
Atmospheric Waves 
Chapter 6 

 
Paul A. Ullrich 

paullrich@ucdavis.edu 
 



Part 3: Internal Gravity Waves 
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Paul Ullrich Atmospheric Waves March 2014 

(Internal) gravity waves are generated by flow over 
topography, thunderstorms, other mesoscale systems 

(Internal) gravity wave effects are:  cloud streets, lenticularis 
clouds, rapid local temperature and pressure changes, clear 
air turbulence 

 
They carry energy and momentum into the middle 
atmosphere (stratosphere, mesosphere) 
 



Atmospheric gravity waves can only exist when the 
atmosphere is stably stratified (N2 > 0) 

Buoyancy force is the restoring force for gravity waves 

In an incompressible fluid (e.g. ocean) gravity waves 
travel primarily in the horizontal plane, since reflection 
at lower and upper boundary occurs for vertically 
traveling waves. 

In the atmosphere:  Due to compressibility and 
stratification, gravity waves may propagate vertically 
and horizontally. 

Internal Gravity Waves 
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Figure: Air moving over a mountain on an island 
triggers waves on the downwind (lee) side of 
the mountain, indicated by the cloud pattern 

Topographic Gravity Waves 
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Undular Bore 

Examples 
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Mountain-generated waves (lee waves) 

Examples 
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Consider pure internal gravity waves: 
 No rotation,  no friction 

Can be studied with the basic 
equations for 2D (x-z plane) 
motions with Boussinesq 
approximation (almost 
incompressible) 
 

Internal Gravity Waves 
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Four equations in five unknowns 
 



Take logarithms of both sides: 
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Internal Gravity Waves 
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Equations must be closed via an equation of state, 
such as the potential temperature equation: 



Linearize the basic equations by letting 
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IGWs: Derivation (1) 
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Hydrostatic Balance 

The basic state must satisfy: 

Definition of Potential Temperature 
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Linearize the material derivative terms: 
 
 
 

IGWs: Derivation (2) 
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Linearize the thermodynamic equation: 
 
 
 

IGWs: Derivation (2) 
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Linearize 
 
 
Remember some calculus: 
 
 
 
 
Linearization yields 
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Potential temperature equation: 
 
 

with 
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✓ = ✓ + ✓0, p = p+ p0, ⇢ = ⇢0 + ⇢0



Again, remember some calculus: 
 
 
 
 
Apply these rules to potential temperature equation: 
 

 

To obtain linearized potential temperature equation: 
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Speed of sound 
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In gravity waves, density fluctuations due to 
pressure changes are small compared to those due 
to temperature changes: 
 
 
 
 
Therefore, to a first approximation, the potential 
temperature equation becomes: 
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The linearized equation set for internal gravity 
waves becomes 
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IGWs: Derivation (4) 
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Leads to 
 
 
 
 
 
Now eliminate u’  from (5) by computing 
 
 
 
 
 
Leads to the equation: 
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Yields single equation for 	
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Eliminate θ’ from (6) by computing 
 

IGWs: Derivation (5) 

Square of Brunt-Väisälä frequency:  
       assume to be constant N 2
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Consider wave-like solutions: 
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w

0 = Re [ öw exp(i�)]

= Re [(wr + iwi) exp(i(kx + mrz � ⌫t)) exp(�miz)]

= [wr cos(Re(�)) � wi sin(Re(�))] exp(�miz)

Horizontal wavenumber k is real, solution is always sinusoidal 



The vertical wavenumber m is complex 
–  Real part mr describes the sinusoidal variation in z 
–  Imaginary part mi describes the exponential decay or 

growth of the wave amplitude in z, depending on the 
sign of mi (positive / negative). 

 
If m is real, total wave number may be regarded as a vector 
directed perpendicular to line of constant phase, and in the 
direction of phase increase.  
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IGWs: Wavenumbers 
m = mr + imi
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= [wr cos(Re(�))� wi sin(Re(�))] exp(�miz)

with 
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IGW Frequency 

Relative to the mean wind: 
–  Positive (+) sign means eastward phase propagation 
–  Negative (-) sign means westward phase propagation 

(⌫ � uk)2(k2 +m2)�N 2k2 = 0
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If we let k > 0 and m < 0, then lines of constant phase  
φ = (kx + mz) tilt eastward with increasing height 
 

The choice of the positive root 
 
 
 
then corresponds to an eastward and downward phase propagation 
(relative to the mean flow). 

 
The zonal and vertical phase speeds (positive root) are 
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Solutions for the other perturbation fields u’, p’, θ’ 
can be obtained by substituting w’ back into 
original linearized equations (let k > 0 and m < 0) 
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IGWs: Phase Relationships 

Observe u’,	
  w’,	
  p’ are exactly in phase, with 

However θ’ (or T’) out of phase by 1/4 wavelength: 
 Warm air leads pressure ridge eastward  

Transverse wave:  
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If we let k > 0 and m < 0, then lines of constant phase  
φ = (kx + mz) tilt eastward with increasing height 
 

Horizontal distance 

Height 

Phase velocity 

Perturbation 
velocity field 

W C 

W 

C 

W C Temperature 
perturbation  

H 
H L 

H L Pressure 
perturbation  

IGWs: Cross Section 
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Phase lines 
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The zonal and vertical phase velocities are 
 
 
 

 
 

Upper and lower signs 
chosen as above.  

IGWs: Phase / Group Velocity 

The components of the group velocity are 
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The vertical component of group velocity has a sign 
opposite to that of the vertical phase speed. 
 

That is, downward phase propagation implies 
upward energy propagation 
 

IGWs: Phase / Group Velocity 
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Horizontal phase and group velocities point in 
the same direction (no sign change) 

Remarkable property of internal gravity waves: 
Group velocity travels perpendicular to the 
direction of the phase propagation 

That is, in internal gravity waves energy travels 
parallel to the crests and throughs (in contrast 
to shallow water gravity waves) 

IGWs: Phase / Group Velocity 
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Height 
Phase velocity 

Phase lines 
(only the crests 
are shown here) 

Group velocity 
(energy travels 
in this direction) 

!  

Angle of phase lines to the local vertical: 

! 

IGWs: Phase / Group Velocity 
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Consequence: gravity wave intrinsic frequency (relative to 
mean flow) must be less than buoyancy frequency  
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IGWs: Frequency 
Angle of phase lines to the local vertical: 

Frequency of internal gravity waves: 

Intrinsic Frequency 
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Propagation of an internal gravity wave packet 

https://www.youtube.com/watch?v=cDsNmnpq9_o 
 

http://www.youtube.com/watch?v=RpP62QSJM0g 

Observed waves in the atmosphere   

IGWs: Movies 
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For example, idealized mountain height profile: 

⌫̂ = �uk < 0

Topographic Gravity Waves 
Topographic gravity waves are stationary internal 
waves driven by topography (a lower boundary 
condition on w). 

For stationary waves (" =0) this means that the 
intrinsic frequency is 
(westward relative to the mean flow) 

Wavelength k is determined by the wavelength of the 
topography (flow follows topography near the ground)  

h(x) = hM cos(kx)
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For stationary waves, the dispersion relationship for IGWs 
✓
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Topographic Gravity Waves 
Topographic gravity waves are stationary internal waves 
driven by topography (a lower boundary condition on w). 

simplifies to 
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Seek stationary (                             ) wave solutions:  
 
 
 
 
yields the dispersion relationship  
 
 
 

 
If                         , m2 > 0 (m must be real).  Solutions have the form of vertically 
propagating waves (with constant amplitude): 
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Topographic Gravity Waves 
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Wide (broad) mountain                   small k                    m real 
Ridges and trough lines slope with height, opposite to u	


Upward flow of energy and momentum 

 

Intrinsic phase 
speed vector 

Wave number 
vector (k,m)	



Intrinsic group 
velocity vector	



Absolute group 
velocity vector	


u

u
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Vertically 
Propagating Waves 



If                         , m2 < 0 (m is purely imaginary).  
Solutions have the form of vertically trapped 
waves (that decay with height): 

m2 =
N 2

u2 � k2

Topographic Gravity Waves 
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|u| > N/k
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decay 

Vertically Trapped 
Waves 
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Narrow mountain                   large k                    m imaginary 
Ridges and trough lines aligned with height 
No tilt, no momentum transport 
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Topographic Gravity Waves 

Ver$cal	
  propaga$on	
  of	
  gravity	
  waves	
  is	
  only	
  possible	
  
when	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  less	
  than	
  the	
  buoyancy	
  frequency	
  
	
  
Stable	
  stra,fica,on,	
  wide	
  ridges	
  and	
  rela,vely	
  weak	
  
zonal	
  flow	
  provide	
  favorable	
  condi,ons	
  for	
  ver,cally	
  
propaga,ng	
  gravity	
  waves.	
  
	
  
If	
  energy	
  is	
  transported	
  upward,	
  phase	
  must	
  be	
  
downward.	
  

|uk| N

Summary 



Figure: Circulation is more complex in real gravity waves:  
For example, rotors, breaking waves, wind shear, varying  

More Realistic IGWs 

N
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Figure: 
Lenticularis cloud 
forming on the 
lee side of the 
mountain 

Lenticularis Cloud 

Movie:  https://www.youtube.com/watch?v=YKAfKHSeWZc 
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