
INTRODUCTION TO
COMPUTATIONAL

PDES

Course Notes for
AM 452

H. De Sterck
P. Ullrich

Department of Applied Mathematics
University of Waterloo

July 26, 2007

These notes have been funded by





CONTENTS

1 Overview of PDEs 9
1.1 Linear Second Order PDEs with Two Independent Variables . . . . . . . . . . . . . . . . 9

1.1.1 Derivation of the Heat Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2 Hyperbolic PDEs in Two Independent Variables . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.1 The Linear Advection Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.2 The Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.3 d’Alambert’s Solution for the Wave Equation IVP . . . . . . . . . . . . . . . . . . 20
1.2.4 Domain of Influence and Domain of Dependence . . . . . . . . . . . . . . . . . . 21
1.2.5 Existence and Uniqueness for the IVBVP . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Elliptic PDEs in Two Independent Variables . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.1 The Dirac Delta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.2 Domain of Influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.3 Discontinuous Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.4 Existence and Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4 Parabolic PDEs in Two Independent Variables . . . . . . . . . . . . . . . . . . . . . . . . 28
1.4.1 Domain of Influence and Domain of Dependence . . . . . . . . . . . . . . . . . . 29
1.4.2 Discontinuous Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.5 Linear Second Order PDEs with Three Independent Variables . . . . . . . . . . . . . . . . 31

3



4 Contents

2 Finite Difference Methods 33
2.1 Finite Difference Methods for Elliptic PDEs . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.1 The 1D Elliptic PDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1.2 The 2D Elliptic PDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.1.3 Convergence Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 FD Methods for Hyperbolic PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.1 FD Methods for the 1D Linear Advection Equation . . . . . . . . . . . . . . . . . 45
2.2.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.2.3 Dissipation and Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.2.4 Finite Difference Methods for the Wave Equation . . . . . . . . . . . . . . . . . . 68
2.2.5 Finite Difference Methods in 2D and 3D . . . . . . . . . . . . . . . . . . . . . . 70

2.3 Finite Difference Methods for Parabolic PDEs . . . . . . . . . . . . . . . . . . . . . . . . 72
2.4 Finite Difference Convergence Theory for Time-Dependent Problems . . . . . . . . . . . 74

2.4.1 Actual Error, Truncation Error and Consistency . . . . . . . . . . . . . . . . . . . 76
2.4.2 Stability and Convergence: Lax Convergence Theorem . . . . . . . . . . . . . . . 77
2.4.3 2-Norm Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3 Finite Volume Methods for Nonlinear Hyperbolic Conservation Laws 81
3.1 Characteristic Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.2 1D Conservation Laws and the Burgers’ Equation . . . . . . . . . . . . . . . . . . . . . . 83

3.2.1 Conservation-Integral Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.2.2 Characteristic Curves of the Burgers’ Equation . . . . . . . . . . . . . . . . . . . 85
3.2.3 Shock Speed: The Rankine-Hugonoit Relation . . . . . . . . . . . . . . . . . . . 88

3.3 Problems with FD Methods for Hyperbolic Conservation Laws . . . . . . . . . . . . . . . 90
3.3.1 Problem 1: Oscillations when Solution is Discontinuous . . . . . . . . . . . . . . 90
3.3.2 Problem 2: Standard FD Methods Can Give the Wrong Shock Speeds . . . . . . . 92

3.4 Finite Volume Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.4.1 The Finite Volume Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.4.2 The Local Lax-Friedrichs Method in 1D . . . . . . . . . . . . . . . . . . . . . . . 96
3.4.3 Numerical Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.4.4 FV Methods and the Linear Advection Equation . . . . . . . . . . . . . . . . . . 98

3.5 Conservation Laws in Higher Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.5.1 Gauss’ Divergence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



CONTENTS 5

3.5.2 Conservation Laws in Higher Dimension . . . . . . . . . . . . . . . . . . . . . . 102
3.5.3 Finite Volume Methods in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.6 Systems of Conservation Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4 Finite Element Methods for Elliptic Problems 107
4.1 An Introductory Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.2 The 1D Model Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2.1 Weighted Residual Form and Weak Form . . . . . . . . . . . . . . . . . . . . . . 112
4.2.2 Discrete Weak Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.2.3 Choice of Basis Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.3 The 2D Model Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.3.1 Weak Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.3.2 Discrete Weak Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.3.3 Simple Finite Elements in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.4 Neumann Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.4.1 Compatibility Between h and f . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.4.2 Weak Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A Norms of Vectors, Functions and Operators 135
A.1 Vector and Function Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.2 Norms of Grid Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
A.3 Matrix Norms (Operator Norms) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

B Extension of Integration by Parts to 2D 143





Introduction to Computational PDEs

Partial differential equations (PDEs)

A Note About Notation

Throughout this text we will interchangably use Leibniz notation and subscript notation to denote differ-
entiation. The following table summarizes these differences.

Leibniz Notation Subscript Notation

∂u

∂x
ux

∂2u

∂y2
uyy

∂4u

∂2x∂y∂z
uxxyz

Further, we use vector calculus notation for the following higher-dimensional operators. In the fol-
lowing table we assume u denotes a scalar function and ~v denotes a vector with components (v1, v2) ∈ R2

or (v1, v2, v3) ∈ R3.
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Operator Notation 2D Definition 3D Definition

Gradient of u ∇u or grad(u) ∇u = (ux, uy) ∇u = (ux, uy, uz)

Divergence of ~v ∇ · ~v or div(~v) ∇ · ~v = ∂v1
∂x + ∂v2

∂y ∇ · ~v = ∂v1
∂x + ∂v2

∂y + ∂v3
∂z

Laplacian of u 4u or ∇2u ∇2u =
(

∂2u
∂x2 , ∂2u

∂y2

)
∇2u =

(
∂2u
∂x2 , ∂2u

∂y2 , ∂2u
∂z2

)

Note that the Laplacian of u, ∇2u, is defined in terms of the gradient and divergence as

∇2u = ∇ · (∇u). (1)



CHAPTER 1

Overview of PDEs

Partial differential equations arise in almost every scientific discipline, including fluid mechanics, general
relativity, quantum mechanics and biology. As a result, we often desire to find solutions of these equations
in order to obtain a more thorough understanding of the given problem. Unfortunately, it is almost always
impossible to obtain closed-form solutions of these equations, even in very simple cases. Here compu-
tational techniques are an immense asset, as they allow us to obtain approximate solutions to PDEs and
hence a greater understanding of their behaviour.

In this chapter we present a general overview of partial differential equations and their general prop-
erties, focusing on linear second order PDEs with two independent variables.

1.1 Linear Second Order PDEs with Two Independent Variables

We now discuss linear second order PDEs with two independent variables, which are arguably the simplest
non-trivial PDEs. Much of the theory of higher order linear PDEs, or those in more than two independent
variables, can be derived as a natural extension of the material presented in this section.

Definition 1.1 A second-order PDE in two variables x and y is an equation of the form

F

(
u,

∂u

∂x
,
∂u

∂y
,
∂2u

∂x2
,

∂2u

∂x∂y
,
∂2u

∂y2
, x, y

)
= 0. (1.1)

In addition, we provide the following definitions:

9



10 1. Overview of PDEs

1. We say the PDE (1.1) is linear if and only if F is linear in u and its partial derivatives. Otherwise,
the PDE is nonlinear.

2. We say the PDE is homogeneous if and only if it is satisfied by a function which identically vanishes
(i.e. u = 0). Otherwise, the PDE is inhomogeneous.

For example, a PDE of the form

a(x, t)
∂u

∂t
+ b(x, t)

∂2u

∂x2
= 0 (1.2)

is both linear and homogeneous.
We note that any homogeneous PDE satisfies the superposition principle. Namely, if u1(x, y) and

u2(x, y) are two solutions of a homogeneous PDE then the function u(x, y), defined by

u(x, y) = c1u1(x, y) + c2u2(x, y), (1.3)

is also a solution of the homogeneous PDE.

Classification of linear second-order PDEs with two independent variables

There are three general classes of linear second-order PDEs with two independent variables, namely
parabolic, hyperbolic and elliptic equations. These classes are defined as follows:

Definition 1.2 A linear second-order PDE with two independent variables on a domain Ω in the form

A(x, y)uxx + B(x, y)uxy + C(x, y)uyy = W (u, ux, uy, x, y) (1.4)

is said to be

i) parabolic if for all x, y ∈ Ω, B2 − 4AC = 0,

ii) hyperbolic if for all x, y ∈ Ω, B2 − 4AC > 0.

iii) elliptic if for all x, y ∈ Ω, B2 − 4AC < 0,

We now give three very important examples of second-order linear PDEs in two variables.
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Classification Partial Differential Equation Example Solution

Parabolic
∂u

∂t
− ∂2u

∂x2
= 0 u(x, t) = exp(−t) cos(x), t > 0

Hyperbolic
∂2u

∂t2
− ∂2u

∂x2
= 0 u(x, t) = cos(x± t)

Elliptic
∂2u

∂x2
+

∂2u

∂y2
= 0 u(x, y) = x + y

The classification of these PDEs can be quickly verified from definition 1.2. These three equations are
known as the prototype equations, since many homogeneous linear second order PDEs in two independent
variables can be transformed into these equations upon making a change of variable. We now discuss each
of these equations in general.

Example 1. The 1D Heat Equation (Parabolic Prototype) One of the most basic examples of a PDE
is the 1-dimensional heat equation, given by

∂u

∂t
− ∂2u

∂x2
= 0, u = u(x, t). (1.5)

There are many different solutions of this PDE, dependant on the choice of initial conditions and boundary
conditions. An example of one such known solution is

u(x, t) = exp(−t) cos(x). (1.6)

It can be quickly verified that this solution satisfies (1.5), since

∂u

∂t
(x, t) = − exp(−t) cos(x), and

∂2u

∂x2
(x, t) = − exp(−t) cos(x). (1.7)

Graphically, this solution is given as follows.

x

u(x,t)

2π 4π0

t=0

t=1



12 1. Overview of PDEs

This solution diffuses (i.e. spreads out over time) and dissipates (i.e. decays in amplitude over time).
As we will see later, diffusion is a typical property of parabolic PDEs.

The heat equation (1.5) is often used in models of temperature diffusion, where this equation gets its
name, but also in modelling other diffusive processes, such as the spread of pollutants in the atmosphere.

Example 2. The 1D Wave Equation (Hyperbolic Prototype) The 1-dimensional wave equation is
given by

∂2u

∂t2
− ∂2u

∂x2
= 0, u = u(x, t). (1.8)

Again, the solution of this DE depends on the choice of initial conditions and boundary conditions. How-
ever, in an unbounded domain it can be easily shown (exercise) that any solution of the form

u(x, t) = f(x± t) (1.9)

satisfies the PDE (1.5). We depict this solution below for the choice f(x) = cos(x).

x

u(x,t)

2π 4π0

t=0

t=1

Unlike solutions of the heat equation (1.5), solutions of the wave equation (1.8) do not dissipate. This
property is typical of hyperbolic PDEs.

The wave equation (1.5) models most types of waves, including water waves and electromagnetic
waves.

Example 3. The 2D Laplace Equation (Elliptic Prototype) The 2-dimensional Laplace equation is
given by

∂2u

∂x2
+

∂2u

∂y2
= 0, u = u(x, y). (1.10)

Normally we consider this equation as applied to a bounded domain Ω ∈ R2 with boundary Γ = ∂Ω. The
solution of this DE then depends on boundary conditions, specified along Γ.
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The inhomogeneous form of the Laplace equation is known as the Poisson equation and is defined as

∂2u

∂x2
+

∂2u

∂y2
= f(x, y). (1.11)

Consider the following boundary value problem (BVP):

BVP





Ω = (0, 1)× (0, 1),

u(x, y) = 0 on Γ = ∂Ω,

uxx + uyy = −2π2 sin(πx) sin(πy) in Ω.

(1.12)

The domain is the unit square, depicted in the following figure.

x

y

0

Ω

Γ
1

1

It can be shown that the unique solution of this BVP is

u(x, y) = sin(πx) sin(πy). (1.13)

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0
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0.6
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14 1. Overview of PDEs

We normally say that a boundary condition of the form u(x, y) = g on Γ is of Dirichlet type. Corre-
spondingly, a boundary condition of the form u(x, y) = 0 on Γ is of homogeneous Dirichlet type.

The Poisson equation (1.11) is used in modelling many physical phenomenon, including elastic mem-
branes, electric potential and steady state temperature distributions.

1.1.1 Derivation of the Heat Equation

In order to motivate the study of the heat equation (1.5), we provide a derivation of this equation from
physical principles.

x

L0

Area A

Heat Source

Consider a metal rod of length L and cross-sectional area A that is aligned parallel to the x-axis (see
figure). Assuming that the temperature gradient in the y and z directions is negligible, the temperature
profile in the rod will be given by u(x, t) for 0 ≤ x ≤ L. Then starting with an initial temperature
profile g(x) = u(x, 0), we heat the rod in accordance with a heat source function h(x). We then pose the
following question:

What is the temperature profile u(x, t) for 0 ≤ x ≤ L and t ≥ 0?

Appropriate to the subject of this text, we will answer this question by deriving a PDE model describ-
ing the physics behind the problem.

The physical quantities we are interested in are given in the following table.
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Quantity Physical Meaning Dimensions Unit
u(x, t) Temperature temperature K

h(x) Heat source energy
time · volume Js−1m−3

ρ(x) Mass density mass
volume gm−3

c Specific heat energy
mass · temperature Jg−1K−1

J(x) Energy flux energy
area · time Jm−2s−1

q(x, t) Energy density energy
volume Jm−3

K Thermal conductivity energy
time · length · temperature Js−1m−1K−1

Now, in order to derive a physical relationship between these variables, we must rely on physical
principles. We consider a volume Ω = {x | x ∈ [a, b]} along the rod (where a and b are constants). Then
conservation of energy states that

d

dt
(total energy in Ω) = (energy flux through boundary of Ω) (1.14)

+ (total heat energy added per unit time to Ω)

(see figure).

x

L0
a b

Heat flow

Heating

Using the physical quantities for this problem, we write (1.14) as

d

dt

(∫ b

a
q(x, t)Adx

)
= J(a, t)A− J(b, t)A +

∫ b

a
h(x)Adx. (1.15)

Then by the fundamental theorem of calculus, we have

−
∫ b

a

∂J

∂x
dx = J(a, t)− J(b, t). (1.16)
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Upon substituting (1.16) into (1.15) and bringing the derivative on the left-hand side inside the integral,1

we obtain ∫ b

a

(
∂q

∂t
+

∂J

∂x
− h(x)

)
dx = 0. (1.17)

Since this equation must hold for all intervals [a, b] ∈ [0, L], we must have

∂q

∂t
+

∂J

∂x
− h(x) = 0. (1.18)

In order to proceed, we require a mechanism to describe the energy flux in terms of the temperature
gradient. We use Fourier’s law of heat conduction, which states that heat flows from a warm body to a
cold body at a rate proportional to the temperature gradient between the two bodies. Mathematically, we
write

J(x, t) = −K
∂u

∂x
(x, t). (1.19)

Further, the energy density q can be written in terms of other physical quantities as

q(x, t) = cρ(x)u(x, t). (1.20)

On substituting (1.19) and (1.20) into (1.18) we obtain

∂u

∂t
− K

ρc

∂2u

∂x2
=

h

ρc
. (1.21)

We now define the thermal diffusivity D and temperature source f by

D(x) =
K

cρ(x)
, and f(x) =

h(x)
cρ(x)

(1.22)

and hence obtain the final form of the heat equation:

∂u

∂t
−D(x)

∂2u

∂x2
= f(x). (1.23)

Note that if the mass density of the rod is constant then it follows from (1.22) that D(x) is constant.
Further, in the case of f(x) = 0 (i.e. no external heating) and D(x) = 1, this problem simply reduces to
the homogeneous heat equation (1.5).

The domain of the heating problem is given by all point satisfying 0 ≤ x ≤ L and t ≥ 0. Boundary
conditions must be imposed at x = 0 and x = L and initial conditions imposed at t = 0 (see figure).

1We assume sufficient continuity in order to switch the derivative and the integral operations.
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x

t

0

Ω

L

BCBC

IC

Using the heat equation (1.23), we can now formulate the heating problem as an initial value boundary
value problem (IVBVP), as follows. For simplicity we assume the rod is kept at a constant temperature at
either end (constant boundary conditions) and has a constant temperature initially. The IVBVP then reads





Ω = (0, L)× (0,∞) (domain)
u(0, t) = u0(t) (BC)
u(x, 0) = C (IC)
ut −Duxx = f(x) (PDE)

(1.24)

Existence and uniqueness of (1.24) can be shown (see, for example, ??ref.), although this result is
beyond the scope of these notes. We shall return to the topic of parabolic PDEs in section 1.4.

1.2 Hyperbolic PDEs in Two Independent Variables

We now take a closer look at hyperbolic PDEs. In the following section, we will derive the wave equation
(1.8) using the linear advection equation and derive a general solution of the wave equation for given
initial conditions. We conclude with some general comments about hyperbolic PDEs.

1.2.1 The Linear Advection Equation

The world’s simplest first-order PDE is the linear advection equation, defined by

∂u

∂t
+ a

∂u

∂x
= 0, u = u(x, t). (1.25)

We claim that the general solution of (1.25) is

u(x, t) = f(x− at), (1.26)
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for any function f(s). This result can be proven very easily, as follows.

Proof. Define s = x− at. Then, by chain rule

∂u

∂x
=

df

ds

∂s

∂x
= (−a)

df

ds
, and

∂u

∂t
=

df

ds

∂s

∂t
=

df

ds
. (1.27)

The result follows upon substituting (1.27) into (1.25). ¤

The general solution (1.26) has an intuitive meaning. Namely, any given profile is simply advected
forward with advection speed a (or backwards, depending on the sign of a) without modifying the initial
profile. We depict this effect in the following figure.

x

u(x,t)

0

t

f(x)

f(x-a)θ

a = tan(θ)

slope a

f(x-2a)

Comments: i) Note that for a specific choice of s in f(s), such as s = 0, we can track the coordinates
of this point as it moves through the domain. For example, if t = 0 then s = x − at = 0 implies x = 0.
If t = 1 then s = x− at = 0 implies x = a.

ii) In some generalized sense, a discontinuous function f(s) is also a solution of this PDE, even though
the derivative may not be defined at one or more points. In this case, as the profile is advected, the
discontinuous profile will remain discontinuous.

x

u(x,t)

0

t

f(x)

f(x-a)

slope a

f(x-2a)
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iii) The linear advection equation is unidirectional, i.e. it defines a preferred direction depending on
the sign of a. Namely, if a is positive (negative), profiles will be advected in the positive (negative) x

direction.

1.2.2 The Wave Equation

We now show how the linear wave equation can be derived from the linear advection equation presented
in the previous section. Our aim is to derive an equation that does not have a preferred direction by
composing two linear advection equations of equal advection speed but opposite direction.

Before proceeding, we must introduct the concept of a linear differential operator. In general, differ-
ential operator L is a function of the differentiation operator, i.e. given some function f , the operation
of applying L to f , which we denote g = Lf , is a function composed of the derivatives of f . A special
class of differential operators are the linear differential operators, which consist of linear combinations
of various derivatives. We will focus on linear differential operators in this text, but emphasize that this
restriction is not necessary in general.

Consider the linear advection equation (1.25). This equation can be rewritten as a differential operator
L applied to some function u, i.e.

L1u = 0, where L1 =
∂

∂t
+ a

∂

∂x
. (1.28)

We can also define a second differential operator L2, which has equal advection speed but opposite direc-
tion, by

L2u = 0, where L2 =
∂

∂t
− a

∂

∂x
. (1.29)

Note that the differential equations L1u = 0 and L2u = 0 will have general solutions f(x − at) and
f(x + at), respectively, for any choice of f . Thus, we propose that the equation defined by

L1L2u = 0 (1.30)

will have both f(x + at) and f(x− at) as solutions. Upon rewriting (1.30) as a PDE, we obtain
(

∂

∂t
− a

∂

∂x

) (
∂

∂t
+ a

∂

∂x

)
u = 0, (1.31)

which simplifies to (
∂2

∂t2
− a2 ∂2

∂x2

)
u = 0. (1.32)
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Then (1.32) is exactly the one dimensional wave equation with constant speed a. It can be quickly shown
(exercise) that the general solution of (1.32) is

u(x, t) = f(x− at)︸ ︷︷ ︸
right moving wave

with speed a

+ g(x + at),︸ ︷︷ ︸
left moving wave

with speed a

(1.33)

for arbitrary functions f and g.

1.2.3 d’Alambert’s Solution for the Wave Equation IVP

The unbounded initial value problem (IVP) for the one-dimensional wave equation (1.32) is given by

IV P





Ω : t ∈ (0,∞), x ∈ (−∞,∞),
u(x, 0) = φ0(x), ut(x, 0) = φ1(x),
utt − uxx = 0 (a = 1).

(1.34)

We already know that the general solution of this problem is given by (1.33) and so aim to derive an
expression for the functions f(s) and g(s) in terms of the initial conditions φ0(x) and φ1(x).

We substitute the initial conditions (1.34) into (1.33), evaluated at t = 0, obtaining

f(x) + g(x) = φ0(x), and
df

dx
− dg

dx
= φ1(x). (1.35)

Integrating the second expression in (1.35) then yields

(f(x)− f(c))− (g(x)− g(c)) =
∫ x

c
φ1(x̃)dx̃. (1.36)

It follows that (1.35) and (1.36) can be combined to obtain

2f(x) = φ0(x) +
∫ x

c
φ1(x̃)dx̃ + f(c)− g(c), (1.37)

2g(x) = φ0(x)−
∫ x

c
φ1(x̃)dx̃− f(c) + g(c). (1.38)

On substituting (1.37) and (1.38) back into (1.33) and applying a simple identity from calculus, we obtain

u(x, t) = 1
2

(
φ0(x + t) + φ1(x− t) +

∫ x+t

x−t
φ1(x̃)dx̃

)
. (1.39)
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This equation is known as d’Alambert’s solution of the wave equation. It can be shown that this solution
is the unique solution of (1.34).

Note that the wave equation requires two initial conditions at t = 0 to determine a unique solution.
However, the heat equation (a parabolic PDE) only requires one initial condition at t = 0 (see, for example,
eq. (1.24)).

1.2.4 Domain of Influence and Domain of Dependence

We consider the IVP (1.34) and choose some point (x∗, t∗) ∈ (−∞,∞)× (0,∞). Then according to
d’Alambert’s solution (1.39), this point only depends on the value of the functions φ0 and φ1 in the
interval x ∈ [x∗ − t∗, x∗ + t∗]. We can depict the set of points D that influence (x∗, t∗), as follows.

x

t

(x*, t*)

D

Slope -1Slope 1

φ0(x*-t*) φ0(x*-t*)φ1(x)

(x*-t* < x < x*+t*)

The set of points D is called the domain of dependence of (x∗, t∗); that is, (x∗, t∗) only depends on
the values of u and ut inside the domain D.

Similarly, we can consider the set I of points that are influenced by the solution at (x∗, t∗). This set is
called the domain of influence of (x∗, t∗); that is, (x, t) ∈ I depend on the value of u and ut at (x∗, t∗).
The domain of influence I for some point (x∗, t∗) is depicted as follows.
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x

t

(x*, t*)

I
Slope -1

Slope 1

Comments: i) In general, one can show that the both the domain of dependence and the domain of
influence for hyperbolic PDEs is finite in space at any given time, i.e. along some line t = constant.
Hence, one says that hyperbolic PDEs feature propagation of information at a finite speed (known as the
wave speed).

ii) The solution at (x∗, t∗) in any hyperbolic PDE only depends on the solution at previous times, i.e. for
0 < t < t∗. As a consequence, we can perform time marching as a numerical method (we shall describe
this process later).

1.2.5 Existence and Uniqueness for the IVBVP

We now consider the wave equation (1.32) with fixed boundaries at x = a and x = b (with a < b). One
important problem to consider is if we can gurantee existence and uniqueness of the solution, i.e. is there
exactly one solution which satisfies a given IVBVP?

Consider the general IVBVP for the wave equation with fixed boundaries:

IV BV P





Ω : (x, t) ∈ (a, b)× (0, +∞),
u(x, 0) = φ0(x), ut(x, 0) = φ1(x),
u(a, t) = g1(t), u(b, t) = g2(t),
utt − uxx = f(x, t).

(1.40)

The domain of this problem is given as follows.
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x

t

0

Ω

1

BCBC

IC

Although we do not prove it in this text, existence and uniqueness of the solution u(x, t) of the IVBVP
(1.40) can be shown for “well-behaved” functions f , φ0, φ1, g1 and g2. We refer the reader instead to ??ref.

One particular example of an initial value boundary value problem (IVBVP) for the wave equation
with fixed boundaries is given by

IV BV P





Ω : (x, t) ∈ (0, 1)× (0, +∞),
u(x, 0) = sin(x), ut(x, 0) = 0,

u(0, t) = 0, u(1, t) = 0,

utt − uxx = 0.

(1.41)

Further, this IVBVP has the unique solution

u(x, t) = sin(πx) cos(πt). (1.42)

The IVBVP (1.41) describes certain physical phenomenon, such as a sound wave travelling in a closed
tube or a plucked string with both ends fixed.

1.3 Elliptic PDEs in Two Independent Variables

We now turn our attention to elliptic PDEs. In the following section, we will derive the domain of depen-
dence and domain of influence of an elliptic PDE and will show that discontinuous boundary conditions
are smoothed out within the domain.

1.3.1 The Dirac Delta

The Dirac delta is a type of “generalized function,” used in mathematical modelling and differential equa-
tions to represent a physical impulse in the system. In this case, it will be useful in analyzing the behaviour
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of elliptic PDEs.
Consider the discontinuous function fε(x), defined by

fε(x) =

{
1/ε |x| < ε/2,

0 otherwise.
(1.43)

This function is depicted in the following plot.

x

fε(x)

ε
2

ε
2

−

ε
1

One can clearly see that for any value of ε > 0, fε satisfies
∫ ∞

−∞
fε(x) = 1. (1.44)

This motivates the definition

Definition 1.3 The Dirac delta, denoted δ(x) is defined as

δ(x) = lim
ε→0

fε(x), (1.45)

where fε(x) is defined by (1.43).

The Dirac delta technically is not a function, but instead fits into a category of operators known as
“generalized functions.” It has the following properties:

i) δ(x) =

{
0 x 6= 0,

+∞ x = 0.
(1.46)

ii)
∫ +∞

−∞
δ(x)dx = 1, (1.47)

iii)
∫ +∞

−∞
f(x)δ(x)dx = f(0). (1.48)

In plotting the Dirac delta, we will generally use arrows, as in the following figure.
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x

y(x)

2

3

1δ(x+1)

−1−2 1 2

3δ(x-2)

1.3.2 Domain of Influence

We now examine the domain of influence and the domain of dependence for elliptic PDEs, on recalling
the results obtained for hyperbolic PDEs in section 1.2.

Consider the Elliptic BVP in the half-plane given by

BV P





Ω : (x, y) ∈ (−∞,∞)× (0,∞),
u(x, 0) = g(x),
uxx + uyy = 0.

(1.49)

The domain of this problem is depicted in the following figure.

x

y

0

Ω
g(x)

In order to understand the domain of influence for elliptic PDEs, we need to study the influence of one
point of the boundary on the solution in the entire domain. We will require the Dirac delta (1.45) to give
us the desired results.

Observe that using (1.48), g(x) can be written as

g(x) =
∫ ∞

−∞
δ(x− s)g(s)ds. (1.50)
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This operation is known as the convolution of g(x) and δ(x). Intuitively, in this form we can describe the
Dirac delta as “picking out” the value of g(s) when x = s. On discretizing this integral as a Riemann
sum, we obtain

g(x) ≈
∞∑

i=−∞
g(si)δ(x− si)∆s. (1.51)

x

g(x)

∆s

If we integrate (1.51) over x and switch the order of integration, we obtain

∫ ∞

−∞
g(x)dx ≈

∞∑

i=−∞
g(si)∆s

∫ ∞

−∞
δ(x− si)dx =

∞∑

i=−∞
g(si)∆s, (1.52)

as we would expect if we were to directly discretize the integral on the left-hand side of this expression.
In attempting to understand the domain of influence, it is sufficient to look at the influence of one

delta function since we can obtain an approximate solution by the principle of superposition and the
discretization (1.51). Hence, we let g(x) = δ(x) and look for a solution of the BVP (1.49) with this
choice of boundary condition. We claim that the solution of the BVP with g(x) = δ(x) is exactly

u(x, y) = 1
π

y

x2 + y2
. (1.53)

This result can be verified with some effort:
First, we show that (1.53) satisfies the PDE. Upon differentiating (1.53), we obtain

uyy =
2y(y2 − 3x2)
π(x2 + y2)3

, and uxx = −2y(y2 − 3x2)
π(x2 + y2)3

, (1.54)

which clearly satisfies uyy + uxx = 0.
Second, we must verify that the boundary conditions are satisfied by this solution. Consider an arbi-

trary point (x∗, 0) on the boundary of Ω. If x∗ 6= 0, it follows by inspection that

lim
(x,y)→(x∗,0)

u(x, y) = 0. (1.55)
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If x∗ = 0 then we can apply L’Hôpital’s rule to obtain

lim
(x,y)→(0,0)

u(x, y) = ∞. (1.56)

Also, if we integrate along any slice y = constant, it can be shown (exercise) that

lim
y→0+

∫ ∞

−∞
u(x, y)dx = 1. (1.57)

We can thus conclude that (1.53) satisfies the BVP (1.49). The domain of influence of a single point
on the boundary is then given by the set of points in Ω where u(x, y) > 0. By inspection of (1.53), we
note that all points in the domain have this property, and hence conclude that the domain of influence of a
single point on the boundary is the entire domain Ω. Since this result implies that all points in the domain
instantaneously communicate with one another, one says that elliptic problems have “infinite propagation
speed.”

Thus, we have found that any point in an elliptic PDE influences all other points, and hence we cannot
use time-marching strategies to solve elliptic problems, i.e. we must solve for the whole problem at once.

1.3.3 Discontinuous Boundary Conditions

We now examine the effect of discontinuous boundary conditions on the solution of the elliptical BVP
(1.49). Consider the boundary condition given by

g(x) =





1
2 x > 0,

0 x = 0,

−1
2 x < 0.

(1.58)

This function is depicted in the following plot.

x

1
2

1
2-

g(x)

It can be shown that
u(x, y) = 1

π arctan(y/x) (1.59)
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satisfies the PDE (exercise) and satisfies the boundary condition u(x, 0) = g(x) in the limit as y → 0.
Further, it is easy to see that u(x, y) is continuous in the domain Ω. Using this example, we hypothesize
that for linear elliptic PDEs that if g(x) has a finite number of discontinuities then they are smoothed out
immediately in the domain.

1.3.4 Existence and Uniqueness

We now briefly discuss existence and uniqueness of solutions of the general Poisson BVP. The general
Poisson BVP in two variables is given by

BV P





Ω ⊂ R2, Ω bounded
u(x, y) = g(x, y) on Γ = ∂Ω,

uxx + uyy = f(x, y) in Ω.

(1.60)

A general domain Ω is depicted as follows.

x

y Γ

Ω

It can be shown that for well-behaved functions f , g and boundary shape the BVP has a unique
solution. We refer the reader to ??ref for a proof of this result.

1.4 Parabolic PDEs in Two Independent Variables

We now turn our attention to parabolic PDEs, in particular the heat equation (1.5). In the following
section, we will examine the domain of dependence and domain of influence of this equation and examine
the effect of discontinuous boundary conditions on the solution.

The homogeneous unbounded initial value problem (IVP) for the heat equation is given by

IV P





Ω : (x, t) ∈ R× (0,∞)
u(x, 0) = g(x),
ut − uxx = 0.

(1.61)
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Note that if the initial condition identically vanishes, i.e. g(x) = 0, then the unique solution is exactly
u(x, t) = 0.

1.4.1 Domain of Influence and Domain of Dependence

As with the Poisson equation (see section 1.3.2), we now examine the domain of influence and the domain
of dependence of a point (x, t) ∈ Ω by choosing the boundary to be given by a Dirac delta, i.e. g(x) =
δ(x). We claim that the solution of the IVP (1.61) is then given by

u(x, t) =
1√
4πt

exp
(−x2

4t

)
. (1.62)

This result can be verified with some effort:
First, upon differentiating (1.62), we obtain

∂u

∂t
=

∂2u

∂x2
=

x2 − 2t

8
√

πt3
exp

(−x2

4t

)
. (1.63)

Hence, u(x, t) satisfies ut − uxx = 0 on Ω.
Second, we must verify that the boundary conditions are satisfied by this solution. Consider an arbi-

trary point (x∗, 0) on the boundary of Ω. If x∗ 6= 0, we can apply L’Hôpital’s rule to obtain

lim
t→0+

u(x∗, t) = 0. (1.64)

If x∗ = 0 then the exponential term is exactly 1 in the limit, and so the limit satisfies

lim
t→0+

u(0, t) = ∞. (1.65)

It now remains to show that

lim
t→0+

∫ +∞

−∞
u(x, t)dx = 1. (1.66)

This result is non-trivial, but can be shown after some tedious calculus. We leave the details of this result
to the reader.

We conclude that (1.62) satisfies the IVP (1.61). As with elliptic problems, the domain of influence
of a single point on the boundary is then given by the set of points in Ω where u(x, y) > 0. By inspection
of (1.62), we note that all points in the domain have this property, and hence conclude that the domain of
influence of a single point on the boundary is the entire domain Ω. It follows that, as with the Poisson
equation, the heat equation exhibits an infinite propagation speed.
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However, unlike the elliptic BVP (1.49), we note that the heat equation is not time-reversable. Con-
sider the time-reversed initial value problem

IV P





Ω : (x, t) ∈ R× (−∞, 0)
u(x, 0) = g(x),
ut − uxx = 0.

(1.67)

If we try the function obtained by making the substitution t → (−t) in (1.62), i.e. the function given by

ũ(x, t) =
1√

4π(−t)
exp

(
− x2

4(−t)

)
, (1.68)

we will find that ũ(x, t) does not satisfy (1.67). In fact, the function ũ instead satisfies the PDE ut + uxx = 0.
Since the heat equation is not time-reversable, the domain of influence for any point is the whole

spatial domain for all future times. Similarly, we can obtain that the domain of dependence for any point
is the whole spatial domain for all past times. Note that this result allows us to perform time marching for
parabolic problems, but in doing so we must solve for all spatial points simultaneously.

x

t

(x*, t*)

x

t

(x*, t*)

The figures above depict the domain of dependence (left) and the domain of influence (right) of (x∗, t∗).

1.4.2 Discontinuous Initial Conditions

We now examine the effect of discontinuous initial conditions on the heat equation IVP (1.61). Consider
a discontinuous initial condition g(x) defined by

g(x) =





1
2 x > 0,

0 x = 0,

−1
2 x < 0.

(1.69)
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It can be shown that

u(x, t) = 1
2erf

(
x√
4t

)
, with erf(w) =

2√
π

∫ w

0
exp(−z2)dz, (1.70)

satisfies the PDE (exercise) and satisfies the boundary condition u(x, 0) = g(x) in the limit as t → 0+.
Further, it is easy to see that u(x, t) is continuous in the domain Ω. Using this example as motivation, we
hypothesize that the IVP for a linear parabolic PDE, with boundary g(x) possessing a finite number of
discontinuities, has a smooth solution away from the boundary. That is to say, discontinuities in the initial
state are smoothed out immediately.

1.5 Linear Second Order PDEs with Three Independent Variables

We now briefly discuss linear second order PDEs with three independent variables.
There exist certain “canonical cases” where classification of linear second order PDEs with three

independent variables is possible. Consider the canonical form of a linear second order PDE with three
independent variables:

λ1(x, y, t)utt + λ2(x, y, t)uxx + λ3(x, y, t)uyy = W (u, ux, uy, ut, x, y, t), (1.71)

where W is linear in u, ux, uy and ut. We claim, without proof, that any second-order linear PDE can be
transformed into canonical form (1.71) by eliminating cross derivatives with a change of variables. The
canonical form of the PDE leads to the following definition:

Definition 1.4 A second-order linear PDE in canonical form (1.71) is said to be

i) elliptic if and only if all λi are the same sign,

ii) parabolic if and only if exactly two λi have the same sign,

iii) hyperbolic if and only if two λi have the same sign and one λi is zero.





CHAPTER 2

Finite Difference Methods

In this chapter we focus on finite difference (FD) methods, perhaps the most straightforward numerical
approach for solving PDEs. We begin in section 2.1 by introducing FD methods for elliptic PDEs and
setting up much of the groundwork for further study of FD methods. In sections 2.2 and 2.3 we introduce
FD methods for time-dependent problems, focusing primarily on the theory behind numerical methods
for hyperbolic and parabolic PDEs. Section 2.4 is a wrap-up of the study of time-dependent problems and
focuses on extending the convergence theory for elliptic schemes to hyperbolic and parabolic FD methods.

2.1 Finite Difference Methods for Elliptic PDEs

In this section we focus on the finite difference methods for elliptic PDEs, with emphasis placed on the
Poisson equation in 1D and 2D. Of particular interest in the theory of numerical methods is convergence,
i.e. in this section we will attempt to explain when a given FD method gives us a solution to the associated
PDE problem in the limit of infinite computational power.

2.1.1 The 1D Elliptic PDE

The normalized 1D elliptic boundary value problem can be formulated as follows.

33
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BVP





Ω = {x : x ∈ (0, 1)}
u(0) = α, u(1) = β

u′′(x) = f(x)

(2.1)

Numerical solutions of this BVP can be obtained by discretizing the domain Ω using m + 2 distinct
points x0, x1, . . . , xm+1, yielding m + 1 distinct intervals. The boundary points (at 0 and 1) then consist
of x0 and xm+1 and interior points consist of x1 through xm, inclusive. For simplicity we choose the xi

to be equidistant, i.e. xi − xi−1 = ∆x for all i = 1, . . . ,m.

x
0

x0 x1 x2 x3 xm+1xmxm-1

m interior points

1= =

We denote the exact solution of this BVP by u(x). The values of the solution at each xi are then given
by u(xi) = ui for i = 0, . . . ,m + 1. We denote the derivatives of the solution at each xi by u′(xi) = u′i
and similarly for higher derivatives; for example, u′′(xi) = u′′i , etc. We then use a central difference
formula1 to discretize u′′(x), according to

u′′(xi) ≈ ui+1 − 2ui + ui−1

h2
. (2.2)

This choice of discretization scheme follows by expanding u(x) in a Taylor series at i + 1 and i − 1
according to

ui+1 = ui + u′ih + 1
2u′′i h

2 + 1
6u′′′i h3 + · · · , (2.3)

and
ui−1 = ui − u′ih + 1

2u′′i h
2 − 1

6u′′′i h3 + · · · . (2.4)

Summing these two series then yields

ui+1 + ui−1 = 2ui + u′′i h
2 + 1

12u′′′′i h4 + O(h5), (2.5)

which, upon rearranging, gives

u′′i =
ui+1 − 2ui + ui−1

h2
− 1

12u(4)h2 + O(h3). (2.6)

1Note that other choices of discretization are possible here.
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Thus, to second order in h, we recover (2.2).
We now define a numerical approximation vi to the exact solution ui. Using the discretization (2.2),

we define the approximate solution vi associated with the one-dimensional BVP (2.1) to be the unique vi

satisfying
vi+1 − 2vi + vi−1

h2
= fi, i = 1, . . . , m, (2.7)

where fi is defined by f(xi) = fi, and subject to the boundary conditions given by the exact boundary
conditions for the BVP, i.e.

v0 = α, and vm+1 = β. (2.8)

Matrix Form of the BVP

We can write (2.7) in matrix form as
AhV h = F h, (2.9)

where Ah is a matrix and V h and F h are vectors. Here V h is referred to as a grid function, i.e. a discrete
approximation of a continuous function. Here, the h is a generic superscript that denotes a grid function.
On using (2.7) and (2.8), we see the elements Ah, V h and F h are given by

Ah =
1
h2




−2 1 0 0
1 −2 1

0 1 −2
. . .

. . . . . . 1
0 1 −2




, V h =




v1

v2

v3

...
vm




, F h =




f1 − α 1
h2

f2

f3

...
fm − β 1

h2




. (2.10)

Note that Ah is a sparse matrix, i.e. the majority of its entries are zero. As a consequence, the linear
system (2.9) is generally easy to solve. We will also make use of the grid function Uh, which denotes
the vector consisting of the exact solution ui = u(xi) evaluated at grid nodes. The matrix form (2.9) is a
generic form for linear FD methods applied to elliptic problems. We will make use of this form later for
the 2D elliptic PDE.

Actual Error and Convergence

Since the numerical approximation (2.2) is different from the exact formula (2.6), V h merely provides an
approximation of the exact solution Uh. As a result, we are interested in the deviation of V h from the
exact solution Uh.
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Definition 2.1 The actual error Eh is
Eh = Uh − V h, (2.11)

where Uh is the grid function associated with the exact solution u(x) and V h is the approximate solution,
obtained by solving (2.9). The elements of Eh are denoted ei and are given by ei = ui − vi.

For any FD method that solves the BVP (2.1), we desire convergence. Namely, as h → 0, we want
Eh → 0 as well, i.e. as the distance between grid points becomes infinitesmally small, the actual error
introduced due to the numerical scheme goes to zero. For the choice of discretization (2.2), we know from
(2.6) that

u′′i =
ui+1 − 2ui + ui−1

h2
+ O(h2), (2.12)

and so can hope (or expect) that under some norm,2 the error satisfies

‖Eh‖ = O(h2). (2.13)

2.1.2 The 2D Elliptic PDE

The normalized 2D elliptic BVP can be formulated as follows:

BVP





Ω : (x, y) ∈ (0, 1)2,

u(x, y) = g on Γ = ∂Ω,

uxx + uyy = f(x, y) in Ω.

(2.14)

We discretize Ω into square regions of side length h = ∆x = ∆y, obtaining m+2 points in each direction,
m + 1 intervals, and m interior points. The result of this discretization is depicted in the following figure.

2See Appendix A.



2.1. Finite Difference Methods for Elliptic PDEs 37
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We give an example of this discretization, in the case of m = 2. In the following image, interior nodes
are depicted as circles and boundary nodes are given as crosses.

x

y

x0

y0

y1

x1 x2

y2

y3

x3

v11 v21

v22v12

We denote the exact solution of the BVP by u(x, y). The associated grid function is then given by
ui,j , which satisfies

ui,j = u(xi, yj). (2.15)

The source function f(xi, yj) can also be evaluated at grid points, leading us to define

fi,j = f(xi, yj). (2.16)
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We now require a discretization of the PDE. On recalling the 1D discretization (2.2), we discretize the
partial derivatives uxx and uyy as

uxx ≈ ui+1,j − 2ui,j + ui−1,j

∆x2
, (2.17)

and
uyy ≈ ui,j+1 − 2ui,j + ui,j−1

∆y2
. (2.18)

Hence, using the fact that h = ∆x = ∆y, our discretization of the PDE is given by3

uxx + uyy ≈ ui+1,j + ui−1,j − 4ui,j + ui,j+1 + ui,j−1

h2
. (2.19)

This leads us to define the numerical approximation vi,j as the solution of the system of equations

vi+1,j + vi−1,j − 4vi,j + vi,j+1 + vi,j−1

h2
= fi,j , (2.20)

subject to the boundary conditions

vi,j = g(xi, yj) for i, j = 0 or m. (2.21)

Matrix Form of the BVP

We now formulate this problem in matrix form (2.9). The solution vector V h consists of all interior points
(the unknowns), ordered in any desired manner. For simplicity, we will choose our ordering to be row-
lexicographic ordering, i.e. we first vary over the row index and then over the column index. For example,
in the case of m = 2, we obtain

V h =




v11

v21

v12

v22




. (2.22)

It follows that using the system of equations (2.20) allows us to write Ah in block-diagonal form as

Ah =
1
h2




T I 0 0

I T
. . . 0

0
. . . . . . I

0 0 I T




, (2.23)

3Again, it should be emphasized that other choices for the discretization are possible.
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where T and I are m×m matrices given by

T =




−4 1 0

1 −4
. . .

. . . . . . 1
0 1 −4




, and I =




1 0
. . .

0 1


 . (2.24)

Here we have chosen to absorb the boundary conditions into F h (it is left as an exercise for the reader to
give the resulting form of F h).

Recall that the actual error Eh (see definition 2.1) is given by Eh = Uh − V h. Since the discretization
we have used in second order in x and y, we can again hope that the error satisfies ‖Eh‖2 = O(h2).

2.1.3 Convergence Theory

Having now introduced two numerical methods for solving the elliptic BVPs, we have sufficient back-
ground to study the convergence of numerical methods. We will demonstrate the convergence theory in
the simplest case, namely for the elliptic BVP in 1D, since the theory can be easily generalized.

Consider the 1D BVP (2.1), with approximate solution vi given by the system

vi+1 − 2vi + vi−1

h2
= fi, v0 = α, vm+1 = β ⇐⇒ AhV h = F h. (2.25)

Definition 2.2 The truncation error T h is the error obtained when plugging the exact solution u(x) into
the discrete formula.

If we use the general matrix form (2.9), the truncation error assumes the form

T h = AhV h − F h. (2.26)

Example In the 1D case, the truncation error is given by

Ti =
ui+1 − 2ui + ui−1

h2
− fi. (2.27)

On plugging (2.6) into (2.27), we have

Ti = u′′i + 1
12h2u

(4)
i − fi + O(h3), (2.28)
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which, on recalling that u′′i − fi = 0 at any i, simplifies to

Ti = 1
12h2u

(4)
i + O(h3) = O(h2). (2.29)

In fact, it can be shown that (exercise)

Ti = 1
12h2u(4)(γ(xi)), (2.30)

for some γ(xi) ∈ [xi−1, xi]. We note that this result is a consequence of Taylor’s remainder theorem.
One of the major components of convergence theory is the concept of consistency of a numerical

method, defined as follows:

Definition 2.3 A numerical method AhV h = F h is consistent for the linear elliptic PDE Lu = f if

lim
h→0

Ti = 0. (2.31)

Further, we say that it is consistent with order q (q ∈ Z) if Ti = O(hq).

Note that it follows from (2.29) that the discretization (2.25) is consistent with order q = 2. Further,
from Ti = O(h2), we can deduce that ‖T h‖2 = O(h2), as follows: If we let

cT = max
x∈[0,1]

|u(4)(x)|, (2.32)

it follows from (2.30) that
Ti ≤ 1

12h2cT . (2.33)

Then, on taking the 2-norm, we have

‖T h‖2 =
√

h

√√√√
m∑

i=1

(Ti)2,

≤
√

h
√

m( 1
12h2cT )2,

≤
√

h
√

(m + 1)( 1
12h2cT )2,

but since h = 1/(m + 1), we obtain
‖T h‖2 ≤ 1

12h2cT . (2.34)
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The Error Equation

We will now derive an important relation between T h and Eh. On taking the difference between (2.26)
and (2.9), we obtain

Ah(Uh − V h) = T h, (2.35)

which by (2.11) can be written as
AhEh = T h. (2.36)

On inverting and taking the p-norm of this expression, we obtain

‖Eh‖p = ‖(Ah)−1T h‖p ≤ ‖(Ah)−1‖p‖T h‖p. (2.37)

If we know that ‖T h‖p is at least O(h), i.e. the numerical method is consistent, convergence then follows
if there exists a c so that ‖(Ah)−1‖p ≤ c. This result motivates the following definition.

Definition 2.4 A numerical method AhV h = F h is stable for the linear elliptic PDE Lu = f if and only
if there exists cs so that

‖(Ah)−1‖p ≤ cs, (2.38)

with cs independent of h.

Lax Convergence Theorem for Elliptic PDEs

As stated previously, one can see that convergence of a numerical method quickly follows from definition
2.3, definition 2.4 and (2.37). This result is the foundation of the so-called Lax Convergence Theorem for
Elliptic PDEs, which we state as follows.

Theorem 2.1 (Lax Convergence Theorem) Consider the linear numerical method AhV h = F h for the
linear elliptic PDE Lu = f . If the method is consistent with order q in the p-norm,

‖T h‖p = O(hq), (2.39)

and stable in the p-norm,
‖(Ah)−1‖p ≤ cs, (2.40)

then the method is convergent with order q,

‖Eh‖p = O(hq). (2.41)
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Proof: The desired result follows immediately from (2.37), under the assumption of stability and using
the definition of convergence. ¤

Notes: i) This theorem can be extended as follows: Consider a linear method that is consistent with order
q. Then the method is stable if and only if it converges with order q, i.e. it can be shown that convergence
with order q and stability are equivalent (this result is known as the Lax Equivalence Theorem).

ii) Note that the actual error Eh converges with the same order as the truncation error T h. Hence, rather
than calculating Uh − V h, we can instead use the order of the truncation error to derive the order of
convergence for the actual error.

2-Norm Convergence for 1D Elliptic Problems

We now use the Lax convergence theorem to show convergence of the discretization (2.7) and (2.8) for
the 1D elliptic BVP under the 2-norm. Recall that we have already shown in (2.34) that

‖T h‖2 ≤ 1
12h2cT , (2.42)

where
cT = max

x∈[0,1]
|u(4)(x)| = max

x∈[0,1]
|f ′′(x)|, (2.43)

i.e. that our discretization (2.7) of the 1D elliptic PDE BVP (2.1) is consistent.
In order to show stability, and hence demonstrate convergence, we need to find an upper bound on

‖(Ah)−1‖2, where Ah is given by (2.10). In order to proceed, we require two important results from
linear algebra:

R1) First, recall that if Ah is symmetric then it follows that (Ah)−1 is symmetric as well, i.e.

Ah = (Ah)T =⇒ (Ah)−1 = ((Ah)−1)T .

Hence, it follows by property P1 in section A.3 that

‖(Ah)−1‖2 = ρ((Ah)−1). (2.44)

The proof of this result is left as an exercise for the reader.
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R2) Second, if Ah ∈ Rm×m is invertible and has eigenvalues λ1, λ2, . . . , λm, it follows that (Ah)−1

has eigenvalues λ−1
1 , λ−1

2 , . . . , λ−1
m . The proof of this result is straightforward: If λ is an eigenvalue of an

invertible matrix A with associated eigenvector ~v, then

A~v = λ~v =⇒ 1
λ
~v = A−1~v. (2.45)

Since this implies that λ−1 is an eigenvalue of A, the desired result follows.
Thus, using results R1) and R2), we have

‖(Ah)−1‖2 = ρ((Ah)−1) = max
1≤i≤m

∣∣∣∣
1
λi

∣∣∣∣ =
(

min
1≤i≤m

|λi|
)−1

, (2.46)

i.e. the 2-norm of (Ah)−1 is given by the inverse of the smallest eigenvalue of Ah.
It can be shown that for Ah given by (2.10), the eigenvalues are (exercise)

λk =
2
h2

(cos(kπh)− 1), k = 1, . . . ,m, (2.47)

where h = (m+1)−1. By inspection, the smallest eigenvalue occurs when k = 1. Using Taylor’s theorem
with the cos(πh) term, we obtain

cos(πh) = 1− 1
2π2h2 + 1

24π4h4 cos(πξ), (2.48)

where ξ ∈ [0, h]. Hence, substituting (2.48) into (2.47), we have

λ1 ≈ 2
h2

(−1
2π2h2 + 1

24π4h4 cos(πξ)) = −π2 + 1
12π4h2 cos(πξ). (2.49)

Clearly, for h sufficiently small, λ1 satisfies |λ1| ≤ π2 (which is independent of h). We conclude that

‖(Ah)−1‖2 ≤ π−2, (2.50)

and so the method is stable. Thus by the Lax convergence theorem (Theorem 2.1) we have that the method
is convergent with order 2 in the 2-norm, i.e.

‖Eh‖2 = O(h2). (2.51)

Note that an exact expression can be obtained by substituting (2.34) into (2.37), which gives

‖Eh‖2 =
h2

12π2
cT . (2.52)
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Notes: i) Convergence with order 2 can also be proven for this example for the 1-norm and∞-norm and
further for the 2D BVP (2.14). The method discussed in this section can also be applied to an arbitrary
numerical FD method.

ii) In order to obtain a higher order of convergence, we must develop a more accurate discretization by
using more points. For example, the simple 2D discretization used in (2.20) is known as a 5-point central
difference discretization and is depicted in the following graphic:

i-1

j-1

i i+1

j

j+1

Other discretizations can be developed, such as the 9-point weighted central difference discretization
depicted as follows. Implemented appropriately, the convergence order of this discretization is O(h4).

i-1

j-1

i i+1

j

j+1

iii) Finally, finite difference formulas can be derived for non-uniform grid spacings, i.e. spacing which
possibly take advantage of regions of rapid change versus regions of slow change.

2.2 FD Methods for Hyperbolic PDEs

We now consider FD methods for hyperbolic PDEs, with emphasis placed on the advection equation in 1D.
We give a detailed analysis of six FD methods using easily generalized theory, focusing on convergence
and stability properties of time-dependent methods and error-propagation. We conclude this section with a
discussion of FD methods for the wave equation and extensions of existing methods to higher dimensions.

Several concepts required for the study of hyperbolic FD methods generalize directly from elliptic
FD methods. In particular, the actual error, given by definition 2.1, and the truncation error, given by
definition 2.2, are both defined in the same manner as with elliptic FD methods. We will require these two
concepts in the analysis in this section.
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2.2.1 FD Methods for the 1D Linear Advection Equation

Recall the linear advection equation in 1D, given by

∂u

∂t
+ a

∂u

∂x
= 0, u = u(x, t), (2.53)

with general solution
u(x, t) = f(x− at), (2.54)

which, assuming a > 0, describes a right-travelling wave (also see (1.25) and (1.26)).
We now consider three discretizations for the spatial derivative in (2.53). For each element j, we can

divide the state space into two regions depending on the direction of the “wind”, i.e. the direction that the
PDE carries the state variable as time advances. For the advection equation with a > 0, the “wind” carries
the solution from left to right, and so we describe all elements i that satisfy i < j as “upwind” and all
elements i that satisfy i > j as “downwind” (see graphic below).

j-1 j j+1

a > 0

downwindupwind

j-1 j j+1

a < 0

upwinddownwind

Spatial Discretization Formula

C Central Difference
∂u

∂x

∣∣∣∣
j

=
uj+1 − uj−1

2∆x
+ O(∆x2)

D Downwind
∂u

∂x

∣∣∣∣
j

=
uj+1 − uj

∆x
+ O(∆x)

U Upwind
∂u

∂x

∣∣∣∣
j

=
uj − uj−1

∆x
+ O(∆x)

As a first step, we can obtain a pseudo-discretization for (2.53) by only discretizing the spatial com-
ponent of the PDE and leaving the time derivative untouched. This technique is known as the method of
lines.
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For example, using the central discretization, we obtain

C
dvj

dt
+ a

vj+1 − vj−1

2∆x
= 0. (2.55)

Instead using an upwind discretization, we obtain

U
dvj

dt
+ a

vj − vj−1

∆x
= 0. (2.56)

The method of lines leads to a set of coupled ODEs in vj(t), the state variables at each point, which can
then be integrated using any standard ODE integration technique.

Our second step is to add a temporal discretization, of which many options are available. We dis-
tinguish between explicit schemes and implicit schemes. An explicit scheme constructs the state of the
system at time level n + 1 using the known value of the system at time n, n − 1, n − 2, etc. Implicit
schemes also use the state of the system at time level n + 1. Hence, implicit schemes lead to a system of
linear equations which must be solved at each timestep. In general, explicit schemes are generally more
efficient, i.e. they have a smaller memory and computation requirement than implicit schemes, whereas
implicit schemes are more stable.

For simplicity, we will focus on three common temporal discretizations:

Temporal Discretization Formula

FE Forward Euler (Explicit)
vn+1
j − vn

j

∆t
+ a

∂u

∂x

∣∣∣∣
n

j

= 0

BE Backward Euler (Implicit)
vn+1
j − vn

j

∆t
+ a

∂u

∂x

∣∣∣∣
n+1

j

= 0

CN Crank-Nicolson (Implicit)
vn+1
j − vn

j

∆t
+

a

2

(
∂u

∂x

∣∣∣∣
n+1

j

+
∂u

∂x

∣∣∣∣
n

j

)
= 0

Here, ∂u
∂x

∣∣n
j

denotes the discretized spatial derivative evaluated in element j at time step n. We now
present three common numerical methods constructed in this manner.

Forward Central Scheme. This scheme uses the central difference formula and forward Euler time
discretization. It is written as
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FC
vn+1
j − vn

j

∆t
+ a

vn
j+1 − vn

j−1

2∆x
= 0. (2.57)

The truncation error of this scheme is

Tn
j = O(∆t) + O(∆x2). (2.58)

The forward central scheme induces a stencil on the grid, i.e. a set of points that are used in evaluating
vn+1
j , given as follows:

j-1 j j+1
n

n+1

Although the FC scheme is explicit and hence computationally cheap, it is also unstable. Namely, re-
gardless of our choice of timestep ∆t, this method will lead to uncontrolled oscillations that will cause
solutions to blow up.

Backward Central Scheme. In order to stabilize the FC scheme, we instead apply a backward time
discretization, and hence obtain

BC
vn+1
j − vn

j

∆t
+ a

vn+1
j+1 − vn+1

j−1

2∆x
= 0. (2.59)

The truncation error of this scheme is again

Tn
j = O(∆t) + O(∆x2). (2.60)

The stencil is given as follows:

j-1 j j+1
n

n+1

Since this method is implicit, we can rewrite (2.59) in terms of a linear system that is then solved at every
time step. Clearly, this approach requires more work, but it is unconditionally stable, i.e. it is stable
regardless of the choice of ∆t.
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Crank-Nicolson Central Scheme. In order to increase the temporal order we can instead apply the
Crank-Nicolson discretization, and hence obtain

CN
vn+1
j − vn

j

∆t
+

a

2

(
vn+1
j+1 − vn+1

j−1

2∆x
+

vn
j+1 − vn

j−1

2∆x

)
= 0. (2.61)

It can be shown that the truncation error of this scheme is

Tn
j = O(∆t2) + O(∆x2) + O(∆x∆t), (2.62)

and that the stencil is given as follows:

j-1 j j+1
n

n+1

Like the backward central scheme, this method is implicit and unconditionally stable.

Forward Upwind Scheme. In order to obtain a stable explicit method, we instead apply the spatial
upwind discertization, and hence obtain

FU
vn+1
j − vn

j

∆t
+ a

vn
j − vn

j−1

∆x
= 0. (2.63)

The truncation error of this method is

Tn
j = O(∆t) + O(∆x), (2.64)

with stencil given as follows:

j-1 j j+1
n

n+1

This method is explicit and conditionally stable, i.e. ∆t must be chosen sufficiently small in order to
guarantee stability.
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Leapfrog Scheme. We can construct additional temporal discretizations that were not mentioned above,
such as the Leapfrog scheme, which uses a central difference time discretization and central difference
space discretization. This scheme is then written as

LFrog
vn+1
j − vn−1

j

2∆t
+ a

vn
j+1 − vn

j−1

2∆x
= 0. (2.65)

It can be shown that the truncation error of this scheme is

Tn
j = O(∆t2) + O(∆x2), (2.66)

with stencil given as follows:

j-1 j j+1

n

n+1

n-1

This method is known as a 3-level scheme, since when evaluating the state at time n + 1 we require
knowledge of the state variables vj at times n and n− 1. This is also an example of an explicit high order
method. As with other explicit schemes, the leapfrog scheme is conditionally stable.

Lax-Wendroff Scheme. The last method we will consider is the Lax-Wendroff scheme, given by

LW
vn+1
j − vn

j

∆t
+ a

vn
j+1 − vn

j−1

2∆x
− a2

2
vn
j+1 − 2vn

j + vn
j−1

∆x2
= 0. (2.67)

It can be shown that the truncation error of this method is

Tn
j = O(∆x2)+?, (2.68)

where the stencil is given as follows:

j-1 j j+1
n

n+1
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The Lax-Wendroff scheme is a 2-level high order conditionally stable method. It may not be immediately
obvious as to why (2.67) is a discretization of (2.53) and so we present the derivation of this scheme:

Recall that the PDE (2.53) allows us to rewrite time derivatives in terms of space derivatives according
to

ut = −aux. (2.69)

Hence,
utt = −auxt = (−a)(−a)uxx = a2uxx, (2.70)

and
uttt = a2uxxt = −a3uxxx. (2.71)

On applying a Taylor series expansion to u(x, t + ∆t) and using (2.69)-(2.71), we obtain

u(x, t + ∆t) = u(x, t) + ut∆t + utt
1
2∆t2 + uttt

1
6∆t3 + O(∆t4)

= u(x, t)− aux∆t + a2uxx
1
2∆t2 − a3uxxx

1
6∆t3 + O(∆t4).

Then, on applying the Taylor series of u(x + ∆x, t) to obtain expressions for ux and uxx (exercise), we
obtain

un+1
j = un

j − a∆t

(
uj+1 − uj−1

2∆x
− uxxx

1
3∆x2 + O(∆x3)

)

+a2 1
2∆t2

(
un

j+1 − 2un
j + un

j−1

∆x2
+ O(∆x2)

)

+a3uxxx
1
6∆t3 + O(∆t4).

On taking the difference between this expression and (2.67), we obtain

Tn
j = auxxx

1
3∆x2 + O(∆x3) + O(∆t∆x2) + O(∆t3) = O(∆x2). (2.72)

The methods introduced in this section only encompass a small fraction of possible FD methods for
solving PDEs. It should further be emphasized that no single method is the best option for all possible
problems. Often simply deciding on the best choice of numerical method for a given problem requires
significant research.

We present a numerical comparison of the five methods introduced in this section in figures 2.1 and
2.2.
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FIGURE 2.1: A comparison of BC, CN, FU, LFrog and LW numerical schemes for the advection equation,
applied to a cosine wave with periodic boundary conditions.



52 2. Finite Difference Methods

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
time t=0

FU
LW
LFrog
CN
BC
exact

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
time t=1

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
time t=4

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
time t=10

FIGURE 2.2: A comparison of BC, CN, FU, LFrog and LW numerical schemes for the advection equation,
applied to a Gaussian profile with periodic boundary conditions.
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2.2.2 Stability

In this section we examine the conditions for stability of finite difference methods for hyperbolic PDEs.
Consider rewriting the numerical solution obtained using a general FD method as the sum of the exact

solution un
j and an error term en

j , as in

vn
j︸ ︷︷ ︸

Numerical solution

= un
j︸ ︷︷ ︸

Exact solution

+ en
j︸ ︷︷ ︸

Actual error at (xj , tn)

. (2.73)

On substituting (2.73) into the FC scheme (2.57) we obtain
(

un+1
j − un

j

∆t
+ a

un
j+1 − un

j−1

2∆x

)

︸ ︷︷ ︸
Truncation error Tn

j

+

(
en+1
j − en

j

∆t
+ a

en
j+1 − en

j−1

2∆x

)

︸ ︷︷ ︸
Propagation equation for actual error

= 0. (2.74)

Note that here the truncation error Tn
j (see Definition 2.2) acts as a source term in the error propagation

equation.
We say that a method is numerically stable if the actual error en

j is bounded. Conversely, a method is
numerically unstable if the actual error grows without bound (this is a phenomenon known as numerical
instability).

For simplicity we will only consider the propagation of the error and assume the truncation error is
zero. For example, in the FC scheme, this assumption implies the error propagates according to

en+1
j − en

j

∆t
+ a

en
j+1 − en

j−1

2∆x
= 0. (2.75)

We note that, as we will show later, stability in this sense is necessary for the stability of the FC scheme.
In order to analyze the stability of (2.75), we will look at an error of wave type. This approach is

known as the von Neumann method of investigating stability.
An error of wave type can be written as

en
j = ên exp(ikxj), (2.76)

where ên is the amplitude of the wave at time n and k is the wavenumber. If we assume the grid to be
uniform, we can write xj = j∆x, and hence obtain

en
j = ên exp(ikj∆x). (2.77)
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Since the wavenumber k can be rewritten in terms of the wavelength λ according to k = 2π/λ, the
quantity defined by θ = k∆x represents a ratio of the grid spacing and wavelength. Hence, we write

en
j = ên exp(ijθ). (2.78)

We are motivated to consider errors of this type since, in general, linear difference operators allow for
such wave-like solutions. In particular, we are interested in how the amplitude ên evolves with each time
step: notably, one can observe that if this quantity remains bounded for all θ then the method will be
numerically stable.

Returning to our example, we substitute (2.78) into (2.75), obtaining

ên+1 exp(ijθ) = ên exp(ijθ)− 1
2R (ên exp(i(j + 1)θ)− ên exp(i(j − 1)θ)) , (2.79)

where R is shorthand for a ∆t
∆x . On dividing by exp(ijθ) and rearranging, we obtain

ên+1 = [1− iR sin θ] ên. (2.80)

Equation (2.80) then motivates the following definition:

Definition 2.5 The symbol S(k) of a two-level finite difference method for the linear advection equation
is defined by the ratio

S(k) =
ên+1

ên
. (2.81)

Example As follows from (2.80), the symbol for the forward central scheme (FC) is

S(k) = 1− iR sin θ. (2.82)

It can be shown that a necessary condition for numerical stability is the von Neumann stability condi-
tion, given by

max
k
|S(k)| ≤ 1. (2.83)

This condition has an obvious physical meaning in terms of the error amplitudes, as follows from (2.81);
namely, the amplitude of any given error mode should not be allowed to grow without bound. Graphically,
this condition implies that S(k) must be within a unit circle in C for all k. We depict the region of the
complex unit circle in the following figure.



2.2. FD Methods for Hyperbolic PDEs 55

Re(x)

Im(x)

One can easily calculate the value of |S(k)| for the forward central scheme using (2.82), obtaining

FC |S(k)| =
√

1 + R2 sin2 θ ≥ 1 ∀ θ. (2.84)

Hence,
max

k
|S(k)| > 1, (2.85)

for any choice of R. Hence, we have confirmed our earlier result that FC is unstable and further shown
that FC will be unstable for any choice of ∆t. Graphically, the symbol for the FC method is depicted in
the following figure.

Re(x)

Im(x)
S(k)

Example: The Forward Upwind Scheme.

Recall the forward upwind (FU) scheme, given by (2.63). Applying a similar analysis as with the FC
scheme, we obtain that the error propagation equation is

en+1
j = en

j −R(en
j − en

j−1). (2.86)

We substitute (2.78) into (2.86), giving

ên+1 exp(ijθ) = ên exp(ijθ) [1−R(1− exp(−iθ))] . (2.87)
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Hence, the symbol is

S(k) = 1−R(1− exp(−iθ)) = 1−R + R cos θ − iR sin θ. (2.88)

Evaluating |S(k)|, we obtain (exercise)

|S(k)|2 = 1− 2R(1−R)(1− cos θ). (2.89)

We let C(θ) = |S(k)|2 and take the derivative, so as to determine extrema of this function. This process
leads to

dC(θ)
dθ

= −2R(1−R) sin θ = 0 ⇐⇒ θ = 0,±π,±2π, . . . ⇐⇒ cos θ = ±1. (2.90)

Hence,

max |S(k)|2 = max |1− 2R(1−R)(1± 1)|,
= max(1, |1− 4R(1−R)|),
= max(1, |1− 2R|2).

We conclude
max |S(k)| = max(1, |1− 2R|). (2.91)

So, under the restriction |1− 2R| ≤ 1, we obtain 0 ≤ R ≤ 1, or

0 ≤ ∆t ≤ ∆x

a
. (2.92)

Thus, in order for FU to be stable we require ∆t ≤ ∆x
a (a necessary condition). We say that FU is

conditionally stable subject to the restriction (2.92). This restriction is known as a Courant-Friedrichs-
Lewy condition (CFL condition).

Notes: When a < 0, we note that the CFL condition (2.92) cannot be satisfied by any ∆t, since ∆x is
positive and a is negative. We conclude that the FU scheme is always unstable when a < 0. Conversely,
it can be shown that the Forward Downwind scheme (FD), given by (compare with (2.63))

vn+1
j − vn

j

∆t
+ a

vn
j+1 − vn

j

∆x
= 0. (2.93)

is always unstable when a > 0 and stable when a < 0 assuming 0 ≤ ∆t ≤ ∆x
−a . (Can you think of a

physical reason why this might be the case?)
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Graphical Techniques for Demonstrating Stability

We can also apply a graphical approach to demonstrate stability of the forward upwind scheme. Recall
that the von Neumann stability condition (2.83) is equivalent to stating that S(k) lies within the unit circle
for all k. We can view the symbol S(k) (given for the FU scheme in (2.88)) as a sequence of maps from
the real line R into a 2 dimensional subset of the complex plane C.

For example, the symbol for the forward upwind scheme, given by

S(k) = 1−R(1− exp(−iθ)), (2.94)

gives the following mapping:

Re(x)

Im(x)

exp(-iθ)

Re(x)

Im(x)
R=1

R<1

R>1

Re(x)

Im(x)

R (1 - exp(-iθ)) 1 - R (1 - exp(-iθ))

R=1

R<1

R>1

We conclude that that the FU scheme is stable if and only if R ≤ 1, i.e. we again obtain the CFL
condition in (2.92).

Example: The Backward Central Scheme

Recall that the backward central scheme is given by (2.59). The error propagation equation is

en+1
j = en

j − 1
2R(en+1

j+1 − en+1
j−1 ). (2.95)

On substituting (2.78) into (2.95), it can be shown that the symbol is given by (exercise)

S(k) =
1− iR sin θ

1 + R2 sin2 θ
. (2.96)

After a short calculation we obtain

|S(k)|2 =
[
1 + R2 sin2 θ

]−1/2 ≤ 1 ∀ R, (2.97)

and so conclude that BC is unconditionally stable, i.e. for any choice of ∆t.
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Discussion

In this section we have applied the von Neumann stability analysis to the three most basic schemes (FC,
FU and BC). The von Neumann stability analysis can be easily applied to CN and LW in the same manner,
but requires some modification when applied to the 3-level LFrog scheme. The results obtained in this
analysis are given in the following table:

Scheme Symbol S(k) Stable?

FC Forward Central 1− iR sin θ Unstable

BC Backward Central (1− iR sin θ)
/
(1 + R2 sin2 θ) Unconditional

FU Forward Upwind 1−R(1− exp(−iθ)) Conditional (CFL)

CN Crank-Nicolson (2− iR sin θ)
/
(2 + iR sin θ) Unconditional

LW Lax-Wendroff 1 + R2(cos θ − 1)− iR sin θ Conditional (CFL)

LFrog Leapfrog N/A Conditional (CFL)

Notes: i) The FU scheme is only stable when a > 0. LW and LFrog are stable regardless of the sign of
a.

ii) Observe that the Crank-Nicolson scheme satisfies |S(k)| = 1 for all k. We will show in the next
section that this quality is important, since it implies that the CN method does not introduce numerical
dissipation.

Link with the Discrete Fourier Transform

Consider a 1D interval of the real line given by (xa, xb). We use N − 1 interior points to subdivide the
interval into N subintervals of equal width, where we label each of the points by xa = x0, x1, . . . , xN−1,
xN = xb. Let L = xb − xa denote the length of the interval, with ∆x = L/N and xj = xa + j∆x for
j = 0, . . . , N (see figure).
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x

x0 x1 x2 xNxN-1xN-2

N intervals

xa xb

N points

= =

Any function e(x) on (xa, xb) then defines a grid function e[i] via e[i] = e(xi). We further impose
periodic boundary conditions so that e[N ] = e[0], hence ensuring that e[i] has exactly N degrees of
freedom. Now, using the discrete Fourier transform (DFT), any function e[i] can be decomposed in terms
of its N Fourier modes

e[j] =
N−1∑

m=0

ê[m] exp(i2πmj ∆x
L ), (2.98)

ê[m] =
1
N

N−1∑

j=0

e[j] exp(−i2πmj ∆x
L ). (2.99)

In performing von Neumann stability analysis, we looked at one mode of this expansion,

ej = ê exp(ikxj) = ê exp(ijθ). (2.100)

This result follows since exp(i2πmj ∆x
L ) and exp(ijθ) are equivalent, as demonstrated:

exp(i2πmj ∆x
L ) = exp(i2πmj 1

N ), since ∆x
L = 1

N ,

= exp(ikj∆x), since k = 2π m
L ,

= exp(ijθ), since θ = k∆x = 2π m
N .

2.2.3 Dissipation and Dispersion

The error introduced by a numerical method typically can be decomposed into dissipation and dispersion.
We now examine the source of these forms of error and show how dissipation and dispersion terms in
PDEs are related to dissipation and dispersion effects in difference formulas.
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Dissipation and Dispersion for PDEs

Consider the following three examples of linear PDE operators:

L1u =
∂u

∂t
+ a

∂u

∂x
, (2.101a)

L2u =
∂u

∂t
+ a

∂u

∂x
−D

∂2u

∂x2
, (2.101b)

L3u =
∂u

∂t
+ a

∂u

∂x
− µ

∂3u

∂x3
. (2.101c)

Each linear PDE operator generates a linear homogeneous PDE via the equations

L1u = 0, L2u = 0, L3u = 0. (2.102)

We are trying to find wavelike solutions of the form

w(x, t) = A0 exp(i(kx− ωt)), (2.103)

where A0 is the amplitude of the wave, k is the wavenumber and ω is the angular frequency. We further
define the frequency ν (in oscillations / sec) via ω = 2πν and the wavelength (in meters) via k = 2π/λ.
The period T (in seconds) of the wave is related to these quantities according to T = 1/ν = 2π/ω. Note
that the intervals x ∈ [0, λ) and t ∈ [0, T ) correspond to one full oscillation of the wave in space and time,
respectively. Using the variables above, we can potentially rewrite the wave solution (2.103) as

w(x, t) = A0 exp(i2π(x
λ − νt)), ⇐⇒ w(x, t) = A0 exp(i2π(x

λ − t
T )). (2.104)

By convention we require that A0 and k are real variables, whereas ω may be complex. We now
present the following proposition:

Proposition 2.1 The wavelike solution (2.103) is an eigenfunction of any linear homogeneous PDE op-
erator in x and t.

We present no proof to this proposition, instead relying on “proof by example.” Consider the three
PDE operators presented above (2.101a)-(2.101c), where

L1w = (−iω + aik)w = λ1w, (2.105a)

L2w = (−iω + aik −D(ik)2)w = λ2w, (2.105b)

L3w = (−iω + aik − µ(ik)3)w = λ3w. (2.105c)

The following corollary follows immediately from the proposition.
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Corollary 2.1 Let Lw = λ(ω, k)w. Then w is a solution of Lw = 0 if and only if ω and k satisfy
λ(ω, k) = 0.

The problem of determining wave-like solutions to the PDE operator now reduces to finding solutions
to the equation λ(ω, k) = 0. Clearly this equation is of importance in the analysis of linear PDE operators,
and so it is generally given a name:

Definition 2.6 The equation
λ(ω, k) = 0, (2.106)

is called the dispersion relation of the linear homogeneous PDE operator.

Note that for k real, the dispersion relation (2.106) implicitly defines ω in terms of k, i.e. it gives
ω = ω(k). The three PDE operators (2.101a)-(2.101c) quickly lead to three dispersion relations:

ω(k) = ak, (2.107a)

ω(k) = ak − iDk2, (2.107b)

ω(k) = ak + µk3. (2.107c)

In general, we find that the dispersion relation will be of the form

ω(k) = α(k) + iβ(k), (2.108)

where α(k) = Re(ω(k)) and β(k) = Im(ω(k)). Using the dispersion relation in the form (2.108), we
rewrite the wave-like solution (2.103) as

w(x, t) = A0 exp(i(kx− α(k)t− iβ(k)t))

= A0 exp(β(k)t)︸ ︷︷ ︸
A(t)

exp(i(kx− α(k)t)). (2.109)

This expression clearly distinguishes the role played by the real and imaginary parts of ω: namely, the
former, given by α(k) contributes to the speed of the wave. The latter, given by β(k) instead affects the
amplitude of the wave. The quantity α(k) motivates the following definition.

Definition 2.7 The phase speed vph is defined as

vph =
Re(ω(k))

k
=

α(k)
k

. (2.110)
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The physical interpretation of this quantity can be seen as follows: Assume β(k) = 0 and let c be
a constant that implicitly defines x in terms of t via c = kx− α(k)t (we can view c as marking a point
along the wave that always remains at a constant value in the wave profile, as in the figure below).

x

u(x,t)
t=0

t=1c

Since c is constant, we have

dc

dt
= 0 = k

dx

dt
− α(k) ⇐⇒ dx

dt
=

α(k)
k

. (2.111)

Hence, the speed of a point in phase with the wave profile is given by the phase speed vph.
For each of the linear PDE operators, we obtain the following relations for phase speed:

L1 ⇒ vph =
ak

k
= a, (2.112a)

L2 ⇒ vph = k−1Re(ak − iDk) = a, (2.112b)

L3 ⇒ vph = k−1(ak + µk3) = a + µk2. (2.112c)

Note that for L3 the profile u experiences dispersion, i.e. waves of different wavenumber will move at
different phase speeds.

We now focus on the amplitude term in (2.109). As a function of time, we obtain the following
relations for the amplitude of wave-like solutions for each PDE operator:

L1 ⇒ β(k) = 0 A(t) = A0, (2.113a)

L1 ⇒ β(k) = −Dk2 A(t) = A0 exp(−Dk2t), (2.113b)

L1 ⇒ β(k) = 0 A(t) = A0. (2.113c)

We discover that the amplitude of the wave-like solution is preserved for L1 and L3, but decays in time
for L2, i.e. the wave-like solution experiences dissipation.
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Definition 2.8 Let L be a linear homogeneous PDE operator. Then we say that L is dissipative if and
only if Im(ω(k)) < 0. Further, we say that L is dispersive if and only if Re(ω(k)) is not linear in k.

In general, for a PDE with a first order time derivative we require partial spatial derivatives of even
order in order to obtain dissipation. On the other hand, in order to obtain dispersion we require partial
spatial derivatives of odd order (where the order is at least 3).

Dissipation and Dispersion for Difference Formulas

By approximating a differential equation by a difference formula we introduce numerical dissipative and
dispersive behaviour that is closely related to dissipation and dispersion in linear PDE operators. We will
now show how dissipative and dispersive errors occur difference formulas.

Similar to the case of linear homogeneous PDE operators, we consider a wave-like solutions of a finite
difference operator given by

en
j = e0 exp(i(kj∆x− ωn∆t)), where x = j∆x and t = n∆t. (2.114)

We hence obtain discrete analogues of proposition 2.1 and its corollary:

Proposition 2.2 The wavelike solution (2.114) is an eigenfunction of any linear homogeneous difference
operator.

Corollary 2.2 Let Le = λ(ω, k)e. Then e is a solution of Le = 0 if and only if ω and k satisfy

λ(ω, k) = 0. (2.115)

As in the continuous case, the dispersion relation for a FD operator is again defined by λ(ω, k) = 0.
By convention we again choose k real. The dispersion relation then implicitly defines ω = ω(k). We will
return to this fact momentarily.

It turns out that S(k) has all the information we need to determine the existence and strength of
numerical dissipation and dispersion. In particular, we seek a relation between S(k) and ω(k), as follows.
Recall that the symbol S(k) (see Definition 2.5) is given by

ên+1 = S(k)ên. (2.116)

If we apply this equation recursively, we obtain the relation

ên = (S(k))nê0, (2.117)
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where ê0 denotes the error at some initial time. Using the definition of ê in the form (2.77), we can rewrite
(2.114) as

ên = e0 exp(−iωn∆t). (2.118)

Then, upon equating (2.117) and (2.118) we obtain

e0(exp(−iω∆t))n = ê0(S(k))n, ∀ n. (2.119)

Clearly (2.118) implies e0 = ê0 and so it follows that

S(k) = exp(−iω∆t), (2.120)

where ω = ω(k) is the dispersion relation of this FD method. Since S(k) is complex in general, we can
write it in polar form as

S(k) = |S| exp(iφS) = exp(ln |S|) exp(iφS), (2.121)

where
|S| =

√
Re(S)2 + Im(S)2, and φS = arctan

(
Im(S)
Re(S)

)
. (2.122)

Comparing (2.120) and (2.121) then leads to

ω(k) =
−φS + i ln |S|

∆t
. (2.123)

We now aim to determine the conditions on (2.123) that lead to dispersive and dissipative solutions.
The numerical phase speed can then be written in terms of (2.110) and (2.123), giving

vph =
1
k
Re(ω) = − φs

k∆t
. (2.124)

In particular, if the phase speed is not constant in k we note that wave-like solutions will be dispersive (see
definition 2.8). For the advection equation, we can apply R = a ∆t

∆x and θ = k∆x to obtain the relation

vph =
−aφS

Rθ
. (2.125)

The phase velocity for various FD methods is plotted in figure 2.3.
Turning our attention to dissipation instead, it quickly follows from (2.123) that

Im(ω) =
ln |S|
∆t

. (2.126)
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FIGURE 2.3: A comparison of the phase velocity vph for the BC, CN, FU, LFrog and LW numerical
schemes applied to the linear advection equation.
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On recalling that dissipation is associated with Im(ω) being nonzero, we note that dissipation will be
present4 whenever |S| < 1 (again see definition 2.8). The amplitude of the symbol for various FD
methods is plotted in figure 2.4.

Note that figure 2.4 suggests we obtain minimal dissipation when θ → 0. Since θ = k∆x, this result
has two interpretations: First, if we fix k, decreasing ∆x will result in a decrease in θ and so reducing
the element size leads to less dispersion and dissipation. Second, if we fix ∆x, increasing k will result in
an increase in θ. We conclude that waves with higher wave number will be damped out more quickly by
dissipation.

On comparing and contrasting the various FD methods so far examined in this section, we obtain the
following results:

Scheme Order Dispersion Dissipation

BC Backward Central 1 large large

FU Forward Upwind 1 small large

CN Crank-Nicolson 2 large 0

LW Lax-Wendroff 2 small small

LFrog Leapfrog 2 small 0

We can also see the dissipative and dispersive effects of numerical schemes using an alternative ap-
proach. For example, consider the forward upwind method. The truncation error in this case is given
by

Tn
j = (R− 1)a1

2∆xuxx + O(∆t2) + O(∆x2) + O(∆t∆x). (2.127)

The dominant error term here is proportional to uxx, which has a dissipative effect. We conclude that the
error in the forward upwind method is dominated by dissipation.

Consider instead the Lax-Wendroff method, with truncation error given by

Tn
j = auxxx

1
3∆x3 − a3uxxx

1
6∆t2 + h.o.t. (2.128)

The dominant error term here is proportional to uxxx, which has a dispersive effect.

4Recall further that the method is unstable if |S| > 1.
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FIGURE 2.4: A comparison of the symbol amplitude |S| for the BC, CN, FU, LFrog and LW numerical
schemes applied to the linear advection equation.
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Note: In general, first order accurate methods have a dominant error term that is proportional to uxx, and
so will have an error dominated by dissipation. Similarly, second order accurate methods have a dominant
error term that is proportional to uxxx, and so will have an error dominanted by dispersion.

We can also see the dissipative term in the FU method by rewriting the difference equation (2.63) as

vn+1
j − vn

j

∆t︸ ︷︷ ︸
∂u
∂t

+a
vn
j+1 − vn

j−1

2∆x︸ ︷︷ ︸
∂u
∂x

=
a∆x

2
vn
j+1 − 2vn

j + vn
j−1

∆x2︸ ︷︷ ︸
∂2u
∂x2

. (2.129)

If we consider this difference equation to be a discretization of (2.101b), the term on the right-hand side
will behave much like a diffusion term. We conclude that the error in this discretization is governed by
diffusion.

2.2.4 Finite Difference Methods for the Wave Equation

We now extend our analysis of FD methods for hyperbolic PDEs to the 1D wave equation.
Recall that the wave equation (1.8) can be written as

∂2u

∂t2
− ∂2u

∂x2
= 0, u = u(x, t). (2.130)

Of interest is the fact that we have a second t derivative in this equation, which prevents us from directly
applying the time discretizations so far considered in this chapter. As a result, we now present two common
methods of solving this DE.

Method 1: We can discretize this DE in much the same manner as we did in section 2.2.1 with the linear
advection equation. One such discretization is the central difference scheme, originally applyed in (2.2),
which gives

vn+1
i − 2vn

i + vn−1
i

∆t2
= a2 vn

i+1 − 2vn
i + vn

i−1

∆x2
. (2.131)

The stencil for this method is depicted as follows.

j-1 j j+1

n

n+1

n-1
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It can be shown that this discretization has truncation error

Tn
i = O(∆t2) + O(∆x2), (2.132)

and that the usual direction independent CFL condition,

∆t ≤ 1
|a|∆x, (2.133)

is required for stability.

Method 2: Recall that (2.130) can be rewritten as L1L2u = 0, where L1 and L2 are linear PDE operators
given by

L1 =
∂

∂t
+ a

∂

∂x
, and L2 =

∂

∂t
− a

∂

∂x
. (2.134)

On defining w = L2u, we obtain the system of equations

L2u = w, L1w = 0, (2.135)

which can be rewritten in matrix form as

∂

∂t

[
u

w

]
+

[
−a 0
0 a

]
∂

∂x

[
u

w

]
=

[
w

0

]
. (2.136)

This system can then be solved using generalized versions of FU , BC, LW , CN or LFrog for a coupled
systems of equations.

Physical interpretation of CFL condition for explicit methods

We now give a physical interpretation of the CFL condition that follows from the 1D wave equation.
Recall the definition of the (physical) domain of dependence for a hyperbolic PDE, given in section

1.2.4. For the 1D wave equation, the domain of dependence assumes the following form.

x

(xi, tn+1)

Slope -aSlope a

t

 Dphys 
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Similar to the physical domain of dependence associated with the PDE, we can also construct a numerical
domain of dependence associated with the explicit FD scheme. If the value of vn+1

i only depends on vn
i−1,

vn
i and vn

i+1, then the numerical domain of dependence effectively takes on the following shape.

x

(xi, tn+1)

 Dnum 

i-1 i+1 i 

∆x

∆t

n

n+1

We now assume that ∆t satisfies the CFL condition, i.e. ∆t ≤ ∆x
a . The numerical domain of dependence

in this case falls outside the physical domain of dependence, as follows.

x

(xi, tn+1)

Dphys

Slope -aSlope a

Dnum

i-1 i+1 i 

∆x

∆t

n

n+1

If ∆t does not satisfy the CFL condition, i.e. ∆t > ∆x
a , the numerical domain of dependence instead falls

within the physical domain of dependence, as seen below.

x

(xi, tn+1)

DphysDnum

 i-1  i+1  i 

∆x

∆t

n

n+1
Slope -aSlope a

Hence we claim that a FD method is stable if and only if the numerical domain of dependence, Dnum

contains the physical domain of dependence, Dphys. Namely, a given FD method is unstable when the
physical evolution of the PDE requires more information than can be obtained from the numerical data.

2.2.5 Finite Difference Methods in 2D and 3D

In this section we briefly discuss extending our general FD methods for 1D PDEs to 2D and 3D. In
particular, the simplest way of handling this problem is to perform a so-called dimension-by-dimension
extension of 1D methods. We will demonstrate this process by example.
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Example: The linear advection equation in 2D is given by

∂u

∂t
+ a

∂u

∂x
+ b

∂u

∂y
= 0, a, b > 0. (2.137)

The advection speed is the vector in 2D given by v = (a, b). Given some initial profile u(x, y, t = 0), we
expect that the profile will be advected in the direction of v, as in the following figure.

x

y

v

a

b

We discretize this equation on a standard Cartesian grid with grid points labelled by (xi, yj) with
i = 0, . . . , n and j = 0, . . . , m. The numerical solution is then the grid function given by vn

ij . Using a
natural generalization of the forward upwind scheme, we discretize the PDE as

vn+1
i,j − vn

i,j

∆t
+ a

vn
i,j − vn

i−1,j

∆x
+ b

vn
i,j − vn

i,j−1

∆y
= 0. (2.138)

This method is explicit, with truncation error given by

Tn
ij = O(∆t) + O(∆x) + O(∆y). (2.139)

As with the 1D scheme, we can apply von Neumann stability analysis in order to obtain a condition
for the stability of (2.138). In this case, the general wave-like error takes the form

en
j1j2 = ên exp(i(j1k1∆x + j2k2∆y)). (2.140)

We substitute (2.140) into the discretization and solve for the symbol S(k1, k2), imposing

max
k1,k2

|S(k1, k2)| ≤ 1, (2.141)

for stability. Following a terrible calculation5, we obtain

0 ≤ a
∆t

∆x
+ b

∆t

∆x
≤ 1, a

∆t

∆x
≥ 0, b

∆t

∆x
≥ 0, (2.142)

5Thomas, reference needed.
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which, on applying some simple identities, reduces to

∆t ≤ 1
a

∆x + b
∆y

≤ max
(

∆x

a
,
∆y

b

)
. (2.143)

The previous example was a very simple example of extending FD methods to higher dimensions,
and clearly allows for more interesting generalizations outside the scope of this text. The problem of
discretizing PDEs in high dimensions continues to be a research area of significant interest.

2.3 Finite Difference Methods for Parabolic PDEs

Parabolic PDEs differ from hyperbolic PDEs in one important respect: whereas the domain of dependence
of a hyperbolic PDE is finite in extent at any given time, a parabolic PDE is infinite at any given time.
This result suggests that explicit methods are intractable for parabolic problems. However, in this section
we will see that simply capturing the “majority” of information is sufficient to ensure stability.

We now consider two methods for solving the heat diffusion problem in 1D (a parabolic PDE).
Recall that the 1D heat equation (1.23) with source term f(x) is given by

∂u

∂t
−D(x)

∂2u

∂x2
= f(x). (2.144)

We discretize the spatial derivative using the central-difference method given in (2.2). The time derivative
can be discretized using the schemes we have derived in section 2.2 for the advection equation. To demon-
strate, we choose the Forward Euler and Crank-Nicolson discretizations, which when applied to (2.144)
give

FE
vn+1
j − vn

j

∆t
= D

vn
j+1 − 2vn

j + vn
j−1

∆x2
+ f(xj), (2.145)

and

CN
vn+1
j − vn

j

∆t
=

D

2

(
vn+1
j+1 − 2vn+1

j + vn+1
j−1

∆x2
+

vn+1
j+1 − 2vn

j + vn+1
j−1

∆x2

)
+ f(xj). (2.146)

The truncation error for the FE discretization is given by

Tn
j = O(∆t) + O(∆x), (2.147)

and for Crank-Nicolson by
Tn

j = O(∆t2) + O(∆x2). (2.148)
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Stability

In order to analyze the stability of the methods (2.145) and (2.146), we now apply the von Neumann
method.

On rewriting (2.145) in terms of the actual error ej , we obtain

Tn
j −

(
en+1
j − en

j

∆t

)
= −D

(
en
j+1 − 2en

j + en
j−1

∆x2

)
. (2.149)

We consider only propagation of error (and so set Tn
j = 0) and assume a wave-like solution of the form

en
j = ên exp(ijk∆x). (2.150)

After a short calculation, we obtain

ên+1 = (1 + D ∆t
∆x2 (2 cos(k∆x)− 2))ên, (2.151)

and so conclude the symbol S(k) takes the form

S(k) = 1 + D ∆t
∆x2 (2 cos(k∆x)− 2). (2.152)

On noting that the trigonometric term (2 cos θ − 2) takes values in the interval [−4, 0], we conclude that
D ∆t

∆x2 must satisfy
D ∆t

∆x2 ≤ 1
2 (2.153)

for stability, i.e. we require

0 < ∆t ≤ ∆x2

2D
(2.154)

(compare with the CFL condition for the advection equation (2.92)).

Notes: i) The timestep restriction (2.154), being quadratic in ∆x, is stricter than the CFL condition for
the advection equation. Hence, we will require a very small grid size to ensure stability of this method
when solving the parabolic DE.

ii) Note that a large diffusion constant D leads to a small timestep. This result simply reflects the
physical interpretation of the diffusion constant, namely the speed at which material “spreads out .” If
material spreads out more quickly, more timesteps are required in order to ensure this information is
propagated appropriately.
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iii) Clearly the presence of an infinite propagation speed does not prevent the application of an explicit
method for discretizing the parabolic PDE. However, because of this strict timestep restriction, we con-
clude that the FE method is not practical for the heat equation except in the case of a small diffusion
parameter D.

iv) We often say that parabolic problems are “more stiff” than hyperbolic problems as a consequence of
the increased restrictiveness in simulating them.

A similar calculation for the Crank-Nicolson discretization (2.146) leads to (exercise)

S(k) =
1 + D∆t

2∆x2 (2 cos(k∆x)− 2)

1− D∆t
2∆x2 (2 cos(k∆x)− 2)

. (2.155)

We note that S(k) satisfies |S(k)| ≤ 1 for all k, and hence is unconditionally stable. This method is
significantly more practical for simulating the heat problem, but it is implicit and hence requires solving a
linear system at each timestep.

2.4 Finite Difference Convergence Theory for Time-Dependent Problems

In this section we discuss convergence theory for finite difference methods applied to time-dependent
problems, i.e. PDEs of parabolic or hyperbolic type.

We focus on linear PDEs of the form6

∂u

∂t
− Lu = f, (2.156)

where the spatial derivative operator L has been detached from the general PDE. We make no assumptions
about the dimensionality of the problem.

Example 1 (Linear Advection Equation in 1D): The PDE takes the form (2.156) with

Lu = −a
∂u

∂x
, and f = 0. (2.157)

6Note that a PDE with a second order time deriative ∂2u
∂t2

can be treated similarly.
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Example 2 (Diffusion Equation in 2D): The PDE takes the form (2.156) with

Lu = D∇2u, and f = f(x, y). (2.158)

We further restrict our considerations to FD discretizations (spatial and temporal) with exactly two
levels in time. This restriction allows for all hyperbolic and parabolic methods discussed in this chapter
except for the Leapfrog scheme (i.e. FU, LW, CN and LW).

Example 1: The PDE is discretized as

vn+1
j − vn

j

∆t
+ a

vn
j − vn

j−1

∆x
= 0. (2.159)

We discretize the derivative operator ∂
∂x as a matrix Ah and write the numerical solution vj at an arbitrary

timestep as a vector denoted by Vh. Hence, the operation Lu is discretized by the product AhVh.

V n+1
h − V n

h

∆t
+ aAhV n

h = 0, (2.160)

where

Ah =
1

∆x




1 0 −1
−1 1 0

. . . . . .

0 −1 1




. (2.161)

The−1 in the upper right-corner of the matrix is chosen so as to lead to periodic boundary conditions. We
collect terms evaluated at timestep n + 1 on the left hand side and terms evaluated at timestep n on the
right hand side, obtaining

V n+1
h = (I −∆aAh)V n

h . (2.162)

Example 2: We apply the 5-point weighted discretization of the Laplacian ∇2u, given by (2.20),

∇2u ≈ vi+1,j + vi−1,j − 4vi,j + vi,j+1 + vi,j−1

h2
. (2.163)

In matrix form, this operator takes on the block-diagonal form

Hh =
1
h2




T I 0 0

I T I 0

0
. . . . . . . . .

0 0 I T




, where T =




−4 1 0
1 −4 1

. . . . . . . . .

0 1 −4




. (2.164)
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Using the Crank-Nicolson time discretization, we have

V n+1
h − V n

h

∆t
= D

(
HhV n+1

h + HhV n
h

2

)
+ Fh. (2.165)

We collect terms evaluated at timestep n + 1 on the left hand side and terms evaluated at timestep n on
the right hand side, obtaining

(I − 1
2D∆tHh)V n+1

h = (I + 1
2D∆tHh)V n

h + Fh∆t. (2.166)

On closer examination, we observe that (2.162) and (2.166) can be written in a single unified form
given by

Ph,∆tV
n+1
h = Qh,∆tV

n
h + Fh∆t. (2.167)

The evolution equation (2.167) is called the discrete evolution equation and generalizes all 2-level linear
FD methods.

Example 1: We define the matrices Ph,∆t and Qh,∆t by

Ph,∆t = I, and Qh,∆t = I −∆aAh. (2.168)

Note that for any explicit method, Ph,∆t will be the identity matrix. Further, any homogeneous equation
will satisfy Fh = 0.

Example 2: We define the matrices Ph,∆t and Qh,∆t by

Ph,∆t = I − 1
2D∆tHh, and Qh,∆t = I + 1

2D∆tHh. (2.169)

2.4.1 Actual Error, Truncation Error and Consistency

One can quickly extend the definitions of truncation error (Definition 2.2) and consistency (Definition 2.3)
to time-dependent PDEs in the form (2.167). For convenience, we present these definitions here.

Definition 2.9 The truncation error Th of a time-dependent numerical method of the form (2.167) satis-
fies

Ph,∆tU
n+1
h = Qh,∆tU

n
h + Fh∆t + Th∆t. (2.170)
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Definition 2.10 A FD method in the form (2.167) is said to be consistent for if and only if

lim
∆t→0,∆x→0

Ti = 0. (2.171)

Further, we say that it is consistent with order q1 in time and order q2 in space (q1, q2 ∈ Z) if and only if

Tn
j = O(∆tq1) + O(∆xq2). (2.172)

2.4.2 Stability and Convergence: Lax Convergence Theorem

We now have all the necessary tools to derive a convergence theorem for parabolic and hyperbolic PDEs
similar to the Lax convergence theorem for elliptic PDEs (Theorem 2.1).

Consider a general unbounded time-dependent IVP of the form

IV P





Ω : (x, t) ∈ R× [0, t∗],
u(x, 0) = u0(x),
ut − Lu = f on Ω.

(2.173)

The notion of convergence to the exact solution of this PDE is essentially the same as with elliptic PDEs;
namely, as we refine the grid in space and time we expect that the numerical solution will converge to
the exact solution. The difference in this case is that we must consider the time and space dependence
separately.

Definition 2.11 A finite difference (FD) method (2.167) is convergent in the p-norm with order q1 in
time and q2 in space (to the IVP solution) if and only if

max
n,n∆t≤t∗

‖En
h‖p = O(∆tq1) + O(∆xq2), (2.174)

where ∆t and ∆x may be required to go to 0 in a specific way.

The last clause in this definition may lead to some confusion. This restriction prevents us from ar-
bitrarily refining the time and space components of the mesh without consideration to something like a
CFL condition. For example, in the following circumstances and many others, we are required to impose
a constraint on the limit:

• If we are apply Forward Upwind to the linear advection equation, we impose that ∆t must satisfy
the CFL conditon (2.92).
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• If we are applying the Forward Euler discretization to the heat diffusion equation, we impose that
∆t must satisfy (2.154).

The notion of stability of a time-dependent FD method is an extension of Definition 2.4.

Definition 2.12 A finite difference (FD) method (2.167) is stable in the p-norm if there exists c (indepen-
dent of h and ∆t) so that

‖(P−1
h,∆tQh,∆t)n‖p ≤ c, (2.175)

and
‖(P−1

h,∆tQh,∆t)nP−1
h,∆t‖p ≤ c, (2.176)

for all n and ∆t so that n∆t ≤ t∗, where ∆t and ∆x may be required to go to 0 in a specific way.

Together, Definitions 2.10, 2.11 and 2.12 lead to the Lax convergence theorem for time-dependent
PDEs, which we now state.

Theorem 2.2 (Lax Convergence Theorem) If an arbitrary FD method of the form (2.167) is consistent
in the p-norm with order q1 in time and q2 in space, and is stable in the p-norm then it is convergent in the
p-norm with order q1 in time and q2 in space.

Proof: For sake of brevity, let P = Ph,∆t and Q = Qh,∆t. The numerical method (2.167) then takes the
form

PV n+1
h = QV n

h + Fh∆t. (2.177)

By definition of the truncation error (2.170), we also have

PUn+1
h = QUn

h + Fh∆t + Tn
h ∆t. (2.178)

Taking the difference between (2.177) and (2.178) and applying the definition of the actual error (2.11)
then yields

PEn+1
h = QEn

h − Tn
h ∆t, (2.179)

or equivalently
En+1

h = P−1QEn
h − P−1Tn

h ∆t (2.180)

(it is a consequence of stability that P is invertible; see Definition 2.12). Applying this formula recursively
then gives (exercise)

En
h = (P−1Q)nE0

h + ∆t

n∑

m=1

(P−1Q)n−mP−1Tm−1
h . (2.181)
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We take the p-norm of this result and apply standard identities, obtaining

‖En
h‖ ≤ ‖(P−1Q)n‖p‖E0

h‖p + ∆t
n∑

m=1

‖(P−1Q)n−mP−1‖p‖Tm−1
h ‖p. (2.182)

Stability of the numerical method then implies

‖En
h‖ ≤ c‖E0

h‖p + c∆t
n∑

m=1

‖Tm−1
h ‖p, (2.183)

which leads to
‖En

h‖ ≤ c‖E0
h‖p + cn∆tTmax,p. (2.184)

Since we choose exact values of u0(x) at t = 0, we have ‖E0
h‖p = 0. Then consistency of the numerical

method leads to
‖En

h‖ ≤ O(∆tq1) + O(∆xq2), (2.185)

as desired. ¤

Notes: i) As in the case of elliptic PDEs, the Lax Convergence theorem can be generalized to the Lax
Equivalence theorem, which states:

Theorem 2.3 (Lax Equivalence Theorem) Consider an arbitrary FD method of the form (2.167) that is
consistent in the p-norm with order q1 in time and q2 in space. Then the FD method is stable in the p-norm
if and only if it is convergent in the p-norm with order q1 in time and q2 in space.

ii) It can be shown that the restrictions

‖P−1Q‖p ≤ 1, and ‖P−1‖p ≤ cp, (2.186)

are sufficient for stability of a numerical method. This result follows from applying the norm identity

‖(P−1Q)n‖p ≤ ‖P−1Q‖n, (‖AB‖ ≤ ‖A‖‖B‖). (2.187)

2.4.3 2-Norm Convergence

So far in this chapter we have considered two types of stability: von Neumann stability and stability in the
p-norm. We now link these concepts by showing that von Neumann stability is a necessary condition for
stability in the 2-norm.
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Theorem 2.4 Consider a linear FD method of the form ∂u
∂t −Lu = f with L a linear PDE operator with

constant coefficients. Then for any IVBVP with periodic BCs,

‖P−1Q‖2 = max
k
|S(k)|. (2.188)

This result can be surprising at first, but consider the following: we have already shown that ên exp(ijk∆x)
is an eigenfunction of any linear FD operator with constant coefficients (see Proposition 2.1). It turns out
that S(k) is the eigenvalue!

Sketch Proof: Recall that if A is normal, i.e. AAT = AT A then ‖A‖2 = ρ(A). Since P−1Q is always
normal when the BCs are periodic, the result then follows on knowing that S(k) gives the eigenvalues of
P−1Q. ¤

Recall that von Neumann stability requires that ‖S(k)‖2 ≤ 1. It then follows from (2.186) and
Theorem 2.4 that von Neumann stability is equivalent to 2-norm stability, subject to ‖P−1‖2 ≤ cp.

Example 1: We use the forward upwind discretization for the linear advection problem in 1D with pe-
riodic BCs. We have already shown that this method is consistent and von Neumann stable for ∆t ≤ ∆x

a .
By the Lax convergence theorem, we conclude this scheme converges in the 2-norm.

Example 2: We use the Crank-Nicolson discretization for the heat diffusion problem in 1D with periodic
BCs. Again, we have shown that this method is consistent and always von Neumann stable. By the Lax
convergence theorem, we conclude this scheme converges in the 2-norm.



CHAPTER 3

Finite Volume Methods for Nonlinear
Hyperbolic Conservation Laws

In this chapter we study finite volume (FV) methods. These methods stem from the study of physical time-
dependent problems and processes, generally in fluid mechanics or gas dynamics. For much of this chapter
we will study FV methods applied to the linear advection equation, emphasizing that these methods can
be easily generalized to physical systems. In section 3.1 we briefly introduce the notion of characteristic
curves of a hyperbolic PDE, as they will be useful later in the study of PDEs. In section 3.2 we introduce
conservation laws in 1D, which make up the set of 1D hyperbolic PDEs that are compatible with the
finite volume approach. We discuss problems with FD methods in section (3.3), which motivates us to
develop the 1D FV methods in section 3.4. Finally, in sections 3.5 and 3.6 we extend conservation laws
and the associated FV methods to higher dimensions and consider systems of conservation laws, giving
an important example of a physical system that can be solved using the FV approach.

3.1 Characteristic Curves

The characteristic curves of a PDE are important in the study of finite volume methods. In this section we
briefly review their theory as applied to the linear advection equation.

81
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Recall that the linear advection equation in 1D takes the form

∂u

∂t
+ a

∂u

∂x
= 0, (3.1)

with right-moving wave solution
u(x, t) = f(x− at). (3.2)

Consider a general curve in the xt-plane described by x = x(t). We are interested in knowing how the
exact solution u(x(t), t) changes along this curve. Using the chain rule, we can write

d

dt
u(x(t), t) =

∂u

∂x

dx(t)
dt

+
∂u

∂t
. (3.3)

On comparing this equation with (3.1), we are motivated to choose the special curve whose derivative is
given by

dx(t)
dt

= a. (3.4)

Observe that (3.4) describes straight lines with slope a. These curves are depicted in the following figure.

x

t slope a

On substituting (3.4) into (3.3) we see that

d

dt
u(x(t), t) = a

∂u

∂x
+

∂u

∂t
, (3.5)

which in turn satisfies
d

dt
u(x(t), t) = 0, (3.6)

due to (3.1). The curves (3.4) are called the characteristic curves of the linear advection equation.
Formally, a characteristic curve x(t) for a PDE in 1D has the following properties:

1) The solution u is constant along these curves, i.e. d
dtu(x(t), t) = 0.

2) The PDE changes to an ODE along x(t).
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3) Since u is constant, boundary conditions or initial conditions cannot be specified along characteristic

In general, hyperbolic PDEs will have characteristic curves, whereas elliptic PDEs do not. Parabolic PDEs
are somewhere in between, i.e. in general they will not have a complete set of characteristic curves.

3.2 1D Conservation Laws and the Burgers’ Equation

In this section we introduce the concept of a hyperbolic conservation law and derive several theoretical
results that relate to PDEs of this form. In particular, we will apply the theory of conservation laws to the
study the Burgers’ equation, a hyperbolic PDE that originates in the study of waves and is relevant to the
study of finite volume methods. We begin this section with the definition of a conservation law.

Definition 3.1 The differential form of a conservation law in 1D for a state variable u(x, t) is a PDE of
the form

∂u

∂t
+

∂

∂x
f(u) = 0, (3.7)

where f(u) is called the flux function and is an arbitrary function of u.

Aside from the linear advection equation, which is a trivial example of a conservation law, the inviscid
Burgers’ equation is perhaps the simplest nonlinear case of a conservation law. The Burgers’ equation
takes the form

∂u

∂t
+

∂

∂x

(
u2

2

)
= 0. (3.8)

Clearly, (3.8) is a conservation law with flux function

f(u) = 1
2u2. (3.9)

In general, a scalar conservation law (i.e. a conservation law in one variable) is always hyperbolic.

3.2.1 Conservation-Integral Forms

We now expand on the theory of conservation laws and introduce the first and second integral form of a
conservation law.

One may wonder why an equation of the form (3.7) is called a “conservation law.” In order to answer
this question, we consider an arbitrary interval [a, b] in 1D. If we integrate the conservation law within this
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interval, interchange the integral and derivative operations,1 and apply the second fundamental theorem
of calculus, we obtain

d

dt

∫ b

a
udx + f(u(b, t))− f(u(a, t)) = 0. (3.10)

If we define

Q(t) =
∫ b

a
u(x)dx, (3.11)

then Q(t) is a conserved quantity in [a, b], i.e. Q(t) will only change when there is a net inflow or outflow
through the domain boundaries.2 This result motivates the following definition.

Definition 3.2 The first integral form of a conservation law is given by

d

dt
Q(t) = f(u(a, t))− f(u(b, t)), (3.12)

where Q(t) is defined according to (3.11).

Motivated by our prior success, we can integrate (3.12) over some time interval t ∈ [0, T ], obtaining
∫ T

0

dQ

dt
(t)dt +

∫ T

0
[f(u(a, t))− f(u(b, t))] dt = 0. (3.13)

On again applying the second fundamental theorem of calclus, we obtain the following definition.

Definition 3.3 The second integral form of a conservation law is given by

Q(T )−Q(0) +
∫ T

0
[f(u(a, t))− f(u(b, t))] dt. (3.14)

The second integral form has a straightforward physical interpretation: namely, the total amount of
the state variable u in [a, b] between time 0 and T is equal to the difference in the total flux through the
boundary from time 0 to time T (see figure).

1This interchange is allowed subject to u being C1 in t.
2Recall that in deriving the heat equation in section 1.1.1, we applied a similar technique, obtaining that the total heat energy

was a conserved quantity.
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x

t

T
Q(T)

Q(0)a b

f(u(b,t))dtf(u(a,t))dt   0
 T

   0
 Tinward

flux
outward

flux

3.2.2 Characteristic Curves of the Burgers’ Equation

The Burgers’ equation (3.8) leads to an interesting phenomenon in its solutions, namely the existence of
so-called shock waves and rarefaction waves. In this section we show how the characteristic curves of the
Burgers’ equation allow us to describe the behaviour of this phenomenon.

Note that on applying the chain rule we can rewrite the Burgers’ equation (3.8) as

∂u

∂t
+ u

∂u

∂x
= 0. (3.15)

Since characteristic curves x(t) satisfy

d

dt
u(x(t), t) =

∂u

∂x

dx(t)
dt

+
∂u

∂t
= 0, (3.16)

comparing (3.15) with (3.16) leads us to choose

dx(t)
dt

= u(x(t), t). (3.17)

The characteristic curves x(t) of the Burgers’ equation must then satisfy this ODE. Since u is constant
along the characteristic curves, it follows that the slope of each line must be u, i.e. the characteristics are
straight lines with slope u (which is constant along each line).

Example 1. Consider an initial profile (t = 0) of the following form.

x

u

1

1

20

t = 0
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The characteristic curves, when plotted in the xt-plane, are then straight lines whose slope is determined
by the initial profile (see figure).

x

t

1

1

2u=0 u=10

Tracing out the characteristic curves then allows us to draw the profile of u at any future time. For example,
at t = 1, we obtain the following profile.

x

u

1

1

20

t = 1

In general this kind of solution is called a rarefaction wave solution. This term is drawn from gas dynam-
ics, where a wave of this type is associated with a volume of gas becoming increasingly less dense.

Example 2. Consider an initial profile (t = 0) of the following form.

x

u

1

1

20

t = 0

The characteristic curves are depicted in the following figure.
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Observe that at t = 1 the characteristic curves intersect. Clearly this is problematic, since we expect the
solution to have a constant value along each characteristic curve; we can only conclude that the solution
takes on all possible values between [0, 1] when (x, t) = (1, 1)! On drawing the solution profile up to
t = 1, we obtain the following sequence of plots.

x

u

1

1

20

t = 1
2

t = 0

t = 1

At t = 1 the solution has become discontinuous. This phenomenon is known as shock formation and is
associated with observable physical behaviour.

This example illustrates an important aspect of nonlinear hyperbolic PDEs, namely that discontinuities
may form from smooth initial conditions in finite time. Although the differential form of the conservation
law (3.7) no longer applies after the formation of a shock, we can use the integral form of the conservation
law (3.14) to show that after t = 1 the shock will actually travel forward with some shock speed s (this
will be shown later).

In general, whenever characteristics intersect, there are two possible outcomes:

1) The solution becomes multivalued. For example, if you have ever been to a beach you have certainly
observed wave breaking along the shoreline. In this case, nonlinear steepening of the wave causes
it to become multivalued, as in the following figure.
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This outcome may occur in a physical system, but it is typically very unstable, i.e. the multivalued
solution will quickly collapse to a single-valued profile.

2) The second possibility is that a shock wave forms, i.e. a single-valued discontinuous solution. The
term “shock wave” is again drawn from fluid mechanics and is essentially what occurs when a
supersonic jet passes through the sound barrier. Namely, we obtain a discontinuity in the density of
air in front of the shock wave compared to after the shock wave. In this case, the wave appears as
in the following profile.

In this text, we will focus on the study of case 2).

3.2.3 Shock Speed: The Rankine-Hugonoit Relation

In this section we study the behaviour of a shock wave after it has formed and derive a relationship that
gives the shock speed in terms of the shock profile.

Recall that since a shock wave requires a discontinuous profile, the differential form of the DE is no
longer valid at the discontinuity. Instead, we must use the integral form.

In order to proceed, we must first make some assumptions on the behaviour of the shock wave. We
assume that the PDE is governed by a conservation law of the form (3.14) and assume that after t = 0
there is a single shock wave propagating rightward with a constant speed s. We define a region Ω in the
xt-plane by

Ω = {(x, t) ∈ [a, b]× [0, T ]} , (3.18)

ensuring that it is sufficiently large to contain the shock for all times t ∈ [0, T ] (see figure).
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t

a b

T

0

shock at
time 0

shock at
time T



3.2. 1D Conservation Laws and the Burgers’ Equation 89

Further, we use u` and ur to denote the state of the system to the left and right of the shock wave,
respectively. The shock wave then evolves according to the following figure.

x

u

a b

t = 0 t = T

ul

ur

ul - ur

sT

We use Q(t) to denote the amount of material in the interval [a, b] at time t, defined according to (3.11)
by Q(t) =

∫ b
a u(x, t)dx. By inspection, Q(t) must satisfy

Q(T )−Q(0) = sT (u` − ur). (3.19)

From (3.14) we also have that

Q(T )−Q(0) =
∫ T

0
[f(u(a, t))− f(u(b, t))] dt = T (f(u`)− f(ur)), (3.20)

since u(a, t) = u` and u(b, t) = ur for all t ∈ [0, T ]. Equating (3.19) and (3.20) and solving for s then
leads to the Rankine-Hugonoit relation for the shock speed s,

s =
f(u`)− f(ur)

u` − ur
. (3.21)

Example: Choose u` = 1 and ur = 0, subject to the Burgers’ equation (f(u) = 1
2u2). From the

Rankine-Hugonoit relation (3.21) we obtain

s =
0− 1

2

0− 1
= 1

2 . (3.22)

Thus, the shock propagates rightward with speed s = 1
2 after t = 1.

Notes: i) Characteristic curves are allowed to enter into the shock wave, but cannot emerge from the
shock wave. This result is known as the entropy condition and is related to the arrow of time, i.e. entropy
increases and information is lost in the shock, not created.
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ii) The discontinuous solution is known as a weak solution of the PDE. Roughly, this means that it is a
solution to the integral form of the PDE (3.14).

3.3 Problems with FD Methods for Hyperbolic Conservation Laws

Although FD methods are perhaps the most straightforward discretization of a PDE, they often introduce
several problems when applied to physical systems. In this section we discuss two such problems, the first
originating from oscillatory behaviour of some FD methods when applied to discontinuous solutions and
the second from an incorrect (non-physical) calculation of shock speeds.

3.3.1 Problem 1: Oscillations when Solution is Discontinuous

Note that the linear advection equation (1.25), given by

∂u

∂t
+ a

∂u

∂x
= 0, (3.23)

can be written as a conservation law (3.7) on making the choice3

f(u) = au. (3.24)

Now consider an initially discontinuous profile on the domain [0, 1], given by

u(x) =

{
1, if x ≥ 1

2 ,
0, if x < 1

2 .
(3.25)

We numerically simulate this profile under the FU and LW finite-difference discretizations, obtaining
figure 3.1. Note that the LW scheme introduces what is known as a Gibbs phenomenon, i.e. an overshoot
in the discretization of the profile at the discontinuity.

One can observe that on refining the grid the amplitude of the oscillation at the discontinuity under
the LW scheme remains the same. This phenomenon is related to the Fourier series of discontinuous
functions, where one can observe a similar result; namely, the Fourier series gives “overshoots” in the
presence of a discontinuity.

Recall that for the FU scheme the dominant error term is diffusive, whereas for the LW scheme the
dominant error is dispersive. Hence, the discontinuity in the figure is due to interference of wave-like error

3Note that a flux function that is linear in u is known as a linear flux function.
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FIGURE 3.1: Advection of an initially discontinuous profile using the forward upwind (FU) and Lax-
Wendroff (LW) finite difference methods.
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components with different wave lengths. Since standard higher-order methods produce error terms which
are dispersive, we conclude that the standard higher order difference methods must create oscillations at
discontinuities.

Oscillatory effects can be problematic in conservation laws. For example, if u represent the density of
a gas, oscillations may cause negative gas densities to be computed.

3.3.2 Problem 2: Standard FD Methods Can Give the Wrong Shock Speeds

We now turn our attention to FD methods applied to the Burgers’ equation (3.8) and consider the emer-
gence of a shock wave. We are interested in an unbounded domain (x, t) ∈ (−∞,∞)× (0,∞) with
discontinuous initial condition given by

u(x) =

{
0, if x > 0,
1, if x ≤ 1.

(3.26)

Recall from the Rankine-Hugonoit relation (3.21) that the shock speed s in this case is given by

s =
f(ur)− f(u`)

ur − u`
=

0− 1
2

0− 1
= 1

2 . (3.27)

The characteristic curves associated with this initial condition are depicted in the following figure, along
with the anticipated location of the shock as it evolves.

x

t

1

1

u=1 0 u=0

shock

We consider a straightforward FD discretization of this PDE given by

vn+1
i − vn

i

∆t
+ vn

i

vn
i − vn

i−1

∆x
= 0. (3.28)

For theoretical purposes, we assume that the discretization extends infinitely in the spatial direction, with
v0 denoting the value of the numerical solution at x = 0. Hence the numerical solution initially satisfies
vi = 1 for i ≤ 0 and vi = 0 for i > 0, as depicted below.
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We now calculate the discrete solution profile after one time step. On substituting n = 0 into (3.28),
we obtain

v1
i = v0

i −
∆t

∆x
v0
i (v

0
i − v0

i−1), (3.29)

and so find that the solution at t = ∆t, denoted v1
i , satisfies

i ≤ 0 : v1
i = 1− ∆t

∆x(1)(1− 1) = 1 = v0
i ,

i > 0 : v1
i = 0− ∆t

∆x(0)(· · · ) = 0 = v0
i .

Observe that at time t = ∆t the discontinuity has not moved! Note that refining the grid does not help;
this FD method simply gives a shock speed of zero.

Reason: The FD method (3.28) is based on the differential form of the conservation law (3.7), which is
not valid for discontinuous solutions. In order to remedy this problem, we must instead base our numerical
methods on the integral form of the conservation law (3.14), as we will now do in deriving the FV methods.

3.4 Finite Volume Methods

In desiring a set of methods that properly handle conservation laws, we now turn our attention to FV
methods. We will now show that the integral form of the conservation law motivates a different approach
in developing a method for numerically solving PDEs and give an example of one such approach known
as the local Lax-Friedrichs method in 1D.
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3.4.1 The Finite Volume Principle

Instead of discretizing the solution at individual points, as with FD methods, we instead divide the spatial
domain into cells of finite volume. For simplicity, we take the cells to be of equal size ∆x, as in the
following figure.

x

u(x,t)

x3x2x1a xN b

cell 1 cell 2 cell 3 cell 4

This discretization can also be performed in the time domain, leading to the following subdivision of the
state space.

x

t

xi+1xixi-1xi-2 xi-1/2 xi+1/2

tn+1

tn

cell i

Here cell interfaces are denoted by half-integer indices, such as i + 1
2 or i − 1

2 . The second integral
form of the conservation law (3.14) can then be rewritten using the cell from this discretization as

Qn+1
i −Qn

i +
∫ tn+1

tn

[
f(u(xi+ 1

2
, t))− f(u(xi− 1

2
, t))

]
dt = 0, (3.30)

with
Qn

i =
∫ x

i+1
2

x
i− 1

2

u(x, tn)dx. (3.31)

We now define un
i , the average value of u(x, t) in cell i at time tn, by

un
i =

Qn
i

∆x
, (3.32)
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and f
n+ 1

2

i+ 1
2

, the average value of f(u) at the interface i + 1
2 between tn and tn+1 by

f
n+ 1

2

i+ 1
2

=

∫ tn+1

tn
f(u(xi+ 1

2
, t))dt

∆t
. (3.33)

This process then leads to the following definition, on using (3.30).

Definition 3.4 The third integral form of the conservation law is defined by

un+1
i − un

i

∆t
+

f
n+ 1

2

i+ 1
2

− f
n+ 1

2

i− 1
2

∆x
= 0. (3.34)

We note that (3.34) is an exact equation, since it simply follows from rewriting the (exact) second
integral form.

Equation (3.34) is easily discretized on making the approximations

un
i ≈ vn

i , f
n+ 1

2

i+ 1
2

≈ f∗(vn
i , vn

i+1). (3.35)

Here, f∗(vn
i , vn

i+1) is called the numerical flux function, and is often denoted in shorthand by f∗(vn
i , vn

i+1) =
f∗n

i+ 1
2

. Note that this approximation assumes that the flux through the interface i + 1
2 can be reconstructed

using the state of the system in cell i and i + 1.
We can now construct our difference equation using (3.34) and (3.35), finding that for an explicit FV

method, the difference equation takes the form

vn+1
i − vn

i

∆t
+

f∗(vn
i , vn

i+1)− f∗(vn
i−1, v

n
i )

∆x
= 0. (3.36)

The choice of flux function f∗(vn
i , vn

i+1) then distinguishes between different FV methods.

Notes: i) Any flux function f∗ must satisfy the consistency requirement,

f∗(v, v) = f(v), ∀ v ∈ R. (3.37)

ii) An implicit FV method can be obtained by instead evaluating the flux function at time n + 1. It
follows that the implicit difference equation takes the form

vn+1
i − vn

i

∆t
+

f∗(vn+1
i , vn+1

i+1 )− f∗(vn+1
i−1 , vn+1

i )
∆x

= 0. (3.38)
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iii) In order to obtain higher accuracy in our discretization, we use more points to reconstruct the flux
function at the interface, i.e.

f
n+ 1

2

i+ 1
2

≈ f∗(vn
i−1, v

n
i , vn

i+1, v
n
i+2).

3.4.2 The Local Lax-Friedrichs Method in 1D

Note that using the chain rule, a 1D conservation law (3.7) can be rewritten in the form

∂u

∂t
+

∂f(u)
∂x

= 0 ⇐⇒ ∂u

∂t
+

df(u)
du

∂u

∂x
= 0. (3.39)

We define λ(u) = df(u)
du = f ′(u), and so write the conservation law as

∂u

∂t
+ λ(u)

∂u

∂x
= 0. (3.40)

Now compare this equation with the linear advection equation (3.1). In (3.40), λ(u) plays the role of the
linear advection speed a and hence is like a non-linear wave speed. Further, since u is constant along
characteristic curves λ(u) represents the slope of these characteristics. The non-linear wave speed λ(u)
motivates us to define the following flux function.

The local Lax-Friedrichs flux function is defined by

f∗(vn
i , vn

i+1) =
f(vn

i ) + f(vn
i+1)

2
− 1

2

∣∣∣∣λ
(

vn
i + vn

i+1

2

)∣∣∣∣ (vn
i+1 − vn

i ). (3.41)

Example: When applied to the Burgers’ equation (f(u) = 1
2u2 and λ(u) = df(u)

du = u), (3.41) reads

f∗(vn
i , vn

i+1) =
1
2(vn

i )2 + 1
2(vn

i+1)
2

2
− 1

2

∣∣∣∣
vn
i + vn

i+1

2

∣∣∣∣ (vn
i+1 − vn

i ), (3.42)

and

f∗(vn
i−1, v

n
i ) =

1
2(vn

i−1)
2 + 1

2(vn
i )2

2
− 1

2

∣∣∣∣
vn
i−1 + vn

i

2

∣∣∣∣ (vn
i − vn

i−1), (3.43)

Stability, Accuracy and Consistency

Under the Lax-Friedrichs scheme, the stability bound for each FV cell is given by a CFL condition of the
form

∆ti ≤ ∆x

|λ(vi)| . (3.44)
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This restriction is comparable to the CFL condition for FD methods (2.92) since λ(u) is like a local wave
speed. If we require a single time-step for the whole simulation domain, we need to take the maximum
∆t calculated from (3.44), i.e. we require

∆t = min
i

∆x

|λ(vi)| . (3.45)

Note: Although the standard CFL conditions (2.92) and (3.45) are absolute limits on stability, it is
usually preferrable to include an additional safety factor, especially for non-linear problems. For instance,
we may choose

∆t = c
∆x

|a| , (3.46)

with c = 0.9.
The accuracy of the Lax-Friedrichs flux function can be shown to satisfy

Tn
j = O(∆t) + O(∆x). (3.47)

Further, one can easily verify (exercise) that the method is consistent, according to (3.37).

3.4.3 Numerical Conservation

The defining property of FV methods is something known as numerical conservation, which we now
discuss.

Consider some domain (x, t) ∈ [a, b] × [0,∞) with [xα, xβ] ⊂ [a, b] any subinterval of the spatial
domain (see figure).

x
a bxα xβ

Intuitively, conservation in the continuous sense implies that for any [xα, xβ] ⊂ [a, b] and [tn, tn+1] ⊂ [0,∞),
the exact solution must satisfy

∫ xβ

xα

u(x, tn+1)dx−
∫ xβ

xα

u(x, tn)dx =
∫ tn+1

tn

f(u(xα, t))dt−
∫ tn+1

tn

f(u(xβ, t))dt. (3.48)

If we instead consider some partition of the domain into discrete regions (see figure below), we obtain
an analogous concept in the discrete case.
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x
a bx i x iα β

f n*
i+1/2

xi

f n*
i-1/2

We say that a numerical method is conservative in the discrete sense if for all xiα , xiβ it satisfies

iβ∑

i=iα

(vn+1
i ∆x)−

iβ∑

i=iα

(vn
i ∆x) = (f∗n

iα− 1
2
∆t)− (f∗n

iα+ 1
2
∆t), (3.49)

where f∗n
i+ 1

2

is some numerical flux function. Namely, this condition implies that in any interval, all
discrete fluxes within the domain (interior fluxes) cancel out. It can be shown that any FV method (3.36)
exhibits this discrete conservation property (exercise), and hence FV methods are often referred to as
conservative methods. In this sense, any FV scheme is simply a conservative FD scheme.

Theorem 3.1 (Lax-Wendroff Theorem) If a conservative FD method (FV method) converges to a solu-
tion v(x, t) as the grid is refined, then this v(x, t) has to be a weak solution of the conservation law (with
shocks travelling at the right speed).

In other words, this theorem simply states that conservative FD methods (i.e. FV methods) cannot
give the wrong shock speeds. This result solves the second problem of FD methods (see section 3.3.2).

3.4.4 FV Methods and the Linear Advection Equation

We now compare the forward upwind (FU) method introduced in section 2.2 and the Lax-Friedrichs FV
method when applied to the advection equation. Recall that the exact flux function for the advection
equation is given by (3.24).

FD Approach: The forward upwind (FU) method (2.63) can be written in the form

vn+1
j − vn

j

∆t
+

(avn
j )− (avn

j−1)
∆x

= 0. (3.50)

Comparing this equation with (3.36), we find

f∗n
i+ 1

2
= f∗(vn

i , vn
i+1) = avn

i , (3.51)

f∗n
i− 1

2

= f∗(vn
i−1, v

n
i ) = avn

i−1, (3.52)
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and so conclude that the FU method is a conservative FD method for the linear advection equation with
flux function

f∗(vn
i , vn

i+1) = vn
i . (3.53)

We refer to (3.53) as the upwind numerical flux.

Note: It can be shown that the Lax-Wendroff (LW) scheme is also a conservative FD method, and hence
a FV method; however, as we have seen in section 3.3.1, the LW method also creates oscillations at
discontinuities and so is generally not used.

FV Approach: On applying the numerical flux function from the Lax-Friedrichs scheme (3.41) to the
advection equation, we obtain

f∗n
i+ 1

2

=
avn

i + avn
i+1

2
− 1

2 |a|(vn
i+1 − vn

i ). (3.54)

Given the sign of a, we can simplify this expression, as follows:

Case 1: a > 0 f∗n
i+ 1

2
= avn

i , (3.55)

Case 2: a < 0 f∗n
i+ 1

2
= avn

i+1. (3.56)

Graphically, the flux function in each case represents a flow, as depicted in the following figure.

i i+1

a > 0

f n*
i+1/2

i i+1

a < 0

f n*
i+1/2

Observe that the LF numerical flux function for the advection equation (3.54) automatically gives the
upwind flux regardless of the sign of a, i.e. it automatically reduces to the FU method. On substituting
(3.54) into (3.36), we obtain4

vn+1
i − vn

i

∆t
+ a

vn
i+1 − vn

i−1

2∆x︸ ︷︷ ︸
Central discretization

=
|a|∆x

2
vn
i+1 − 2vn

i + vn
i−1

∆x2︸ ︷︷ ︸
Numerical dissipation

. (3.57)

4Compare with (2.129).
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Similar to (3.54), the first term gives a central discretization and the second term gives numerical dissipa-
tion. As we have seen in our analysis of the advection equation, the numerical dissipation term is needed
for stability – a fact which generalizes from the linear advection equation to arbitrary flux functions.

Note: Given a conservative FD method in the form (3.57), one can obtain a flux function f∗n
i+ 1

2

on
rewriting the equation and comparing with (3.36). Further, if a given scheme has been applied to the
linear advection equation, one can often generalize it to an arbitrary PDE by replacing all avn

i terms with
f(vn

i ) and |a| with λ(1
2(vn

i + vn
i+1)).

3.5 Conservation Laws in Higher Dimensions

In this section, we extend the FV methods discussed in section 3.4 to higher dimensions. The fundamental
result that allows us to make this generalization is Gauss’ divergence theorem, which we discuss in section
3.5.1. The concepts behind generalizing FV methods in 1D to 2D can be intuitively extended to higher
dimensions, and so we use conservation laws in 2D as a fundamental example of this technique and leave
generalization to the reader.

3.5.1 Gauss’ Divergence Theorem

We now state Gauss’ divergence theorem for domains of arbitrary dimension and give an example of the
theorem in action.

Theorem 3.2 Let Ω ⊂ Rn be a compact region (closed and bounded) with a piecewise smooth boundary
Γ = ∂Ω. If v is a continuously differentiable vector field defined on Rn then

∫

Ω
∇ · vdV =

∮

∂Ω
(v · n)d`, (3.58)

where n is the outward unit normal of ∂Ω.

For example, one might choose the domain Ω as in the following figure.
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x

y

Ω

n

Γ

Note: The divergence theorem is a generalization of the second fundamental theorem of calculus,
∫ b

a

df

dx
dx = f(b)− f(a), (3.59)

which we used in deriving the integral form of the conservation law in 1D.

Example: We choose Ω to be the unit square in 2D, depicted as follows.

x

y

0

Ω

Γ
1

1

We choose v to be a vector field in 2D, defined by v(x, y) = (3xy, y), with divergence ∇ · v = 3y + 1.
On integrating the divergence of v over the domain Ω, we obtain

∫

Ω
∇ · vdV =

∫ 1

x=0

∫ 1

y=0
(3y + 1)dydx

=
[

3
2y2 + y

]1

0

= 5
2 .



102 3. Finite Volume Methods for Nonlinear Hyperbolic Conservation Laws

To calculate the RHS of the divergence theorem, we require the vector field and unit normal along the
boundary ∂Ω. We depict these quantities in the following figure.

x

y

0

Ω

1

1

n=(0, 1)

n=(1, 0)

n=(0, -1)

n=(-1, 0)

v=(3x, 1)

v=(0, 0)

v=(3y, y)v=(0, y)

(1)

(2)

(3)

(4)

The integral around the boundary then reads
∮

∂Ω
(v · n)d` =

∫ 1

0
(3x, 1) · (0, 1)dx

︸ ︷︷ ︸
(1)

+
∫ 1

0
(0, y) · (−1, 0)dy

︸ ︷︷ ︸
(2)

+
∫ 1

0
(0, 0) · (0,−1)dx

︸ ︷︷ ︸
(3)

+
∫ 1

0
(3y, y) · (1, 0)dx

︸ ︷︷ ︸
(4)

= x|10 + 0 + 0 + 3
2y|10

= 1 + 3
2

= 5
2 .

On comparing
∫
Ω∇ · vdV and

∮
∂Ω(v · n)d`, we conclude that the LHS and RHS of (3.58) agree.

3.5.2 Conservation Laws in Higher Dimension

We now introduce the concept of a conservation law in higher dimensions, i.e. in Rn for n ≥ 2.
It follows by direct generalization of (3.7) that a higher dimensional conservation law can be written

in differential form as
∂u

∂t
+∇ · f(u) = 0, (3.60)
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where f(u) is the flux function (in this case, a vector function f : R→ Rn). Given some arbitrary region Ω
satisfying the constraints of Gauss’ divergence theorem (Theorem 3.2), we can integrate the conservation
law so as to obtain

d

dt

(∫

Ω
u(x, t)dΩ

)
+

∫

Ω
∇ · f(u)dΩ = 0. (3.61)

We now apply Gauss’ divergence theorem to (3.61) and define

QΩ(t) =
∫

Ω
u(x, t)dΩ, (3.62)

which gives the generalization of the first integral form of a conservation law,5

d

dt
QΩ(t) +

∮

∂Ω
(f(u) · n)d` = 0, (3.63)

analogous to (3.12). Namely, (3.63) states that the rate of change of QΩ(t) is given by the net influx,

−
∮

∂Ω
(f(u) · n)d`, (3.64)

of u into the domain Ω through the boundary ∂Ω, as we would expect for a conservation law.

3.5.3 Finite Volume Methods in 2D

We now give some examples of FV methods in 2D, using the notion of the higher-dimension conservation
law defined by (3.63).

In restricting to 2D, the flux function f(u) can be written as

f(u) = (g(u), h(u)). (3.65)

The conservation law (3.60) then takes the form

∂u

∂t
+

∂g(u)
∂x

+
∂h(u)

∂y
= 0, (3.66)

which, on applying the chain rule, can be rewritten as

∂u

∂t
+

dg

du

∂u

∂x
+

dh

du

∂u

∂y
= 0. (3.67)

The terms dg
du and dh

du represent the wave speed of the system in the x and y directions, respectively.

5Compare with 3.12.



104 3. Finite Volume Methods for Nonlinear Hyperbolic Conservation Laws

Example: Recall that the linear advection equation in 2D takes the form (2.137), which we restate as

∂u

∂t
+ a

∂u

∂x
+ b

∂u

∂y
= 0. (3.68)

The wave speed, or advection velocity vector, is then given by v = (a, b).
We discretize the domain into square elements labelled by indices i and j, as depicted below.

x

t

j

i

cell i, j

j-1

j+1

i-1 i+1

Similar to the 1D case, discussed in section 3.4.1, we average the value of u over a FV cell and hence
obtain from (3.66) the general form for an explicit FV method in 2D,

vn+1
i,j − vn

i,j

∆t
+

g∗(vn
i,j , v

n
i+1,j)− g∗(vn

i−1,j , v
n
i,j)

∆x
+

h∗(vn
i,j , v

n
i,j+1)− h∗(vn

i,j−1, v
n
i,j)

∆y
. (3.69)

By defining intermediate flux functions via

g∗n
i+

1
2 ,j

= g∗(vn
i,j , v

n
i+1,j), and h∗n

i+
1
2 ,j

= h∗(vn
i,j , v

n
i+1,j), (3.70)

we can also write (3.69) as

vn+1
i,j − vn

i,j

∆t
+

g∗n
i+ 1

2
,j
− g∗n

i− 1
2
,j

∆x
+

h∗n
i+ 1

2
,j
− h∗n

i− 1
2
,j

∆y
. (3.71)

Hence, all that remains to define a explicit FV method is to specify numerical flux functions for g∗

and h∗. A common technique for higher-dimensional FV methods, known as the dimension-by-dimension
approach is to simply use the 1D Lax-Friedrichs numerical flux function (3.41) for g∗ and h∗, i.e.

g∗(vn
i,j , v

n
i+1,j) =

g(vn
i,j) + g(vn

i+1,j)
2

− 1
2

∣∣∣∣(1, 0) · λ
(

vn
i,j + vn

i+1,j

2

)∣∣∣∣ (vn
i+1,j − vn

i,j). (3.72)
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3.6 Systems of Conservation Laws

We now study FV approaches for systems of conservation laws in 1D.
If we consider a system of 1D conservation laws, each of the form (3.7), at each point x ∈ Ω we can

define a state vector U(x). The system of conservation laws then takes the form

∂U
∂t

+
∂F(U)

∂x
= 0. (3.73)

On applying the chain rule from vector calculus, we can write this equation as

∂U
∂t

+
dF(U)

dU
∂U
∂x

= 0, (3.74)

where dF(U)
dU is the Jacobian matrix of the flux function F. For example, if u is of dimension 2, then the

state vector and flux function can be written in the form

U =

[
u1

u2

]
, F(U) =

[
f1(u1, u2)
f2(u1, u2)

]
. (3.75)

The Jacobian matrix is given by

dF(U)
dU

=




df1

du1

df1

du2

df2

du1

df2

du2


 . (3.76)

The notion of a hyperbolic PDE extends to conservation laws in the following manner:

Definition 3.5 A system of conservation laws (3.73) is hyperbolic if and only if all eigenvalue of dF(U)
dU

are real.

If a system of conservation laws is hyperbolic, we can construct a FV method which solves the system
in the usual manner, obtaining the discretization

Un+1
i −Un

i

∆t
+

F∗n
i+ 1

2

− F∗n
i− 1

2

∆x
= 0. (3.77)

We can then use the usual Lax-Friedrichs flux function (3.41), which assumes the vector form

F∗n
i+ 1

2
=

F(V n
i ) + F(V n

i+1)
2

− 1
2

∣∣∣∣λ
(

Un
i+1 −Un

i

2

)∣∣∣∣
max

(Vn
i+1 −Vn

i ). (3.78)
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Example: The shallow water equations are a system of two conservation laws which can be written in
vector form as

∂

∂t

[
h

m

]
+

∂

∂x

[
m

m2

h + 1
2gh2

]
= 0. (3.79)

Here h represents the water height, m = hu where u is the 1D velocity of the flow, and g is the gravita-
tional constant. The flux function is then given by

F(U) =

[
m

m2

h + 1
2gh2

]
, (3.80)

which we can use to quickly calculate the Jacobian,

dF(U)
dU

=

[
0 1

(m
h )2 + gh 2m

h

]
. (3.81)

A short calculation then gives the eigenvalues,

λ± = m
h ±

√
gh = u±

√
gh. (3.82)

A FV method for solving this PDE using the LF flux function then follows from (3.77), (3.78), (3.80) and
(3.82).



CHAPTER 4

Finite Element Methods for Elliptic Problems

The last approaches we will consider for the problem of numerically solving PDEs are finite element (FE)
methods. Finite element methods were originally developed in mechanical engineering to solve problems
related to material stresses, i.e. they were used to determine how to best support a structure so as to
prevent it from collapsing. These problems are generally elliptic in nature as they deal with the steady
state conditions of a system. There is no general form of a FE method as with FV methods. Instead FE
methods must be developed based on the problem (PDE) being analyzed.

In section 4.1 we begin with an introductory example outlining the techniques for deriving one such
FE method. In sections 4.2 and 4.3 we develop FE methods for a 1D and 2D model problem, respectively.
Lastly, in section 4.4 we briefly consider Neumann boundary conditions in the context of developing FE
methods.

4.1 An Introductory Example

Consider the first order ODE IVP given by

IV P





x ∈ (0, 2)
u(0) = 1
u′(x) = 2x

(4.1)

107



108 4. Finite Element Methods for Elliptic Problems

By inspection, the general solution of the ODE is

u(x) = x2 + C. (4.2)

Further, in order to satisfy the IC, we choose C = 1, giving a particular solution that satisfies the IVP.
We compose a finite element (FE) method to solve this IVP in four steps:

1) First, we must choose discrete domain Ω. We choose N + 1 discrete points xj ∈ (0, 2) so that
x0 = 0 and xN = 2. These points are not necessarily equidistant, but are chosen in increasing order
so as to define N elements via [xj−1, xj ] for j = 1, . . . , N (see figure below).

x

u(x)

x3x2x1

0 2

x0

N = 3

2) Secondly, we choose N + 1 basis functions φj(x), with j = 0, . . . , N . For the type of methods we
are interested in, the basis functions must satisfy two conditions:

• φj(xj) = δij (basis functions which satisfy this condition are called nodal basis functions)

• ∑N
j=0 φj(x) = 1 for all x ∈ Ω.

One common choice in this regard are the so-called tent functions, which are depicted in the follow-
ing figure.

x

u(x)

x3x2x1

0 2

x0

1 φ0 φ1 φ2 φ3
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3) Third, we seek a discrete approximation of the exact solution to the PDE of the form

vh(x) =
N∑

j=0

cjφj(x), (4.3)

where the cj represent N + 1 unknowns that must be determined. The grid function vh(x) is then a
continuous approximation of the exact solution u(x). In particular, if we choose the basis functions
to be given by the tent functions (as above), vh(x) gives a piecewise linear approximation of the
exact solution (see figure). Further, we know that vh(xi) = ci for all i, because φj(xi) = δij . In
order to determine the N + 1 unknowns cj we will now need N + 1 equations.

xx3x2x1

0
2

x0

v h (x)

4) Finally, we formulate N + 1 Galerkin equations in order to determine the constants cj . We can
integrate (4.1) over the interval (0, 2) to obtain

∫ 2

0
u′φi(x)dx =

∫ 2

0
2xφi(x)dx, (4.4)

for i = 0, . . . , N . Applying the numerical approximation u ≈ vh, we obtain the Galerkin equations,
∫ 2

0
(vh)′φi(x)dx =

∫ 2

0
2xφi(x)dx, (4.5)

with i = 0, . . . , N , which can be expanded using (4.3) to give

N∑

j=0

cj

(∫ 2

0
φ′j(x)φi(x)dx

)
=

∫ 2

0
2xφi(x)dx. (4.6)

The equations (4.6) then form a N + 1×N + 1 linear system for the unknowns cj . In matrix form,
we write

AC = B, (4.7)



110 4. Finite Element Methods for Elliptic Problems

where

A = [aij ], aij =
∫ 2

0
φ′j(x)φi(x)dx, (4.8)

B = [bi], bi =
∫ 2

0
2xφi(x)dx, (4.9)

C = [ci]. (4.10)

We can then solve the linear system (4.7), subject to the IC c0 = 1 and hence obtain the approximate
solution vh.

Example: Consider N = 2, with xi = [0, 1, 2], as depicted in the following figure.

x

u(x)

x2x1

0 2

x0

1 φ0 φ1 φ2

The numerical approximation vh(x) then assumes the form

vh(x) = c0φ0(x) + c1φ1(x) + c2φ2(x), (4.11)

where the φi are piecewise tent functions given by the following table.

x ∈ [0, 1] x ∈ [1, 2]

φ0 1− x 0

φ1 x 2− x

φ2 0 −1 + x

φ′0 −1 0

φ′1 1 −1

φ′2 0 1
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After some computation, it can be shown that

A =



−1

2
1
2 0

−1
2 0 1

2

0 −1
2

1
2


 , B =




1
3

2
5
3


 . (4.12)

A short calculation shows that det(A) = 0 and so the system of equations AC = B has either no solutions
or infinitely many solutions. In this case, it can be quickly shown that we have infinitely many solutions,
i.e. there are only N linearly independent solutions. The extra equation instead follows from the initial
conditions, i.e. on examining (4.1), we obtain c0 = 1. If we let c0 = d be arbitrary, we will actually find
that c1 and c2 are given by (exercise)

c1 = c0 + 2
3 , c2 = c0 + 4. (4.13)

We now compare the exact and approximate solution, obtaining the following table.

x u(x) vh(x)

0 1 1

1 2 5
3

2 5 5

x
0

5

2

3

4

1

210

Exact

Approximate

4.2 The 1D Model Problem

In this text we will focus on finite element methods for second order elliptic PDEs, as FE methods were
originally developed for PDEs of this form. In particular, we consider the 1D model problem (ODE) given
by

BV P





Ω : x ∈ (a, b),
u(a) = 0, u(b) = 0, (homogeneous BCs)
−u′′(x) + q(x)u(x) = f(x) in Ω.

(4.14)

Note that the ODE can also be written as a linear operator of the form Lu = f . Hereafter, we will refer
to the ODE in the form (4.14) as the strong form of the ODE. The strong form of the ODE motivates the
following definition:
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Definition 4.1 Let Lu = f denote an arbitrary ODE of the form (4.14), where f(x) ∈ C(a, b). Then a
function u(x) ∈ C2(a, b) that satisfies the strong form of the ODE is called a classical solution of the
ODE.

Note that here C(a, b) denotes the set of continuous functions and C2(a, b) denotes the set of functions
that are twice continuously differentiable (i.e. continuous first and second derivatives).

4.2.1 Weighted Residual Form and Weak Form

In general, we will find that solutions obtained from FE methods are not classical solutions, i.e. they do not
necessarily satisfy the strong form of the DE. In this section we will introduce an alternative formulation
known as the weak form of the ODE that will form the basis for our study of FE methods.

FE methods are rooted heavily in functional analysis, and so we must first briefly introduce some
concepts from this field. We begin with the notion of the L2 scalar product, which induces the L2 function
space on (a, b).

Definition 4.2 The L2 scalar product (or inner product) is an operator on functions f(x) and g(x) of
the form

(f(x), g(x)) =
∫ b

a
f(x)g(x)dx. (4.15)

The L2 scalar product induces the L2 norm, according to

‖f(x)‖2 =
√

(f(x), f(x)) =
(∫ b

a
f(x)2dx

)1/2

. (4.16)

Further, the L2 scalar product induces a set of functions according to the following definition.

Definition 4.3 Let (a, b) ⊂ R be an open subset of the real line. Then L2(a,b) is the set of functions on
(a, b) satisfying

L2(a, b) := {f(x) | ‖f(x)‖2 < ∞}. (4.17)

Since L2(a, b) is a vector space, we also obtain the notion of orthogonality of two functions analogous
to orthogonality of two vectors.

Definition 4.4 Let f(x) ∈ L2(a, b) and g(x) ∈ L2(a, b). Then f(x) is orthogonal to g(x) with respect
to (·, ·) if and only if (f, g) = 0.
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In order to proceed with the study of FE methods, we require two additional definitions:

Definition 4.5 The set of test functions on [a, b], denoted W0 is defined by

W0 := {w(x) | w′(x) is piecewise continuous on [a, b] and w(a) = 0, w(b) = 0. (4.18)

Finally, we require some notion of closeness between an approximate solution v(x) and an exact
solution u(x) of a given DE without necessarily knowing the exact solution. A linear DE operator Lu = f ,
such as one of the form (4.14), effectively determines a map between two functions in a given function
space as follows.

Definition 4.6 The residual of the DE Lu = f is the function r(x), defined by

r(x) = Lv(x)− f(x), (4.19)

for any function v(x).

The Weighted Residual Form of the ODE

Definitions 4.5 and 4.6 motivate what is known as the weighted residual form of the ODE, given by

(Lu− f, w) = 0 ∀ w ∈ W0. (4.20)

It can be shown that the form (4.20) and (4.14) are equivalent (exercise). Note that if a function u(x)
satisfies the weighted residual form, it follows by definition 4.4 that r(x) is orthogonal to w for all w ∈ W0.

The Weak Form of the ODE

The weighted residual form (4.20) can be rewritten using (4.14) and (4.15) as
∫ b

a
(−u′′ + qu− f)wdx = 0 ∀ w ∈ W0. (4.21)

On applying integration by parts (
∫

u′′wdx = u′w − ∫
u′w′) and definition 4.5, we obtain

u′w|ba︸ ︷︷ ︸
=0

+
∫ b

a
(u′w′ + quw − fw)dx = 0 ∀ w ∈ W0. (4.22)

Rewriting this expression in terms of the scalar product, we obtain the so-called weak form of the ODE,
given by

(u′, w′) + (qu,w) = (f, w) ∀ w ∈ W0. (4.23)

Note that the weak form is also called a variational form (from the study of calculus of variations).
Namely, for some ODEs the process of minimizing the integral leads to the weak form.
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The Difference Between the Forms of the ODE

An observant reader will note that if u(x) ∈ C2(a, b) then the strong form, the weighted residual form
and the weak form of the ODE are all equivalent. However, the weak form of the ODE only requires that
a solution u(x) ∈ C1(a, b), and hence allows for solutions that are not classical solutions (see definition
4.1). In general, we will refer to solutions of the weak form as weak solutions. An advantage of the FE
method for solving the ODE (4.14) is that it is based on the weak form of the ODE (4.23) and so will
allow us to approximate weak solutions u(x) ∈ C1(a, b).

Example: We choose q(x) = 0 and choose f(x) to be given by the discontinous function

f(x) =

{
−1 x ≤ 0,

1 x > 0.
(4.24)

It can then be shown that u(x), defined by

u(x) =

{
1
2x2 x ≤ 0,

−1
2x2 x > 0,

(4.25)

solves the ODE in its weak form (4.23). We depict u(x) and its derivatives in the following figure.

0

u(x) u’(x) u’’(x)

Clearly, u(x) is not a classical solution of the ODE (4.14) since u(x) 6∈ C2(a, b).; however, u(x)
satisfies the weak form and hence is a weak solution.

4.2.2 Discrete Weak Form

In this section we turn our attention to discretizing the weak form of the ODE (4.23). This form, known
as the discrete weak form, will then form the foundation for FE methods.

We choose m basis functions φj(x) (1 ≤ j ≤ m) that are linearly independent and satisfy φj(a) = 0
and φj(b) = 0 for all j. As with the example problem discussed in section 4.1, we seek an approximation
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vh(x) of the exact solution u(x) that is a linear combination of the basis functions φj(x), i.e.

vh(x) =
m∑

j=1

cjφj(x), cj ∈ R. (4.26)

The complete set of functions of the form (4.26) is then defined by

V h
0 = {vh(x) | vh(x) =

m∑

j=1

cjφj(x), cj ∈ R}. (4.27)

The set V h
0 is then an m-dimensional vector space which is spanned by the basis vectors

Bh
0 = {φj(x)}m

j=1. (4.28)

We now desire to find vh(x) so that it satisfies the weak form of the ODE (4.23), i.e. we want

(vh, w′) + (qvh, w) = (f, w) ∀ w ∈ W0. (4.29)

The restriction (4.29) imposes an infinite number of conditions on vh, since it must be satisfied for all
possible test functions. Since vh is a member of a finite-dimensional vector space, it is in general impos-
sible to find vh so that it satisfies all possible conditions. As a consequence, we instead must “prune” the
number of conditions imposed by (4.29) by discretizing the space of test functions W0.

Several solutions exist to this problem, all requiring us to make a specific choice of the set of test
functions. For the FE methods we are interested in, we choose Galerkin approach: Namely, instead of
using the whole set of test functions W0, instead we choose a discrete set of test functions W h

0 given by
the set of basis functions V h

0 (i.e. W h
0 = V h

0 ). This approach leads us to the so-called discrete weak form
of the ODE, given by

((vh)′, (wh)′) + (qvh, wh) = (f, wh) ∀ wh ∈ V h
0 . (4.30)

The following more applicable expression can be quickly obtained from the discrete weak form (exercise).

((vh)′, φ′i) + (qvh, φi) = (f, φi) ∀ φi ∈ Bh
0 (i = 1, . . . ,m). (4.31)

The discrete ODE problem is then stated as follows:

Problem: Find vh ∈ V h
0 such that vh satisfies (4.31).

Since vh can be expanded in terms of the basis functions φj according to (4.26), the discrete ODE
problem then reduces to an algebraic problem from (4.31), namely:
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Problem: Find cj such that
m∑

j=1

cj

[
(φ′j , φ

′
i) + (qφj , φi)

]
= (f, φi), i = 1, . . . ,m. (4.32)

Matrix Form of the Discrete ODE Problem

If we assume q(x) = q = const., (4.32) can be written in the form

(K + qM)C = L, (4.33)

where C = [ci] and the matrices K, M and L are defined in the following table.

Load vector: L = [`i] `i = (f, ci), (4.34)

Stiffness matrix: K = [kij ] kij = (φ′j , φ
′
i), (4.35)

Mass matrix: M = [mij ] mij = (φj , φi). (4.36)

The names load vector, stiffness matrix and mass matrix originate from mechanical engineering, where
FE methods were originally developed.

Note: Observe that the stiffness matrix K and mass matrix M are symmetric. Symmetric matrices are
particularly nice to deal with, since it is easy to prove existence-uniqueness of (4.33). Further, efficient
methods exist to solve symmetric linear systems.

4.2.3 Choice of Basis Functions

There are several possible choices of basis functions, with each choice effectively giving a different
method for solving PDEs. Two common choices are model basis functions and nodal basis functions,
which we discuss in this section.

1) A modal basis function seperates the solution into a set of “modes” associated with each basis
function. For example, we could make a choice of basis of the form

Bh
0 =

{
sin

(
kπ

(x− a)
(b− a)

)
, k = 1, 2, . . . ,m

}
. (4.37)

The first few modes in this case are depicted in the following figure.
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x

a b

k = 1 k = 3

k = 2k = 4

This choice of basis functions actually gives what is known as a spectral method, so named because
it decomposes the solution into a spectrum of waves depending on their frequency.

In general, modal basis functions are nonzero over the entire domain and often lead to methods
which are high order accurate. However, the accuracy comes at a cost, since K and M will not
necessarily be sparse matrices. Further, certain choices of basis functions require regular geometry
or periodic boundary conditions.

2) A nodal basis function satisfies φj(xi) = δij and has so-called compact support, i.e. it is nonzero
only on a small portion of the domain. This choice of basis function leads to a set of methods which
we will refer to as finite element methods.

We have already encountered one example of a nodal basis, namely the tent functions introduced in
section 4.1. Basis functions of this type will form the foundation of our analysis for the remainder
of this chapter.

Note that the requirement of compact support leads to sparse K and M matrices (i.e. the majority
of the entries in these matrices will be zero). This result means several efficient methods exist for
solving the linear system (4.33).

The Tent Functions as Basis Functions

We now consider in detail the so-called tent functions as the choice of basis functions for a finite element
method.

For simplicity, we discretize the interval (a, b) into m distinct intervals by choosing xj equidistant
with x0 = a and xm+1 = b. The basis functions φj(x) (with j = 1, . . . ,m) are then chosen to be linear
in each interval and satisfy φj(xi) = δij . The distance between adjacent points is denoted h and given by

h =
b− a

m + 1
. (4.38)
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A depiction of this discretization is then given as follows.

x
a b

φ1 φ2 φ3 φm

1

Note that φ0(x) and φm+1(x) are not retained since we want φi(a) = 0 and φi(b) = 0 for all i. Mathe-
matically, we obtain the following expressions for φi(x):

φi(x) =





1
h(xi − xi−1), x ∈ [xi−1, xi] (in element i),
1
h(xi+1 − xi), x ∈ [xi, xi+1] (in element i + 1),
0 elsewhere.

(4.39)

We can now use (4.39) in conjunction with (4.34)-(4.36) to calculate the components of the linear
system (4.33). In order to simplify the calculations, we shift the origin so that xi = 0, xi−1 = −h and
xi+1 = h (see figure).

x

φ(x)

xi+1xi

0
xi-1

1

-h h

The tent functions are then described by the following table.

Element i Element i + 1

φi
1
h(x + h) 1

h(h− x)

φi+1 0 1
hx

φi−1 − 1
hx 0

φ′i
1
h − 1

h

φ′i+1 0 1
h

φ′i−1 − 1
h 0
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The mass matrix M has components mi,j = (φi, φj). Following a short calculation (exercise), we
obtain

mi,i = 2
3h, mi,i+1 = 1

6h, mi,i−1 = 1
6h, (4.40)

with all other mi,j = 0. The stiffness matrix K has components ki,j = (φ′i, φ
′
j). Another short calculation

(exercise) gives

ki,i = 2
h , ki,i+1 = − 1

h , ki,i−1 = 1
h , (4.41)

with all other ki,j = 0. The load vector L with components `i = (f, φi) is obtained by computing

`i =
∫ xi

xi−1

f(x) 1
h(xi − xi−1)dx +

∫ xi+1

xi

f(x) 1
h(xi+1 − xi)dx. (4.42)

If f is a constant, then it can be shown that `i = fh.
In summary, the DE (4.14) with q and f constant can be written in matrix form as (4.33), with K, M

and F given by

K =
1
h




2 −1 0

−1 2
. . .

. . . . . . −1
0 −1 2




,M =
h

6




4 1 0

1 4
. . .

. . . . . . 1
0 1 4




, F = h




f

f
...
f




. (4.43)

Note that if q = 0, this method is identical to the FD method for the 1D elliptic BVP (2.10).

4.3 The 2D Model Problem

In this section we turn our attention to developing a FE method for solving the extension of the 1D model
problem (4.14) to 2D. As before, we begin by introducing the necessary theoretical framework, developing
a weak form of the PDE and then discretizing to obtain the FE method.

The 2D model problem is given as follows.

BV P





Ω : (x, y) ∈ (0, 1)2,
u = g(x, y) on ∂Ω,

−∇2u = f in Ω.

(4.44)

The strong form of the PDE then reads Lu = f , where L = −∇2. The strong form of the ODE again
motivates the definition of a classical solution:
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Definition 4.7 Let Lu = f denote an arbitrary ODE of the form (4.44), where f(x, y) ∈ C(Ω). Then a
function u(x) with ∂2u

∂x2 and ∂2u
∂y2 continuous that satisfies the strong form of the ODE is called a classical

solution of the ODE.

Note that here C(Ω) denotes the set of continuous functions on Ω.

4.3.1 Weak Form

In order to proceed, we must again introduce some concepts from functional analysis that are a direct
extension of the definitions in section 4.2.1.

Definition 4.8 The L2 scalar product on Ω (or inner product) is an operator on functions f(x) and g(x)
of the form

(f, g) =
∫ 1

0

∫ 1

0
f(x)g(x)dxdy. (4.45)

The definition of the scalar product can be extended to apply to vector fields, as follows.

Definition 4.9 The L2 scalar product on Ω (or inner product) is an operator on vector fields f(x) and
g(x) of the form

(f ,g) =
∫ 1

0

∫ 1

0
f(x) · g(x)dxdy. (4.46)

The L2 scalar product induces the L2 norm, according to

‖f(x)‖2 =
√

(f(x), f(x)) =
(∫ 1

0

∫ 1

0
f(x)2dxdy

)1/2

. (4.47)

Further, the L2 scalar product induces a set of functions according to the following definition.

Definition 4.10 Let Ω ⊂ R2 be an open set. Then L2(Ω) is the set of functions on Ω satisfying

L2(Ω) := {f(x) | ‖f(x)‖2 < ∞}. (4.48)

We again must define the set of test functions on Ω, given as follows.

Definition 4.11 The set of test functions on Ω, denoted W0 is defined by

W0 := {w(x) | ∂w
∂x and ∂w

∂y are piecewise continuous and bounded on Ω and w(x) = 0 on ∂Ω}. (4.49)
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It can be shown that the strong form of the ODE (4.44) is equivalent to the weighted residual form,
given by

(−∇2u,w) = (f, w) ∀ w ∈ W0, u = g on ∂Ω. (4.50)

We now apply corollary B.1 to (4.50) in order to obtain
∫∫

Ω
−∇ · (w∇u)dxdy + (∇w,∇u) = (f, w) ∀w ∈ W0, u = g on ∂Ω. (4.51)

Then, on applying Gauss’ divergence theorem (theorem 3.2), (4.51) can be written as

−
∮

∂Ω
(∇uw) · nd` + (∇u,∇w) = (f, w), (4.52)

but since w = 0 on ∂Ω, the first term is identically zero. Hence, we obtain the so-called weak form of the
ODE, analogous to the weak form (4.23) for the 1D model problem,

(∇u,∇w) = (f, w) ∀w ∈ W0, u = g on ∂Ω. (4.53)

For any classical solution u it can be easily shown that (4.50), (4.51) and (4.53) are equivalent statements;
however, as with the 1D model problem, the weak form (4.53) admits solutions that do not have continuous
partial second derivatives. This result motivates the following definition.

Definition 4.12 A function u(x, y) that is a solution of the weak form (4.53) but is not a solution of the
strong form (4.44) is called a weak solution.

Observe that the weak form (4.53) only requires that a solution u(x, y) have ∂u
∂x and ∂u

∂y piecewise
continuous and bounded in Ω.

4.3.2 Discrete Weak Form

In order to develop a discrete weak form that will eventually be the foundation for the FE method, we
must first partition the domain into a set of discrete elements. Notably, one of the main strengths of the
FE method is that there are no requirements of structure on the discretization.

We discretize the grid into m total nodes xj , j = 1, . . . , m, with n interior nodes and m−n boundary
nodes. Two possible discretizations are depicted in the following figure.
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x

y

x

y

From the set of nodes {xj} we define a set of nodal basis functions φj(x) with j = 1, . . . , m, that
satisfies

φj(xi) = δij ,
m∑

j=1

φj(x) = 1 ∀ x ∈ Ω. (4.54)

The set of discrete candidate solutions is then given by

V h
g = {vh | vh(x) =

m∑

j=1

cjφj(x), with cj = g(xj) for boundary nodes}. (4.55)

Note that the set V h
g forms a vector space spanned by the nodal basis functions φj .

In order to obtain the discrete weak form, we must also consider the set of solutions with zero boundary
conditions, given by

V h
0 = {vh | vh(x) =

m∑

j=1

cjφj(x), with cj = 0 for boundary nodes}. (4.56)

This vector space is then spanned by the set of basis vectors

Bh
0 = {φj | j is not a boundary node}. (4.57)

Note that Bh
0 consists of exactly n basis functions, implying that V h

0 is a vector space of dimension n.
We now have sufficient background in order to define the discrete weak form of the 2D model problem,

given by

(∇vh,∇wh) = (f, wh) ∀ wh ∈ V h
0 . (4.58)

The following more applicable expression can be quickly obtained from the discrete weak form (exercise).
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(∇vh,∇φi) = (f, φi) ∀ φi ∈ Bh
0 . (4.59)

The discrete ODE problem is then stated as follows:

Problem: Find vh ∈ V h
g such that vh satisfies (4.31).

As with the 1D problem, (4.58) and (4.59) are intractable. Instead, we expand vh in terms of the basis
functions, obtaining the following statement of the problem.

Problem: Find cj such that

m∑

j=1

cj(∇φj ,∇φi) = (f, φi) ∀ φi ∈ Bh
0 . (4.60)

Matrix Form of the Discrete PDE Problem

The discrete PDE problem (4.60) can be written in matrix form as

KC = L, (4.61)

where K is the stiffness matrix and L is the load vector. Special attention must be paid to the boundary
nodes, where the cj are predetermined by the boundary conditions. There are two possible viewpoints one
can consider when attempting to solve the linear system, which we now consider.

1) We can incorporate the boundary conditions in the linear system and solve for the associated cj as
if they corresponded to interior nodes. The stiffness matrix then takes the form

K =

[
I 0

Kb Ki

]
, (4.62)

where I is the identity matrix and

Kb =




(∇φ1,∇φm−n+1) · · · (∇φm−n,∇φm−n+1)
...

...
(∇φ1,∇φm) · · · (∇φm−n,∇φm)


 , (4.63)
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and

Ki =




(∇φm−n+1,∇φm−n+1) · · · (∇φm,∇φm−n+1)
...

...
(∇φm−n+1,∇φm) · · · (∇φm,∇φm)


 . (4.64)

The C and L vectors are then given by

C =




c1

...
cm−n

cm−n+1

...
cm




, L =




g1

...
gm−n

(f, φm−n+1)
...

(f, φm)




. (4.65)

2) In placing the boundary nodes within the stiffness matrix, we are potentially reducing the efficiency
of solving the linear system. Instead, consider decomposing (4.62) according to

KC = L ⇐⇒
[

I 0

Kb Ki

][
Cb

Ci

]
=

[
Gb

Fi

]
. (4.66)

The upper block of equations then simply reduces to Cb = Gb, as expected. The lower block
(KbCb + KiCi = Fi) can be rewritten as

KiCi = Fi −KbCb ⇐⇒ KiCi = Hi, (4.67)

where Hi = Fi −KbCb. Treating the problem in this manner means we only need to solve a n× n

linear system, as opposed to a m×m linear system.

4.3.3 Simple Finite Elements in 2D

Perhaps the most common choices of elements to use in discretizing the region are either rectangular
elements or triangular elements. We now discuss the techniques used to calculate the stiffness matrix K

and the load vector L corresponding to these elements.

Rectangular Elements: Consider a partition of Ω as follows.
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x

y

x

y

0

1

1

(1)

(4) (3)

(2)

node #

A reference element is then given by removing one element from the rectangular mesh, translating to
the origin and rescaling so as to give the unit square. Nodes are numbered locally in a counter-clockwise
sense, as depicted in the previous figure.

The nodal basis functions associated with this element are then given as follows:

φ1(x, y) = (1− x)(1− y), φ3(x, y) = xy, (4.68)

φ2(x, y) = x(1− y), φ4(x, y) = (1− x)y. (4.69)

Note that a function of this type is called bilinear, since it is linear in x and y.

Triangular Elements: On translating and scaling a triangular element, we obtain a reference element
as depicted in the following figure.

x

y

0

1

1

(1)

(3)

(2)

The nodal basis functions associated with this element are then given as follows:

φ1(x, y) = 1− (x + y), φ2(x, y) = x, φ3(x, y) = y. (4.70)
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We now discuss how to calculate the stiffness matrix K and load vector L for a general triangular
elements. The process we now employ can be easily generalized to elements of arbitrary shape with some
effort.

Assuming that a given element has no boundary nodes, the stiffness matrix K and load vector L are
given by

Kij = (∇φj ,∇φi), and Li = (f, φi). (4.71)

In order to calculate the elements Kij and Li, we will require expressions for the φi(x, y) of an arbitrary
triangular element. We will use two tricks in order to simplify our calculations:

1. First, we use local node numbering so as to treat each element without concern for global node
numbers. The global stiffness matrix K and load vector L can then be reconstructed from a local
stiffness matrix Ke and load vector Le defined individually for each element (as we will show later).

(1)

(4) (3)

T2

(1)

(3) (2)

T2

Global Nodes Local Nodes

2. Second, we shift the coordinate system so that in the local numbering scheme (x1, y1) = (0, 0).

The basis functions φi then take the general form

φi = αi + βix + γiy, i = 1, 2, 3, (4.72)

where the coefficients αi, βi and γi are functions of (x1, y1) = (0, 0), (x2, y2) and (x3, y3). One can
quickly observe that the equations we must solve are

φ1(x1, y1) = 1, φ2(x1, y1) = 0, φ3(x1, y1) = 0,

φ1(x2, y2) = 0, φ2(x2, y2) = 1, φ3(x2, y2) = 0, (4.73)

φ1(x3, y3) = 0, φ2(x3, y3) = 0, φ3(x3, y3) = 1.
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A short calculation reveals (exercise)

α1 = 1, α2 = 0, α3 = 0, (4.74)

β1 =
y2 − y3

∆
, β2 =

y3

∆
, β3 = −y2

∆
, (4.75)

γ1 =
x3 − x2

∆
, γ2 = −x3

∆
, γ3 =

x2

∆
, (4.76)

where
∆ = x2y3 − x3y2. (4.77)

The elements of stiffness matrix can then be calculated:

Kij = (∇φj ,∇φi)

= ((βj , γj), (βi, γi))

=
∫

Te

(βjβi + γjγi)dΩ,

and since (βjβi + γjγi) is constant, we obtain

Kij = Ae(βjβi + γjγi), (4.78)

where Ae is the area of element Te. It can be shown that Ae satisfies

Ae =
|∆|
2

. (4.79)

The elements of the load vector can then be written as

Li = (f, φi)

=
∫

Te

f(αi + βix + γiy)dΩ. (4.80)

At this point, numerical integration is generally necessary. If f is constant, this expression can be evaluated
immediately, giving (exercise)

Li = fAe

(
αi + 1

3

3∑

i=1

xi + 1
3

3∑

i=1

yi

)
. (4.81)
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Constructing the Global Stiffness Matrix and Load Vector

Now, using (4.78) and (4.80) we have the tools necessary to assemble the global stiffness matrix K and
load vector L.

Recall that the discrete weak form of the PDE problem (4.59) requires that we find vh ∈ V h
g such that

(∇vh,∇φi) = (f, φi) ∀φi ∈ Bh
0 .

We can expand the inner products as integrals, and then write the total integral over Ω as the sum over the
integral of each element. On applying this process, we instead must find vh ∈ V h

g such that

ne∑

e=1

(∇vh,∇φi) =
ne∑

e=1

(f, φi) ∀ φi ∈ Bh
0 , (4.82)

where ne is the total number of discrete elements.

Example: Consider the following discretization of the unit square into two elements T1 and T2.

x

y

T2

T1

(4)

(1)

(3)

(2)

Observe that T2 only contributes to the submatrix consisting of the first, third and fourth column of the
stiffness matrix and the first, third and fourth rows of the load matrix. In particular, the contribution to the
stiffness matrix by T2 is given by the local stiffness matrix,

K2 =




(∇φ1,∇φ1) (∇φ3,∇φ1) (∇φ4,∇φ1)
(∇φ1,∇φ3) (∇φ3,∇φ3) (∇φ4,∇φ3)
(∇φ1,∇φ4) (∇φ3,∇φ4) (∇φ4,∇φ4)


 . (4.83)
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The global stiffness matrix for this system is a 4 × 4 matrix, which is constructed from K1, indicated by
‘o’, and K2, indicated by ‘×’ as follows:

K =




×+ o o ×+ o ×
o o o

×+ o o ×+ o ×
× × ×




. (4.84)

The global load vector has dimension 4, and contains contributions indicated as follows:

L =




×+ o

o

×+ o

×




. (4.85)

Pseudo-Code

The pseudo-code for the method we have discussed in this section for the 2D test problem is given as
follows. Note that for simplicity, we choose to use method 1) from section 4.3.2 in order to construct the
stiffness matrix and load vector.

For e = 1 : ne

Calculate αi, βi, γi (i = 1, 2, 3)
Build Ke (3× 3 matrix)

Build Le (3× 1 vector)

Assemble Ke into K

Assemble Le into L

End For

For i = 1 : m− n

K(i, :) = 0, K(i, i) = 1, L(i) = gi

End For

Solve KC = L for C
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4.4 Neumann Boundary Conditions

In this section we discuss Neumann boundary conditions for elliptic PDEs, which are inevitably necessary
for many physical problems. So far we have restricted our attention to an elliptic BVP with Dirichlet
boundary conditions, i.e. a BVP of the form

BV P (1)





Ω an open, bounded domain,

u = g on Γ = ∂Ω −→ Dirichlet BCs,
−∇2u = f on Ω.

(4.86)

We now wish to consider Neumann boundary conditions, which instead impose a constraint on the deriva-
tive of the function u. One such BVP with Neumann BCs is

BV P (2)





Ω an open, bounded domain,
∂u
∂n = h on Γ = ∂Ω −→ Neumann BCs,
−∇2u = f on Ω.

(4.87)

Here ∂u
∂n is shorthand for the directional derivative

∂u

∂n
= ∇u · n, (4.88)

as in the following figure.

x

y

Ω

n

Γ

Example: Consider the stationary heat diffusion problem, an elliptic PDE that takes the form

−D∇2T (x, y) = f, or −D∇ · ∇T (x, y) = f. (4.89)
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Recall that the Fourier law of heat conduction states that the heat flux vector (the direction of heat flow) is
proportional to∇T . Hence, if we were to surround a region Ω with an insulating wall that does not permit
heat flow, mathematically we are imposing that

∂T

∂n
= 0. (4.90)

4.4.1 Compatibility Between h and f

We now demonstrate two important results about the Neumann BVP (4.87).
On integrating the Neumann BVP (4.87) over Ω, we obtain

∫

Ω
−∇ · (∇u)dΩ =

∫

Ω
fdΩ. (4.91)

The divergence theorem (Theorem 3.2) then implies that
∮

∂Ω
∇u · nd` =

∫

Ω
fdΩ, (4.92)

which from (4.87) and (4.88) is simply

∮

∂Ω
hd` =

∫

Ω
fdΩ. (4.93)

Since (4.93) is interchangable with the PDE (4.87), we conclude that h and f must satisfy this con-
dition - otherwise there will be no solution to the BVP. Observe further that if u is a solution of the BVP
(4.87) then u + c is also a solution for any c ∈ R. These two results are summed up in the following
theorem.

Theorem 4.1 If f and h satisfy the compatibility condition (4.93) then the Neumann BVP has a unique
solution up to an additive constant.

Note: The compatibility condition is similar to the condition on b when solving a linear system Ax = b
with det(A) = 0. Namely, if b ∈ Range(A) then there is an entire family of solutions. Conversely, if
b 6∈ Range(A) then the linear system has no solutions.
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4.4.2 Weak Form

In this section we apply the technique used in section 4.3.1 to derive a weak form for (4.86) in order to
derive the weak form of the Neumann BVP (4.87).

Consider a classical solution u of the Neumann BVP, i.e. a solution u ∈ C2(Ω) that satisfies

−∇2u = f, ∂u
∂n = h on ∂Ω. (4.94)

It can be shown that the classical form (4.94) can be rewritten in a weighted residual form as

(−∇2u, w) = (f, w) ∀ w ∈ W, (4.95)

where W is defined analogous to (4.49) to be

W := {w(x) | ∂w
∂x and ∂w

∂y are piecewise continuous and bounded on Ω}. (4.96)

On applying corollary B.1, we obtain

(∇u,∇w)−
∫

Ω
∇ · (w∇u)dΩ = (f, w) ∀ w ∈ W and ∂u

∂n = h on ∂Ω. (4.97)

Then by Gauss’ divergence theorem (theorem 3.2), this equation can be rewritten as

(∇u,∇w)−
∮

w∇u · nd` = (f, w) ∀ w ∈ W and ∂u
∂n = h on ∂Ω. (4.98)

Finally, we apply (4.87) and (4.88) in order to obtain the weak form of the BVP,

(∇u,∇w)−
∮

∂Ω
whd` = (f, w) ∀w ∈ W. (4.99)

The discrete PDE problem is then stated as follows:

Problem: Find u ∈ U so that (4.99) is satisfied.

Note that the set of candidate functions U is exactly the set of test functionsW , as given by (4.96).
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Discrete Weak Form

We now discretize U analogous to (4.55), obtaining

V h = {vh | vh =
n∑

j=1

cjφj(x)}, (4.100)

and
Bh = {φj(x)}. (4.101)

Note that due to the nature of the Neumann BVP the cj remain unspecified at the boundaries. The discrete
weak form then becomes

(∇vh,∇wh)−
∮

whhd` = (f, wh) ∀ wh ∈ V h. (4.102)

On expanding vh in terms of φj and substituting φi for wh, we obtain the desired form of this expression,

n∑

j=1

cj(∇φj ,∇φi)−
∮

∂Ω
φihd` = (f, φi) ∀ φi ∈ Bh

0 . (4.103)

In order to solve for vh, we must then solve the m×m linear system given by (4.103). As anticipated,
if everything has been computed successfully we obtain that det(A) = 0 with L ∈ Range(A). This result
corresponds to the infinite family of solutions vh + c with c ∈ R. Fortunately, we can fix c by choosing
vh(xi) explicitly in one node and hence obtain a solvable linear system.





APPENDIX A

Norms of Vectors, Functions and Operators

The study of numerical methods for solving PDEs requires a mathematical tools for measuring the relative
size of vectors, functions and operators.

A.1 Vector and Function Norms

Intuitively, we say that a norm is a function which can be applied to elements of a vector space in order to
introduce a notion of “size” and “distance.”

Definition A.1 Let V be a vector space. Then a norm on V is a function ‖ · ‖ : V → R that satisfies

1) ‖~x‖ ≥ 0 for all ~x ∈ V and ‖~x‖ = 0 if and only if ~x = 0,

2) ‖α~x‖ = |α|‖~x‖ for all ~x ∈ V, α ∈ R,

3) ‖~x + ~y‖ ≤ ‖~x‖+ ‖~y‖ for all ~x, ~y ∈ V .

We now present some common examples of norms.

Example 1 Consider the simple case of V = R2. It can be verified that for any vector ~x = (x1, x2), all
of the following functions satisfy the properties of a norm:
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‖~x‖2 =
√

x2
1 + x2

2 (2-norm)

‖~x‖1 = |x1|+ |x2| (1-norm)

‖~x‖∞ = max(|x1|, |x2|) (∞-norm)

‖~x‖p = (|x1|p + |x2|p)
1
p (p-norm)

The choice of norm can significantly change the notion of distance. In the following figure, we depict
the unit circle in R2, defined by ‖~x‖p = 1. Here p is given by p = 1, 2,∞ from left to right.

x1

x2

x1

x2

x1

x2

Example 2 Consider the space of real-valued functions u(x) : [a, b] → R. It can again be verified that
all of the following functions satisfy the properties of a norm:

‖u‖2 =
√∫ b

a u(x)2dx (2-norm)

‖u‖1 =
∫ b
a |u(x)|dx (1-norm)

‖u‖∞ = ess sup

[a,b]
|u(x)| (∞-norm)

‖u‖p =
(∫ b

a |u(x)|p
) 1

p (p-norm)

Example 3 Analogous norms can then be defined as in Examples 2 and 3. For the space of 2-dimensional
real-valued functions u(x, y) : Ω ⊂ R2 → R over some domain Ω:

‖u‖2 =
√∫∫

Ω u(x, y)2dx (2-norm)

‖u‖1 =
∫∫

Ω |u(x, y)|dx (1-norm)

‖u‖∞ = ess sup

[a,b]
|u(x, y)| (∞-norm)

‖u‖p =
(∫∫

Ω |u(x, y)|p)
1
p (p-norm)
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A.2 Norms of Grid Functions

Recall that a grid function is a discrete representation or approximation of a continuous function on a grid.
As such, it can be represented as a vector, but it also behaves like a function. For example, consider a
general 2D function u(x, y) defined on some rectangular region Ω.

x

y

Ω

x

y

∆y

∆x

(i, j)

We define a grid (xi, yj) by xi = x0 + i∆x and yj = y0 + j∆y, for i = 0, . . . ,m and j = 0, . . . , n. Then
the interpolating grid function ui,j approximating u(x, y) on the grid (xi, yj) is defined by

ui,j = u(xi, yj), i = 0, . . . , m, j = 0, . . . , n. (A.1)

Recall that we have defined the norm ‖u‖2 as

‖u‖2 =

√∫∫

Ω
u(x, y)2dxdy. (A.2)

Using a Riemann sum and applying (A.1), we obtain the approximate formula

‖u‖2 ≈
√√√√

n∑

i=0

m∑

j=0

u2
i,j∆x∆y. (A.3)

This equation then motivates the definition of the 2-norm of our 2-dimensional grid function, given by

‖uh‖2 =
√

∆x∆y

√√√√
n∑

i=0

m∑

j=0

u2
i,j . (A.4)

It can be easily shown (exercise) that this relation defines a norm on the space of 2-dimensional grid
functions on this regular Cartesian grid.
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Analogous to the definition of the 1, 2, ∞ and p norm for functions, we obtain the following expres-
sions for these norms over the space of grid functions on regular Cartesian grids:

Norms of Grid Functions

1D Grid Function Norms:

(2-norm) ‖uh‖2 =
√

∆x

√√√√
n∑

i=0

u2
i , (A.5)

(1-norm) ‖uh‖1 = ∆x

(
n∑

i=0

|ui|
)

, (A.6)

(∞-norm) ‖uh‖∞ = max
i
|ui|, (A.7)

(p-norm) ‖uh‖p =

(
n∑

i=0

|ui|p∆x

) 1
p

. (A.8)

2D Grid Function Norms:

(2-norm) ‖uh‖2 =
√

∆x∆y

√√√√
n∑

i=0

m∑

j=0

u2
i,j , (A.9)

(1-norm) ‖uh‖1 = ∆x∆y




n∑

i=0

m∑

j=0

|ui,j |

 , (A.10)

(∞-norm) ‖uh‖∞ = max
i,j

|ui,j |, (A.11)

(p-norm) ‖uh‖p =




n∑

i=0

m∑

j=0

|ui,j |p∆x∆y




1
p

. (A.12)
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A.3 Matrix Norms (Operator Norms)

We now introduce operator norms, which are used in order to quantify the “size” of a linear operator. We
concentrate specifically on matrix operators, i.e. operators which can be represented in matrix form and
applied to vectors in Rn.

Definition A.2 Let A ∈ Rm×m and ~x ∈ Rm, with associated vector norm ‖~x‖p on Rm (1 ≤ p ≤ ∞).
Then the natural or induced matrix norm is

‖A‖p = max
~x∈Rm

‖A~x‖p

‖~x‖p
= max

~x∈Rm,‖~x‖p=1
‖A~x‖p. (A.13)

The 2-norm of a matrix A can also be characterized in terms of the spectral radius of the matrix A.

Definition A.3 Let A ∈ Rm×m. The spectral radius of A, denoted ρ(A), is given by

ρ(A) = max
1≤i≤m

|λi|, (A.14)

where λ1, λ2, . . . , λm denote the m eigenvalues of A1

It can then be shown that the following result holds. Its proof is beyond the scope of this text.

Proposition A.1 Let A ∈ Rm×m with induced matrix norm ‖A‖2. Then

‖A‖2 =
√

ρ(AAT ) =
√

ρ(AT A). (A.15)

The induced matrix norm has the following useful properties:

P1) If A = AT then ‖A‖2 = ρ(A).

P2) The 1-norm ‖A‖1 is given by the maximum absolute column sum, i.e. if the elements of A are given
by aij , then

‖A‖1 = max
1≤j≤m

(
m∑

i=1

|aij |
)

. (A.16)

1Note that the λi may be complex numbers.
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P3) The ∞-norm ‖A‖∞ is given by the maximum absolute row sum, i.e.

‖A‖∞ = max
1≤i≤m




m∑

j=1

|aij |

 . (A.17)

P4) For any 1 ≤ p ≤ ∞,
‖A‖p ≥ ρ(A). (A.18)

P5) For any ~x ∈ Rm we have
‖A~x‖p ≤ ‖A‖p‖~x‖p. (A.19)

P6) The matrix norm satisfies the triangle inequality,

‖A + B‖p ≤ ‖A‖p + ‖B‖p. (A.20)

Example Consider the matrix A ∈ R2×2 defined by

A =

(
3 1
1 3

)
. (A.21)

Using properties P2 and P3, it can be quickly shown that ‖A‖1 = ‖A‖∞ = 4. Let us now focus on
the matrix 2-norm, ‖A‖2. It can be quickly verified that the eigenvalues of A are λ1 = 2 and λ2 = 4, with
associated eigenvectors

v1 =

(
1
−1

)
, v2 =

(
1
1

)
.

In order to determine ‖A~x‖2 for all ‖~x‖2 = 1, we note that ‖~x‖2 = 1 is simply the equation for the unit
circle in 2D. Using the eigenvectors and eigenvalues as a guide, it can be shown that under the influence
of A, the unit circle is transformed into an ellipse (see figure).
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x1

x2

The largest possible stretch factor in this case occurs along v2 and is given by λ2. That is, in this
example ‖A‖2 = 4.





APPENDIX B

Extension of Integration by Parts to 2D

Proposition B.1 Let f and g be, respectively, a continuously differentiable scalar field and vector field
defined on some set Ω ∈ Rn. Then,

∇ · (fg) = ∇f · g + f(∇ · g). (B.1)

Proof: (to be written)

Corollary B.1 Let f and g be, respectively, once and twice continuously differentiable scalar fields de-
fined on some set Ω ∈ Rn. Then,

∇ · (f∇g) = ∇f · ∇g + f∇2g. (B.2)

Proof: This result follows immediately from proposition B.1.
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