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Part 5: A First Look at the Vertical
Structure of the Atmosphere




Hydrostatic Balance

(Although the horizontal atmosphere is\
In a constant state of motion, vertical (P + 6p)oA
velocities are fairly small (especially
averaged over the large scale).
Consequently, to understand the
vertical structure of the atmosphere, we
can approximate it to be largely steady.

\_ _

Figure: A vertical column of air of density,
horizontal cross-sectiotA , height!z and mass
M="1A 1z. The pressure at the lower surface is

p, the pressure at the upper surfacepast Ip . poA
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Hydrostatic Balance

(p+ 0p)dA

If the cylinder of air is not accelerating, it
must be subject to zero net force. The
vertical forces are:

A
Pressure acting
on bottom face 0z
FB — p5A
Gravity Pressure acting Y
Fg =1 gM on top face

— 1 gpoAsz W Fr=—(p+0p)A
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Hydrostatic Balance

Fo+Fr+Fp =0

3 (p+ 0p)dA

op + gpoz =0
Taylor SQeScSp R~ @57;
0z
( Hydrostatic
f Balance
1 1 p B I
T, 9 J
\_
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Aside: Consider the special case of an isothermal
(constant temperature) atmosphere:

4 )
} P _ Hydrostatic
| "y g Balance

- J

This equation does not give pressure explicitly in terms of
height, since the density of air is not known.

~

Ideal I
ea gasp aw 8}? pg .
" RT 5’z RT
\ /
For an isothermal atmosphere’l{ = 1 ) this equation can be exactly solve

29
j> P(z) = psexp| -5 = T (\[ Exponential decay}
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Aside: Consider the special case of an isothermal
(constant temperature) atmosphere:

E> p(z) = ps exp (— R‘ZZTO)

r D
Delnition: Thescale heightofan R4y

iIsothermal atmosphere is given by: g
\ J

E> p(z) = ps exp (—%)

Thescale heightis an example of a quantity which imparts a notion of
a Onatural measuring stickO for an idealized atmosphere. This notion will
generalize to more realistic atmospheric lows as well.
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Aside: Consider the special case of an isothermal
(constant temperature) atmosphere:

For an isothermal atmospherel’” = 1§

. 100 |
E> p(2) = ps exp (_E> “|

60 |

Figure: Observed pro"le of pressure £

(solid) plotted against isothermal pro"le. ™ |
Observed temperature variations only “1
lead to small variations in the pressure 30 |
from an exponential pro"le. 55 |

o H =6.8 km
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p(hPa)

Copyright © 2008, Elsevier Inc. All rights reserved.
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What can we say in the general case?

}"_p — Hydrostatic
| "y g Balance

Integrating from some height z to the top of the atmosphere
(z=#), and noting that p(z=#)=0 then gives

p(z)= g pdz 4—[ Mass above heighz#J

Hence the pressure at a given height level is proportional t
the total mass of the atmosphere above it.

At the surface, this means p, = —— (M, = total mass of atmosphere)
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Geopotential

Recall: Gravity induces a downward
force (which we approximate as constant
throughout the atmosphere).

4 )
4 ) Fy gk
Delnition : Geopotential ! s the TS g
Opotential functionO for gravity. That is
its gradient is equal to the constant of Total gravitational force
ST acting on a !uid parcel
V& = gk
\_ Y,
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Geopotential

(e

In height coordinates, geopotential is purely a function ot
d!
- dz Y

Integrate :> d(z) — P(0) = gdz
0

De"'ne ! (0) =0 :> d(z) = gdz = gz
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f

s L Geopotential J

P(z2) = / gdz = gz
0

Recall: Potential energy of an object is given b¥PE = mgh
wherem s the mass and is the height above a reference point.

For a !uid,z denotes the height of the !uid parcel. Seandz are the same.

é )
Observe: Geopotentialcan also be de"ned as PE
the potential energy per unit mass ofaluid — =gz=®
parcel lifted to some height. m

. W,
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r

.

Delnition : Geopotential height Zis
the geopotential divided by gravity.
The notion ofgeopotential height is
used when height-based vertical
coordinates are not.

P
4 = —
9

L Constantz surfaces J

-

>

>{ Constantp surfaces J

geopotential height vary
along p surfaces.

L

- - - P - \
______ -~ ’\( Observe: Geopotentialand

W,
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( )

The use ofjeopotential on constant
pressure surfacesis analogous to the use
of pressure on constant height surfaces.

L W,

[ Question: How aregeopotential and pressure connected?]

P
From d—:g $ gdZ: dd
dz

dp _ dp
From —~ = =19 $ gdz:.?

f |deal gast; - P
[ Hydrostatic balance}
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_ Rdep
p

dP =

dp
Recall: From elementary calculus,; =dlnp

:> d® = —RgTdIn p

Integrate B b2
over a layer $ ®(22) — @(21) = _Rd/ T'dlnp

%!

Rd P2
Usegeopotential height $ Lo — 41 = ——/ Tdlnp
g p1

/

Zy! Zi s the thickness of the layer bounded aboys &yd below byp,
This thickness is proportional to the temperature of the layer.
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Hypsometric Equation

From hydrostatic balance and the ideal gas law we have

Rd P2
g pl

ZQ—le— lenp

If the temperature in a layer is constant then

4 _ )
RyT
h:ZQ—leiln &
g P2
\§ s

Hypsometric Equation J

This is the relationship between layer
thickness and temperature.
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Geopotential

Minimum
b ~o geopotentiak# .’

>
X

Figure: Geometry of pressure surfaces, > p, > p;) in the
vicinity of a pressure minimum.

Observe the minimum surface pressure corresponds to
minimum geopotential aloft and vice versa
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Horizontal Momentum

[ Surface J[Body [ Apparent }
é ) f \
Du 1 . .
—— =1 2" p+ v ful gklF foil fuj
Dt 0
\ \. W,
— / \
Azz(;lealre\raetﬁn Friction / Viscosity: (ioriolis |
g Opposes motion Modi"es motion
momentum)
Pressure Gradient Force: Gravity:
Initiates motion Strati"cation / buoyancy
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Vertical Coordinates

( )

Question: Why are we interested in
alternative vertical coordinates?

\. J

From Holton, p2:

(O’he general set of E equations governing the motion of the
atmosphere is extremely complex; no general solutions are known to
exist. Eit is necessary to develop models based on systematic
simpli"cation of the fundamental governing equation®

Recall: Two goals of dynamic meteorology:
1! Understand atmospheric motions (diagnosis)

2. Predict future atmospheric motions (prognosis)

Use of alternative vertical coordinatesmpliles the equations of motion.
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Pressure Coordinates

Recall: For an atmosphere in i ™
hydrostatic balance, pressure 100 |\
corresponds to the total mass of the o |

atmosphere above that point.

80 |

Consequently, pressure must

\ 4

decrease monotonically with height. =9
i,:’ 50
E> This makes pressure a good choice as 40
a vertical coordinate. o
We shall see that the use of pressure |
as a vertical coordinate greatly w| H =638 km
simplifies the equations of motion. e —— L,
p(hPa)

Copyright © 2008, Elsevier Inc. All rights reserved.
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Pressure Coordinates

What do we need:
—! An expression fopressure gradient force
—! Some way to expresderivatives (gradient, material derivative)
—! Some way to expresgertical velocity

—! An expression for the continuity equation
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( )

Question: What is the analogue to a pressure
gradient in pressure coordinates?
\. y,

[ Constantz surfaces }

- ”
i :>£ Constantp surfaces J

Observe: Pressure is constant along p surfaces, so it will always be zero
gradient along these surfaces. If luid parcels are traveling along p
surfaces there must be some analogue to pressure gradient force.
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Generalized VerticalCoords

Any expressiors that is asingle-valued monotonic
function of height with$s /$z % 6an also be used as

a vertical coordinate.
Z A

However, since velocity Is Constant sg
represented along surfaces of
constants, the notion of a
pressure gradient alongs
must be de"ned.

Pressure values
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Constant sy

Change of pressure along s:

P3 — P1
Azx

P1 P2

~O

Pressure values
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Constant sy

Change of pressure along s:

pP3t D1
| x

Write in terms ofps

. b2 ps—p1  p3—Dp2  P2—Di
| ] T |

Ps —P1 _ P3— P2 Az L P2 m
Ax Az Az Ax
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Constant sg

Change in pressure alon
z with x held "xed

moving alongs = const

[ Change in height when}

v
b1 b2 p3—p1:p3—p2AZ+p2—p1
Azx Az Az / Azx

t

Change in pressure along | CN'2N9e In pressure alon
: S Iz S X with z held "xed
- O#
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Constant sy

pP3 — D1 p3—P2A2+p2—p1
Az Az Az Ax

Aa:%O@Az%O
(%)= 2 ()« ().

Chaﬁ Rule

v

() -2 (5).2+ ()
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4 )

() -2(5).2+ ()

- J
)

This is the expression for the
horizontal pressure gradient foANY

choice of vertical coordinates.
\_ Y,

Plugin s =p (pressure)

0 1

2 - (G) i (5), W () =2 (5),
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Pressure gradient op surfaces

Hydrostatic Relation

ap
0z

Paul Ullrich

ge

%

(1),

De"nition of geopotential
0z 10( gz) 109
y g Oz g ox

(

-

Ly aw
p \ Ox

).

(%),

J

(

~
The pressure gradient force simply reduces

to the gradient of thegeopotential on
constant pressure surfaces!

.
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Horizontal momentum equationsheight

coordinate , no viscosity:

Du 1 (0p
Eﬁj(%
Dv 1 (0p
Ft__5<8_y

)
)

Horizontal momentum equationspressure

coordinate , no viscosity:

Du_y (2
Dt  \Ox
Doy (20
Dt 0y

Paul Ullrich
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~
Du
— + fk xu= ——V
. Y,
-
Observe density no longer
L explicitly present.
\
4 D A" A
u
D
. Y,
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Question: What is the force thanitiates motion?

p
Change in pressure alon

a constant height surfac

NS

P
Change in height along

constant pressure surfac

NS

Pressure Gradient Force

1 [/ Op 8_<I>
ox

p \ox ),

v
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