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Part 1: Wave-like Motion 
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The equations of motion contain many forms of wave-
like solutions, true for the atmosphere and ocean.  
Waves are important since they transport energy and 
mix the air (especially when breaking). 

Some are of interest depending on the problem: Rossby waves, 
internal gravity (buoyancy) waves, inertial waves, inertial-gravity 
waves, topographic waves, shallow water gravity waves. 

Some are not of interest to meteorologists, 
for instance sound waves. 
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Large-­‐scale	
  mid-­‐la.tudinal	
  waves	
  (Rossby	
  waves)	
  are	
  
cri.cal	
  for	
  weather	
  forecas.ng	
  and	
  transport	
  (see	
  
Atmospheric	
  Waves).	
  

Large-­‐scale	
  waves	
  in	
  the	
  tropics	
  (Kelvin	
  waves,	
  mixed	
  Rossby-­‐gravity	
  
waves)	
  are	
  also	
  important,	
  but	
  of	
  very	
  different	
  character.	
  

Waves	
  can	
  be	
  unstable.	
  	
  That	
  is	
  they	
  start	
  to	
  
grow,	
  rather	
  than	
  just	
  bounce	
  back	
  and	
  forth.	
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Atmospheric Waves 
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Definition:  The wavelength Lx 
of a wave is the distance 
between neighboring troughs 
(or crests). 
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L
x

Definition:  The wavenumber k 
of a wave is defined as 



Atmospheric Wave Example 
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Phase 
line 



Wavelengths: 

From geometric considerations: 

 
 

Wavenumber vector: 

Constant phase lines: 

Vector position: 

Waves in 2D 

L
x

=
2⇡

k
L
y

=
2⇡

`
1

L2
=

1

L2
x

+
1

L2
y

=
k2 + `2

4⇡2

j
i

L =
2⇡


 =

p
k2 + `2

 = ki+ `j

kx+ `y = k · r

r = xi+ yj



L

Paul Ullrich Atmospheric Waves March 2014 



with T wave period 

Geometric considerations provide: 

Phase speed: 

Wave frequency: 

crest at t2	

crest 
      at t1	



at fixed position (x,y) 

with wavenumber 

2D Traveling Waves 
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The crests are translated over a distance: 

Propagation speed of the wave: 

in x-direction 

in y-direction 

Propagation speed of the crest line: phase speed 

direction is parallel to 
wavenumber vector 

2D Traveling Waves 
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Phase	
  speed	
  c	
  is	
  less	
  than	
  either	
  cx	
  or	
  cy	
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If the frequency ν is a function of the wavenumber 
components, so is the phase speed: 

Physically, this implies that various waves of a composite 
signal will all travel at different speeds. 
 
As a result, there is distortion of the signal over time. 
 
This phenomenon is called wave dispersion.  

Dispersion Relationship 

c(k, `) =
⌫(k, `)p
k2 + `2

Definition:  The dispersion relationship is 
then defined by ⌫(k, `)
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In general, a wave pattern consists of a series of 
superimposed waves, leading to destructive and 
constructive interference. 
 
Therefore:  Energy distribution is a property of a 
set of waves rather than a single wave. 

wave packet 

Wave Envelope 
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Source: Wikipedia 



A wave pattern is a succession of wave packets. 
 
Within each packet (here 1D), the wave propagates 
at the phase speed  
 
 
While the packet or envelope  (and therefore the 
energy) travels at the group velocity (here in 1D) 

Components of group velocity vector: 

Wave Envelope 
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Definition:  The group velocity of a system is defined as 
 
The group velocity vector (in 2D) is defined as cg ⌘ rk⌫



Group Velocity 

Source: Wikipedia 

Source: Wikipedia 
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This is a very general approach, and can always be done. 

Linear Perturbation Theory 

u = u+ u0

Variable Mean Difference 
(perturbation) 

Assume that each variable is equal to the mean 
state plus a perturbation from that mean: 
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Impose assumptions and constraints on the mean and perturbations 
 
Assumptions need to be physically sensible and justified 
 
For example: 

€ 

u = u + " u 

Linear Perturbation Theory 

Variable Mean 
(independent 

of time and 
longitude) 

Perturbation:  Perturbations 
are “small”, and so products of 
perturbations are very small. 
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With these assumptions non-linear terms (like the 
one below) become linear: 

Linear Perturbation Theory 

These terms are zero since the 
mean is independent of x. 

Terms with products of 
perturbations are very small 

and will be ignored. 
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Assume that the mean state satisfies the 
equations of motion 
 
For example:  u-momentum equation becomes 
   (here with constant density, frictionless): 

Plug in: 

Linearize: 

Linearization 
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Assume we have derived a set of linearized equations 
with constant coefficients.  
 
Look for simple wave-like solutions: 

 
However, this form of the wave fixes the “phase” 
over the wave.  That is at x=0 and t=0 all solutions 
must have                  . 
 
More general solution:  Use complex numbers 

1D Wave Solutions 

u

0
(x, t) = u0 cos(kx� ⌫t) k =

2⇡

L
x

⌫ =
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T
with 

u0 = u0
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i =
p
�1

u0 = Re(u0) + iIm(u0)u

0
(x, t) = Re [u0 exp(ikx� i⌫t)]



2D waves that propagate horizontally in the x and y 
direction with constant wave amplitude u0	



Note:  Only the real part Re[ ] has physical meaning! 

2D Wave Solutions 

u

0
(x, y, t) = Re [u0 exp(i(kx+ `y � ⌫t))]

Real part of Wave amplitude, may 
be complex 

exp(i�) = cos�+ i sin�Recall:	



Re [u0 exp(i�)] = Re(u0) cos�� Im(u0) sin�
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In 3D search for general wave solutions of the form: 
 
 
 

3D Wave Solutions 

u

0
(x, y, z, t) = Re [u0 exp(i(kx+ `y +mz � ⌫t))]

Wave amplitude, may 
be complex 

 
Such a wave propagates in all three dimensions.  
 
Alternatively:  Horizontally propagating waves with varying amplitude u0(z) 
in the vertical direction: 

u

0
(x, y, z, t) = Re [u0(z) exp(i(kx+ `y � ⌫t))]
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