sun ($\lambda < 0.1 \mu m$). Temperatures can get very high (up to 1000K), even though air density is very low.

Vertical Structure (Thermosphere)

Auroras are produced when the solar wind disturbs the magnetosphere and causes charged particles to be deflected into the thermosphere / exosphere.

https://commons.wikimedia.org/wiki/File:Northern_Lights_02.jpg

Vertical Structure (Mesosphere)

Mesosphere: Temperature increases towards the surface in this layer, driven by increased ozone concentration.

Ozone: Presence of ozone is driven by *photodissociation* of oxygen:

 $O_2 + h\nu \to O + O$ $O + O_2 + M \to O_3 + M$

Maximum concentration of **ozone is closer to 20km-30km**, but its strong opacity to solar radiation leads to **higher temperatures near 50km**.

Vertical Structure (Stratosphere)

Ozone: Presence of ozone is driven by *photodissociation* of oxygen through the Chapman process:

 $O_2 + h\nu \rightarrow O + O$ $O + O_2 + M \rightarrow O_3 + M$

Maximum concentration of ozone is closer to 20km-30km, but its strong opacity to solar radiation leads to higher temperatures near 50km.

Figure: A NOAA ozonesonde vertical profile from Boulder Colorado on October 3rd, 2019.

Vertical Structure (Stratosphere)

Stratosphere: Exhibits a temperature increase with altitude due to the presence of the ozone layer. The stratosphere is highly stratified and poorly mixed (the increase in temperature with altitude makes the atmosphere very stable).

Vertical Structure (Troposphere)

Troposphere: Below the tropopause (typically located between 8-16km depending on latitude and season), temperature increases strongly towards the surface. It contains about **85% of the atmosphere's mass** and essentially **all the water vapor**.

Paul Ullrich

Atmospheric Structure

Vertical Structure (Troposphere)

Tropospheric General Circulation

©The COMET Program

Global Atmospheric Dynamics

https://www.youtube.com/watch?v=x1SgmFa0r04

Water Vapor in the Atmosphere

Properties of Dry Air

(at standard temperature and pressure)

Specific heat at constant pressure	Cp	1005 J kg ⁻¹ K ⁻¹
Specific heat at constant volume	Cv	718 J kg ⁻¹ K ⁻¹
Ratio of specific heats	γ	1.40
Density at 273K, 1013 mbar	ρ ₀	1.293 kg m ⁻³
Viscosity at STP	μ	1.73 x 10 ⁻⁵ kg m ⁻¹ s ⁻¹
Kinematic Viscosity at STP	υ=μ/ρ ₀	1.34 x 10 ⁻⁵ m ² s ⁻¹
Thermal conductivity at STP	К	2.40 x 10 ⁻² W m ⁻² K ⁻¹
Gas constant for dry air	R _d	287.05 J kg ⁻¹ K ⁻¹

Thermodynamics of Dry Air

$$p_d = \rho_d \frac{R_g}{m_a} T = \rho_d R_d T$$

Governed by ideal gas law:

Ideal gas constant

$$R_g = 8.3143 \text{ J K}^{-1} \text{ mol}^{-1}$$

Specific gas constant for dry air

$$R_d = \frac{R_g}{m_a} = 287 \text{ J kg}^{-1} \text{ K}^{-1}$$

Where m_a is the molecular mass of dry air

$$m_a = 28.9647 \text{ g mol}^{-1}$$

Thermodynamics of Moist Air

Governed by ideal gas law:

 $e =
ho_v R_v T$ Partial pressure of water vapor $p_d =
ho_d R_d T$ Partial pressure of dry air $p = e + p_d$ Total pressure of air

 $(e \ll p_d \Longrightarrow p \approx p_d)$

Specific gas constant for water vapor

$$R_v = \frac{R_g}{m_v} = 461.5 \,\,\mathrm{J\,kg^{-1}\,K^{-1}}$$

Where m_v is the molecular mass of water vapor

 $m_v = 18.0153 \text{ g mol}^{-1}$

Thermodynamics of Moist Air

When both liquid water and water vapor are present in a closed system, it will tend to equilibrate so that the number of water molecules **leaving the liquid phase (evaporation) equals the number of water molecules entering the liquid phase (condensation).**

When this equilibrium occurs the air is said to be **saturated with** water vapor.

If more water vapor is then added, or if the temperature of the system is reduced, then the condensation rate will be greater than the evaporation rate until equilibrium is returned.

https://en.wikipedia.org/wiki/Vapor_pressure

Thermodynamics: Clausius-Clapeyron

Definition: The partial pressure of water vapor that can exist at a given temperature is determined by the **Clausius-Clapeyron relationship.**

$$\frac{de_s}{dT} = \frac{L_v(T)e_s}{R_vT^2}$$

Specific latent heat of vaporization of water
$$L_v \approx 2.5 \times 10^6 ~\rm{J}~kg^{-1} ~~at~0^{\circ}C$$

Typically temperature dependence of latent heat of vaporization cannot be ignored, and empirical relations are often used. In practice this equation is approximated by

$$e_s(T) = 6.1094 \text{ hPa} \times \exp\left(\frac{17.625T}{T + 243.04}\right) \quad T \text{ in °C}$$

Note that Marshall and Plumb use an even simpler expression.

Thermodynamics: Clausius-Clapeyron

$$e_s(T) = 6.1094 \text{ hPa} \times \exp\left(\frac{17.625T}{T + 243.04}\right) T \text{ in °C}$$

In the atmosphere vapor pressure is constrained by $e \leq e_s(T)$ since additional water vapor would immediately condense out in the form of liquid. Namely, air is either unsaturated or saturated – supersaturated air is not observed in nature.

Consequences of Clausius-Clapeyron

- Moisture in the atmosphere decays rapidly with height. Why?
- Air in the tropics tends to be much more moist than air over the poles. Why?
- Precipitation occurs when moist air is cooled by convection. How? What is the temperature decrease associated with adiabatic lifting?

More on Condensation

• Condensation typically requires the presence of condensation nuclei (sulfates, dust, smoke from fires, ocean salt). These provide surfaces for water to stick to and initiate the condensation process.

Definition: The dew point temperature is the temperature to which air must be cooled (at constant pressure and constant water vapor concentration) to reach saturation.

- Clouds consist of liquid water droplets that are formed by condensation of water onto condensation nuclei (when T falls below the dew point).
- Overnight cooling due to radiation can drop the temperature to the dew point. How would we see the effects of this phenomena?

Cloud in a Bottle

Cloud condensation "within a bottle" can be observed by adding warm water and condensation nuclei to the bottle, allowing the air above the water to come to saturation, and then pumping out air from within the bottle.

Can you explain why this process occurs?

Vertical Distribution of Water Vapor

As explained by the Clausius-Clapeyron relationship, warm air has greater capacity to "hold" moisture than cold air.

Consequently water vapor in the atmosphere (specific humidity) tends to drop off rapidly with altitude.

With sufficient water availability, this makes the tropical near-surface the most humid area on Earth.

Data courtesy Oort, 1983 / The COMET Program

Figure: Annual mean water vapor content (in g/kg) plotted against altitude.

Meridional Distribution of Water Vapor

Global mean water vapor column for 2009 derived from GOME-2 measurements (Thomas Wagner (MPI-C), Steffen Beirle (MPI-C), Diego Loyola (DLR), Kornelia Mies (MPI-C), Sander Slijkhuis (DLR))

ATM 241 Climate Dynamics Lecture 3 Atmospheric Structure

Paul A. Ullrich

paullrich@ucdavis.edu

Thank You!

Paul Ullrich