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ABSTRACT

Land, ocean, and atmospheric models are often implemented on different spherical grids. As a conseqence

coupling these model components requires state variables and fluxes to be regridded. For some variables,

such as fluxes, it is paramount that the regridding algorithm is conservative (so that energy and water budget

balances are maintained) and monotone (to prevent unphysical values). For global applications the cubed-

sphere grids are gaining popularity in the atmospheric community whereas, for example, the land modeling

groups are mostly using the regular latitude–longitude grid. Most existing regridding schemes fail to take

advantage of geometrical symmetries between these grids and hence accuracy of the calculations can be lost.

Hence, a new Geometrically Exact Conservative Remapping (GECoRe) scheme with a monotone option is

proposed for remapping between regular latitude–longitude and gnomonic cubed-sphere grids. GECoRe is

compared with existing remapping schemes published in the meteorological literature. It is concluded here

that the geometrically exact scheme significantly improves the accuracy of the resulting remapping in ide-

alized test cases.

1. Introduction

Land, ocean, and atmosphere components of coupled

climate system models are often implemented on dif-

ferent spherical grids, individually designed to enhance

the accuracy or capture features unique to their respec-

tive settings. Historically, the regular latitude–longitude

(RLL; see Table 1 for a complete list of acronyms used

in this paper) grid has been the predominant choice for

global atmospheric models, but problems associated

with the polar singularity persist, and hence this grid is

not well suited for highly scalable atmospheric models.

Much interest in recent years has been instead directed

toward the development of atmospheric solvers defined

on more isotropic spherical grids; for example, the so-

called cubed-sphere grid, which divides the polar sin-

gularities among eight weaker singularities located at

the corners of a cube, and is otherwise highly scalable on

parallel architectures. The cubed-sphere grid was orig-

inally introduced by Sadourny (1972), and more re-

cently reintroduced by Ronchi et al. (1996) and Ranči�c

et al. (1996) with equiangular grid spacing and orthogo-

nality. For the land component, however, the RLL grid

does not pose polar singularity problems as is the case

for the atmosphere (with the current complexity of land

models). Neither does the land model seem to be sus-

ceptible to scalability problems since most of the com-

putation is in vertical columns rather than in the hori-

zontal. Hence, for the foreseeable future the RLL grid
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seems to be a viable and convenient grid for land model

components.

An intricate problem introduced by defining the

model components on different spherical grids is that

the exchange of information between the grids is non-

trivial and requires a regridding algorithm. In a coupled

climate system model it is paramount that the regrid-

ding process is not a spurious source or sink for first-

order moment variables such as mass. To prevent the

generation of unphysical negative and/or large values,

the regridding must also be shape preserving–monotone

for mixing-ratio-related variables. Regridding with these

constraints, conservation and monotonicity, is a nontriv-

ial problem if higher than first-order accuracy is desired.

The regridding problem is not only limited to a static

grid-to-grid information transfer setting. The problem is

essentially the same for finite-volume advection schemes

where the mass transport into a given cell is given in

terms of integrals over overlapping areas. In fact, meth-

ods developed for advection schemes can be readily

applied in grid-to-grid regridding problems such as

articulated by Margolin and Shashkov (2003). A major

difference between the advection regridding problem

and static grid-to-grid regridding is that the source or

target grid is not static for advection problems. Hence,

the regridding algorithm must be able to deal with a

large class of source or target grids changing dynami-

cally at each time step. For grid-to-grid regridding the

problem is static, facilitating certain parts of the algo-

rithm. For example, the regridding problem can be

optimized for specific grid pairs. On the other hand, the

advection problem is usually constrained by Courant

numbers and the number of source and target grid cells

is identical, which constrains the overlap regions. On the

contrary, grid-to-grid regridding does not have that

constraint so many source grid cells can overlap a par-

ticular target grid cell and vice versa.

A strategy for doing conservative regridding without

ad hoc conservation fixers is to reconstruct a subgrid-

cell distribution in each source grid cell with conserva-

tion as a constraint and then integrate the subgrid-cell

distributions for the respective source grid cells over the

overlap areas. This process of conservative transfer of

variables between grids is referred to as remapping or

rezoning. Depending on the source and target grid cell

geometries (i.e., the overlap regions over which one

must integrate) can be very complex. Hence, direct in-

tegration on the sphere of the overlap areas seems like

an almost impossible task in terms of algorithmic com-

plexity. Note, however, that it has been done in Carte-

sian geometry in the context of advection (see Ranči�c

1992). The problem can be greatly simplified by making

use of the powerful mathematical theorem, Gauss’s di-

vergence theorem, which converts area integrals into

line integrals (see Dukowicz and Kodis 1987). This is the

approach taken in the most widely used regridding soft-

ware in the climate community called the Spherical Co-

ordinate Remapping and Interpolation Package (SCRIP;

Jones 1999). Also in the algorithm presented in this paper

we make use of Gauss’s divergence theorem.

To perform the line integrals on the sphere one usu-

ally makes simplifying assumptions about the cell sides.

For example, the sides of the grid cells are approxi-

mated by straight lines in (l, u) space in SCRIP. This

obviously leads to exact cell wall representations for the

RLL grid but other spherical grids such as the cubed-

sphere grids do not share that property (see Fig. 1). The

remapping algorithm’s inability to represent the cell

sides exactly is here referred to as the geometric error

(Lauritzen and Nair 2008, hereafter LN08). In other

words, the geometric error is the deviation from exact

TABLE 1. List of acronyms used in this paper.

Acronym

GECoRe Geometrically Exact Conservative Remapping

( )-M suffix stands for monotone filter applied

PCoM Piecewise constant method

PLM Piecewise linear method

PPM Piecewise parabolic method

RLL Regular latitude–longitude

ABP Alpha-beta-panel

(equiangular cubed-sphere coordinates)

SCRIP Spherical Coordinate Remapping and

Interpolation Package

CaRS Cascade Remapping between Spherical Grids

FIG. 1. The cell boundaries of the cubed-sphere south polar

panel plotted in Cartesian coordinates. SCRIP approximates cell

edges by connecting the cell vertices (filled circles) with straight

lines in RLL coordinates (dotted lines). The solid lines are the

exact ABP cell walls that are great circle arcs.
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closed-form integration along the cell walls. Unfortu-

nately, exact closed-form integration is not always

achievable, except for a small set of source and target

grids. As a consequence, generic conservative remap-

ping schemes, such as SCRIP and the Cascade Re-

mapping between Spherical Grids (CaRS) scheme, must

apply potentially crude geometrical approximations in

order to yield a conservative and computationally effi-

cient scheme (Fig. 1). Perhaps serendipitously, we find

that complete removal of geometric error via exact

closed-form integration is possible for the RLL grid and

gnomonic cubed-sphere grids, and hence these grids

immediately lend to the development of a geometrically

exact conservative scheme.

Assuming small geometric error, the order of the

remapping algorithm is determined by the accuracy of

the subgrid-cell reconstruction. The errors introduced

by the reconstruction are referred to as the derivative

error. The simplest reconstruction is a piecewise con-

stant (first order) representation in each source grid cell.

This method is inherently monotone, but is excessively

damping at least in idealized remapping problems.

First-order reconstructions are, for example, used in

the National Center for Atmospheric Research (NCAR)

Coupled Climate System Model, version 3 (CCSM3;

Collins et al. 2006), through SCRIP for remapping var-

iables requiring conservation. The effect on climate by

using higher-order remapping in a coupled climate sys-

tem model is unknown (as far as the authors are aware),

but it seems instinctive to speculate that it could have a

significant effect; especially in areas where remapping is

done from a coarse to a fine grid.

Unfortunately, high-order reconstructions are not in-

herently monotone, making it harder to achieve conser-

vation, monotonicity, and high-order accuracy simulta-

neously. LN08 choose to apply the cascade remapping

approach to achieve monotonocity with high-order re-

constructions. This algorithm is referred to as CaRS (i.e.,

monotone and conservative cascade remapping be-

tween spherical grids). In CaRS the remapping problem

is split into two one-dimensional problems and hence

only one-dimensional limiters are needed to guarantee

monotonicity, making it relatively easy to impose

shape-preservation simultaneously with higher-order

reconstructions. Unfortunately, the CaRS method is

inherently prone to geometric errors, although it seems

to compensate for these via the higher-order reconstruc-

tions that are easily and efficiently applied in one di-

mension. The geometric errors can be reduced by arti-

ficially increasing the resolution in areas of higher

geometric error (see LN08 for details). A necessary, but

insufficent, condition for completely eliminating the

geometric error is to approximate the grid cells in a two-

dimensional manner rather than the dimensional split

approach such as done in CaRS. However, a fully two-

dimensional approach requires fully two-dimensional

integrals, reconstructions, and limiters. This greatly in-

creases the complexity of the problem, especially when

aiming for higher-order remapping. SCRIP has the op-

tion of performing second-order remapping if the user

supplies the gradient in latitude–longitude coordinates.

In theory SCRIP could be extended to higher-order by

including the curvature and high-order derivatives in the

line-integral computations but that route was not ex-

plored by Jones (1999) and is not a trivial extension.

In this paper we present a new conservative remap-

ping method between gnomonic cubed-sphere grids and

the RLL grids hereafter referred to as the Geometri-

cally Exact Conservative Remapping (GECoRe) scheme.

GECoRe uses Gauss’s divergence theorem to convert

area integrals into line integrals. The line integrals are

exact (to machine precision) for given polynomial sub-

grid-cell reconstructions since the lines along which the

line integrals are computed exactly coincide with grid

lines on the cubed sphere and RLL grid. Consequently

the geometric error is completely eliminated in GECoRe.

We also use up to third-order-accurate reconstructions

and apply limiters to obtain monotonicity thereby ob-

taining high-order accuracy and shape preservation si-

multaneously in two dimensions.

The paper is organized as follows. In section 2 we

introduce the mathematical basis for GECoRe, that is,

how to compute the potentials needed to convert area

integrals into line integrals, how line integrals are

computed exactly, and how the fully two-dimensional

reconstructions are approximated. Section 3 covers

some practical considerations such as finding intersec-

tions between line segments of the two grids. The ac-

curacy of GECoRe is assessed in section 4 by comparing

standard error measures for remapping analytical

functions with GECoRe, SCRIP, and CaRS between

equi-angular cubed-sphere and RLL grids with different

resolutions. A summary is given in section 5.

2. Geometrically Exact Conservative Remapping

In the context of finite-volume methods, we are given

the cell-averaged value of a scalar field for each cell in

the source grid, denoted by f n. The remapping problem

then reduces to finding corresponding cell-averaged

values in the target grid, denoted f k, that accurately

represent the underlying scalar field. Throughout this

paper we will use the subscript n to denote a quantity

corresponding to a cell of the source grid and the sub-

script k to denote a quantity corresponding to a cell of

the target grid.
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a. Source and target grids

Of the numerous choices for the cubed sphere, we will

focus on the equiangular cubed sphere, where a sphere

is decomposed into six identical regions (panels or

faces) and the grid lines on each panel are defined by

equispaced central angles (see Fig. 2). Hereafter, we will

refer to the equiangular cubed sphere as the alpha, beta,

panel (ABP) coordinate system, in reference to coor-

dinates on the sphere being identified by the three-

element vector (a, b, np), where (a, b) 2 [2p/4, p/4] are

the coordinates on each panel and np 2 {1, 2, 3, 4, 5, 6} is

the panel index.

Although we focus on the equiangular projection, we

should emphasize that the GECoRe method is trivially

extended to any cubed-sphere grid that is composed of

grid lines parallel to the panel edges (i.e., gnomonic

cubed-sphere grids). Notably, conformal or spring-

dynamics grids, where grid lines are ‘‘warped’’ near the

corners, do not fall into this category [see, e.g., Putman

and Lin (2007) for a review of several types of cubed-

sphere grids]. Grids with grid lines that are not parallel

to panel sides can also be captured via this scheme by

replacing the exact line-integral formulas with Gaussian

quadrature approximations to the integrals in gnomonic

coordinates. Such an approach is taken in the tracer

transport scheme described in Lauritzen et al. (2009,

manuscript submitted to J. Comput. Phys.). Of course,

the geometric error will not be completely eliminated if

the cell sides are not great spherical arcs. Note that in

such a situation the geometric error could be reduced by

approximating the cell sides by several great-spherical

arc segments.

We will also use so-called gnomonic coordinates in-

terchangeably with equiangular coordinates. Gnomonic

coordinates (x, y) are defined in terms of equiangular

coordinates via

x 5 a tana, y 5 a tanb, (a, b) 2 �p

4
,

p

4

h i2

, (1)

where a is a constant denoting the edge length of a

concentric cube, which, without loss of generality we

will take to be equal to unity. The gnomonic projection

is important for our analysis since any straight line in the

gnomonic projection corresponds to a spherical arc on

the surface of the sphere.

b. Overview of the method

Typically, a conservative remapping scheme is one

that satisfies the global conservation condition:ð
A

f target dA 5

ð
A

f source dA, (2)

where ftarget and fsource are the global scalar field on the

target grid and source grid, respectively. Here the in-

tegral is taken over the entire grid surface A (in our

case, the surface of a sphere). The stricter local con-

servation condition states that for every cell k on the

target grid, the scalar field must satisfy

f k 5
1

Ak

ð
Ak

f dA, (3)

where f k denotes the area-averaged scalar field, f is the

global piecewise reconstruction on the source grid, and

Ak is the area of cell k. Note that the local conservation

condition can be trivially demonstrated to be a sufficient

condition for the global conservation condition. Now, if

cell k in the target grid overlaps N cells in the source

grid, one can write (3) as

f k 5
1

Ak
�
N

n51

ð
An, k

f n dA, (4)

[see Jones 1999, their Eq. (3)], where An,k is the area of

the source grid cell n that is overlapped by the desti-

nation cell k, and fn is the local value of the scalar field in

grid cell n (see Fig. 3). That is, the averaged value in the

destination cell is equal to the area-normalized contri-

bution from all overlapping cells on the source grid.

A GECoRe-type remapping scheme can generally be

obtained at any order, with the order of the method

generally depending on the order of the subgrid-scale

reconstruction within each source volume. In general,

for a remapping scheme of order h, the subgrid-scale

reconstruction takes the form

FIG. 2. An illustration of the RLL grid (thin solid lines) and

cubed-sphere grid (dotted lines). Thick lines mark the boundaries

of each, distinguished by the index given in the upper-right corner.

By convention we choose for the southern and northern polar

panels to have indices 5 and 6, respectively.

1724 M O N T H L Y W E A T H E R R E V I E W VOLUME 137



f n(x, y) 5 �
p1q,h

a( p, q)
n (x� x0)p(y� y0)q, (5)

where the reconstruction coefficients a
(p, q)
n are con-

stants and x0 and y0 denote the x and y components,

respectively, of the source-grid cell centroids, defined by

x0 5
1

An

ð
An

x dA and y0 5
1

An

ð
An

y dA. (6)

In practice, these quantities are computed by trans-

forming the area integrals to line integrals via Gauss’s

divergence theorem (as discussed later). To obtain the

desired order of accuracy of the method, the recon-

struction coefficients must also be obtained via a suit-

ably accurate method. For reasons of consistency, the

reconstruction in (5) must also yield the cell-averaged

value of the source volume when integrated over the

entire source volume, that is,

f n 5 �
p1q,h

a( p, q)
n

1

An

ð
An

(x� x0)p(y� y0)q dA. (7)

In appendix A, we present reasonable choices of the

reconstruction coefficients that lead to first-, second-

and third-order methods.

The conservative remapping scheme that follows from

(4) and (5) can then be written as

f k 5 �
N

n51
�

p1q,h
a(p, q)

n w
(p, q)
n, k

, (8)

where, following Jones (1999), we have defined the

mesh-dependent weights via

w
(p, q)
n, k

5
1

Ak

ð
An, k

(x� x0)p(y� y0)q dA. (9)

The form in (8) is particularly meaningful, as it em-

phasizes the separation of the purely reconstruction-

dependent coefficients a
(p, q)
n and the purely mesh-

dependent subcell weights w
(p, q)
n .

Following Dukowicz and Kodis (1987), we compute

the weights in (9) by converting them into line integrals

using the divergence theorem. Consider an arbitrary

vector field C defined in terms of ABP unit basis vectors

(ea, eb) as C 5 Caea 1 Cbeb. In general 2D curvilinear

coordinates the divergence is given by

= �C 5
1ffiffiffi
g
p

›

›x1
(
ffiffiffi
g
p

C1) 1
›

›x2
(
ffiffiffi
g
p

C2)

� �
, (10)

where C1 and C2 are the contravariant components of

the vector C and g is the determinant of the metric.

Hence, specifically for cubed-sphere [see (D8) and (D9)]

we have

= �C 5 (r3 cos2a cos2b)
›

›a

Ca

r cosb

� �
1

›

›b

Cb

r cosa

� �� �
,

(11)

where

r 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 tan2a 1 tan2b

q
. (12)

After integrating (11) over the subcell and assuming

sufficiently smooth boundaries, we can write the resulting

expression in the form:

ð
An, k

= �C dV 5

ðb2

b1

ða2(b)

a1(b)

›

›a

Ca

r cosb

� �
da db

1

ða2

a1

ðb2(a)

b1(a)

›

›b

Cb

r cosa

� �
db da, (13)

where a1, a2, b1(a), and b2(a) represent the boundaries

of the domain of integration. Then, on applying the

fundamental theorem of calculus, we obtain the diver-

gence theorem for cubed-sphere coordinates,ð
An, k

= �C dV 5�
I

› An, k

Ca

r cosb
db 1

Cb

r cosa
da

� �
,

(14)

where the contour integral is taken in the counter-

clockwise direction around the boundary of a given

overlapping volume An,k, here denoted by ›An,k. Note

that the Jacobian term obtained by expanding the area

integral in (13) cancels with the
ffiffiffi
g
p

from the divergence

in (10) and so does not appear in the final form of the

contour integral. The spatial curvature instead comes

into play when solving for C via (10).

FIG. 3. An example of a quadrilateral target grid cell Ak that

overlaps several source grid cells. The region overlapped by both

Ak and An is denoted by An,k.
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To apply the divergence theorem to compute the

weights associated with each line segment over an in-

tegrable scalar field f(a, b, np), we must first obtain a

potential C associated with that field—namely, one that

satisfies

= �C 5 f. (15)

Note that for a given f, there does not exist a unique

potential C, but a family of potentials C that satisfy

(15). However, one can obtain a unique potential on

imposing Ca 5 0 and choosing any constant of inte-

gration for the potential to equal zero. This limitation is

largely by convention, as we could also choose Cb 5 0,

for example. However, we find that integration on the

RLL grid is generally easier upon imposing the former

constraint, and so we will henceforth apply Ca 5 0 when

deriving each potential. Furthermore, we restrict our

attention to solving integrals of the form in (9)—noting

that the integrand of (9) can be expanded as terms of the

form xpyq [using (1)]—and so use the notation C(p,q) to

denote the potential associated with the scalar field

tanpatanqb. That is, we use (11) to define C(p,q) via the

differential equation:

›

›b

C
(p, q)
b

r cosa

 !
5

tanpa tanqb

r3 cos2a cos2b
, with C(p, q)

a 5 0.

(16)

Note that one may solve (16) in terms of either equi-

angular or gnomonic coordinates, which are connected

via the relation in (1). In either case we will obtain an

identical expression for the potential.

Since our search algorithm will provide a list of line

segments, rather than a list of contours, a computational

implementation of (14) will take the following form:ð
An, k

tanpa tanqb dA 5��
s

I(p, q)
s (›An, k)s

��� , (17)

where the summation is taken over all line segments

s along the boundary of subcell An,k. Here, I(p, q)
s is

shorthand notation for the antiderivative over the po-

tential field obtained from (16),

I(p, q)
s 5

ð
C

( p, q)
b

r cosa
da, (18)

and hence it is evaluated at the endpoints of each line

segment. A detailed presentation of the calculations and

implementation details required for the first-, second-, and

third-order-accurate schemes are given in appendix A.

c. Summary of the GECoRe algorithm

A GECoRe remapping scheme is initialized as

follows:

1) Perform a search on the source and target grids,

classifying line segments by type (i.e., constant a,

constant b, constant latitude, or constant longitude)

and keeping track of their endpoints and orientation.

Each line segment should then be associated with at

most one ABP cell and one RLL cell.

2) Using (9) calculate the weights w
(p, q)
n, k

associated with

each line segment over the fields tanpa tanqb, for

p 1 q , h, where h is the order of the method [this

leads to (1/2)h(h 1 1) weights per line segment]. The

weights of each line segment are computed by simply

evaluating the associated antiderivative I(p, q)
s at each

endpoint (see appendix A). Note that one can save

memory and online computation time by instead

storing the sum of all weights for a given overlap cell

rather than the weights for individual line segments.

Once the GECoRe scheme is initialized for a partic-

ular mesh pair, the resulting initialization data can be

saved to a file for later use. The actual remapping is then

performed as follows:

1) Calculate the reconstruction coefficients a
(p, q)
s asso-

ciated with the scalar field, potentially using neigh-

boring cell values.

2) Use the weights w
(p, q)
n, k

computed in the initialization

step, along with (8) to compute the remapped field in

each of the target grid cells.

3. Practical considerations

In this section we present issues relating to the imple-

mentation of the GECoRe scheme.

a. Search algorithm

Since we are restricted to RLL and cubed-sphere

grids, the search algorithm for finding line segments is

dramatically simplified when compared to the SCRIP

algorithm. In fact, this knowledge of the coordinate

systems allows us to exactly calculate the line segment

endpoints up to machine precision. The proposed tech-

nique involves first searching along longitude and lati-

tude lines to compute intersection points, binning each

line accordingly depending on its corresponding ABP

cell. Then a search within each cell can be performed to

obtain all lines of constant a and b within an RLL cell.

This binning procedure results in memory locality of

line segments associated with a given RLL cell, and

hence is optimal for remappings from the RLL grid

to ABP grid. A similar algorithm can be performed to
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obtain line segments binned by ABP cell, or the results

from the forward algorithm can simply be resorted to

obtain the desired result. Note that special attention

must be paid to special cases, such as coincident lines, so

as to avoid double counting of line segments.

b. Spherical coordinates

Similar to the SCRIP algorithm, certain aspects of the

spherical coordinate system introduce additional prob-

lems when applied in practice. Unlike SCRIP, the pole

points do not pose any particular problem since all

calculations are performed along the surface of the

cubed sphere, which has no special treatment of the pole

points. However, when calculating line segment weights

the multiple-valued longitude coordinate in spherical

coordinates must be taken into account. Antiderivatives

that require the evaluation of the longitude coordinate at

each endpoint must ensure that only the ‘‘shortest’’ dis-

tance between longitudes is used. Similarly, additional

checks must be performed to ensure that antiderivatives

that require the evaluation of an arctangent have end-

points evaluated along the same branch of the arctan-

gent function. Failure to take into account either of

these factors will result in spurious factors of p being

introduced into the calculation over line segments

where the longitude coordinate becomes discontinuous.

c. Extensions to higher orders

Although it is not proven here, symbolic computa-

tions have shown that the line segment weights w
(p, q)
n, k

can be computed in exact closed form up to any choice

of p and q. However, as mentioned earlier, the number

of weights (and reconstruction coefficients) that need to

be computed for a method of order h is quadratic in h,

and hence the resulting computation becomes increas-

ingly infeasible at higher orders. Furthermore, on in-

creasing the order of the scheme, one finds that the

resulting antiderivatives also become increasingly com-

plicated expressions (observe the differences between

antiderivatives for the first-, second-, and third- order

schemes given in sections a, b, and c, respectively, in

appendix A).

d. Parallelization considerations

The nonlocality of this algorithm required during

online calculations is largely constrained to calculating

the reconstruction coefficients associated with each cell

(which requires a stencil size that increases with the order

of accuracy of the method). In this sense we conclude

that the GECoRe scheme is potentially highly paral-

lelizable, for example by using parallelization techniques

currently employed in an existing finite-volume model.

4. Results

The new remapping algorithm (GECoRe) has been

implemented for both RLL to cubed sphere and cubed

sphere to RLL remapping schemes and tested on a va-

riety of analytical fields. For comparison, we have pro-

vided results from SCRIP and CaRS for the piecewise

constant first-order reconstruction (PCoM), piecewise

linear second-order reconstruction (PLM), and piece-

wise parabolic third-order reconstruction (PPM). Par-

ticular interest should be paid to comparing the results

from SCRIP and GECoRe, since much of the underly-

ing structure of the algorithms in these two cases are

directly comparable. We note, however, that the method

referred to in this paper as SCRIP PPM is an extension of

the SCRIP scheme of Jones (1999) to high-order accur-

acy. Here we have implemented this scheme by using the

PPM method of Colella and Woodward (1984) to com-

pute left and right edge values (fL and fR, respectively)

in each cell, and hence use these values for reconstructing

the gradient within each cell. As a consequence, this

method is not a true PPM method, in that the subgrid-

scale reconstruction is not composed of parabolic terms.

As of the current time, no true PPM implementation of

SCRIP is believed to exist.

a. Test cases

Our analysis mirrors the approach of LN08, in that we

consider three idealized test cases and computed error

measures for both equiangular cubed sphere to RLL

remapping and vice versa.

Following Jones (1999) and LN08 a relatively smooth

function resembling a spherical harmonic of order 2 and

azimuthal wavenumber 2 (see Fig. 4a),

c 5 2 1 cos2u cos(2l), (Y2
2), (19)

and a relatively high frequency wave similar to a spher-

ical harmonic of order 32 and azimuthal wavenumber

16 (see Fig. 4b),

c 5 2 1 sin16(2u) cos(16l), (Y16
32), (20)

are used. These waves are useful for testing the per-

formance of the algorithm for a large-scale well-resolved

field as well as a higher-frequency wave in the midlati-

tudes with relatively rapidly changing gradients. In ad-

dition, as in LN08, we test all three schemes with the

dual stationary vortex fields (Nair and Machenhauer

2002), since this test leads to significant variation of the

field over the cubed-sphere corners (see Fig. 4c). The

analytical form of this field is given by
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c 5 1� tanh
r9

d
sin(l9� v9t)

� �
, (VX), (21)

where the radius r9 5 r0 cosu9, with angular velocity:

v9(u9) 5

0 if r9 5 0,
Vt

r9
if r9 6¼ 0,

8<
: (22)

and normalized tangential velocity:

Vt 5
3
ffiffiffi
3
p

2
sech2r9 tanhr9. (23)

The (l9, u9) refer to a rotated spherical coordinate sys-

tem with a pole located at (l0, u0). Following LN08 we

choose (l0, u0) 5 (0, 0, 6), r0 5 3, d 5 5, and t 5 6.

b. Error measures

The performance of the algorithm is quantified using

standard error measures:1

l1 [
I( cnum � cexact

�� ��)
I(cexact)

, (24)

l2 [

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I[(cnum � cexact)

2]

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I[( cexact

�� ��)2]
q , and (25)

l‘ [
max ( cnum � cexact

�� ��)
max ( cexact

�� ��) , (26)

where I is the global integral:

I(f ) 5 �
n

f nAn. (27)

The numerically generated ‘‘exact’’ solution

f n 5
1

An

ð
An

f dA, (28)

is computed by fourth-order Gaussian quadrature. One

finds that the error measure l1 tends to identify the error

in large-scale features of the field, whereas l2 identifies

error in small-scale features. The l‘ measure, on the

other hand, identifies the maximum relative cellwise

error over the entire field.

c. Calculation of reconstruction coefficients

Calculation of the reconstruction coefficients a(p,q)

that describe the subgrid-cell reconstruction is required

for the second- and third-order schemes. Recall that the

grid is an equiangular cubed-sphere grid that, when
FIG. 4. Contours of the analytical function (a) Y2

2, (b) Y16
32,

and (c) the vortex fields with one of the vortices centered

about (l0, u0) 5 (0, 0, 6). Dotted lines show the regular latitude–

longitude grid.
1 Note that the l2 error employed in LN08 corresponds to (l2)2.
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translated to gnomonic coordinates, leads to cell cen-

troids that are far from equidistant. As a consequence,

if applied in gnomonic coordinates, an equidistant

discrete derivative operator will lead to large deriva-

tive errors. We examine two possible solutions to this

problem: First, we can compute the derivatives in equi-

angular coordinates using an equidistant discrete de-

rivative operator and then apply a stretching factor to

obtain the derivatives in gnomonic coordinates. Second,

we can use a nonequidistant discrete derivative opera-

tor in gnomonic coordinates. These methods will be

compared, in terms of the resulting error measures, in

section 4e.

We briefly discuss the method of computing the re-

construction coefficients via the nonequidistant fitting in

gnomonic coordinate space. In general, these coeffi-

cients can be computed by fitting a parabola through the

neighboring centroids, where we have assumed that

these centroids take on the cell-averaged value, and

extracting the reconstruction coefficients from the qua-

dratic coefficients. If we define

DxL 5 xi21 2 xi and DxR 5 xi11 2 xi, (29)
it follows that a parabola p(x) fitted through the points

(xi21, yi21), (xi, yi), and (xi11, yi11) will satisfy

and

1

2

›2p

›x2

� �
i

5
(yi�1)(DxR)� (yi)(DxR � DxL)� (yi11)(DxL)

(DxR)(DxL)(DxL � DxR)
.

(31)

Note that the discretized derivatives in (30) and (31)

reduce to the usual central difference discretization in

the case of equispaced grid points (DxL 5 2DxR). A

discretization for the third-order cross term (›2f/›x›y)n

can be easily calculated on repeatedly applying (30) in

each coordinate direction. It is simple but mathemati-

cally intensive to extend this method to higher orders by

fitting a quartic or higher-order curve, and so the re-

sulting formula is not presented here.

Although both the parabolic fit (three point) and

quartic fit (five point) can be used to derive reconstruction

coefficients for the third-order scheme, we have chosen to

use the parabolic fit for the second-order scheme and

the quartic fit for the third-order scheme. This choice is

made since the parabolic fit corresponds most closely to

a piecewise-linear reconstruction, whereas the quartic

fit corresponds most closely to the piecewise-parabolic

reconstruction of Colella and Woodward (1984).

Note that when applying the discretized derivative

operator in ABP coordinates, halo regions must be

provided for cells along the boundary of each panel.

These halo cells should correspond to the cells that

would be obtained by extending each panel outward,

overlapping cells of the neighboring panels (see Fig. 5).

Hence, halo cells do not exactly correspond to boundary

cells on the neighboring panels, and their cell-averaged

values must be obtained via a 1D remapping. Note that

this 1D remapping does not require that the conserva-

tion criteria be fulfilled, since the area-averaged prop-

erty of the interior cells is satisfied for any choice of

reconstruction coefficients. For our purposes, we ob-

tained the best accuracy from a straightforward fourth-

order nonconservative cubic fit.

FIG. 5. A depiction of the halo region along the boundary of the

top surface (dashed lines), showing the overlap with cells of the

neighboring surfaces. Observe that accurate modeling of the halo

region only requires 1D interpolation for this choice of grid.

›p

›x

� �
i

5
(yi�1)(DxR)2 � (yi)[(DxR)2 � (DxL)2]� (yi11)(DxL)2

(DxR)(DxL)(DxR � DxL)
, (30)
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d. Discussion

The error measures associated with remapping from

the equiangular cubed-sphere grid to RLL grid are

given in Figs. 6 and 7, for a high-resolution cubed-

sphere grid (Nc 5 80 grid lines on each panel) and a

medium-resolution cubed-sphere grid (Nc 5 40) map-

ped to a RLL grid with Nl 5 128 longitudes and Nu 5 64

latitudes. The results of remapping from the same RLL

grid (Nl 5 128, Nu 5 64) to a high-resolution cubed-

sphere grid (Nc 5 80) are given in Fig. 8.

It should be emphasized that, in each case, the GECoRe

method should perform at least as well as SCRIP, since

both methods lead to a derivative error that should be

roughly identical for PCoM and PLM. The two methods

deviate only in their geometric error, in that the geo-

metrically exact techniques used for GECoRe lead to

geometric error that is roughly on the order of machine

epsilon. It should be noted that slight deviations from

machine epsilon occur in GECoRe because of poorly

conditioned function evaluations in some of the anti-

derivatives (i.e., calculations involving the difference of

two nearly equal floating point numbers, or evaluations

of arcsine or arccosine near 61), but for our purposes we

can assume these deviations are effectively negligible.

As expected, all error norms for SCRIP, CaRS, and

GECoRe tend to decrease when going from PCoM to

PLM to PPM. We expect that extending these methods

by including the piecewise cubic scheme (PCM, as done

for CaRS in LN08) and higher-order reconstructions

will lead to smaller, and perhaps worthwhile, improve-

ments in the accuracy of the method (Figs. 6, 7, and 8).

For the first-order piecewise constant method, we

observe nearly identical behavior for GECoRe and

SCRIP since, in both cases, line segments are effectively

integrated along constant fields. Hence, small pertur-

bations in the geometrical orientation of the line seg-

ments will not lead to significant differences in the

resulting line integral.

However, we find that the error measures in GECoRe

and SCRIP deviate significantly for the second- and third-

order methods. The effect of geometric error is clearly

apparent in our calculations, as GECoRe produces results

that are often one or two orders of magnitude better than

FIG. 6. Performance measures for the remapping of Y2
2, Y16

32, and the idealized vortices (VX) from a

medium-resolution ABP grid (Nc 5 80) to an RLL grid (Nl 5 128, Nu 5 64) using GECoRe, SCRIP, and

CaRS with PCoM, PLM, and PPM reconstructions: (left) l1, (middle) l2, and (right) l‘ error.
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the associated error from SCRIP. The results are partic-

ularly apparent for the smooth field Y2
2, where each of the

error measures shows an improvement of two–four orders

of magnitude.

Comparing the spatial distribution of error for the

three schemes (see Fig. 9), we observe that the error for

SCRIP and CaRS tends to be most significant near the

corners, whereas GECoRe has a much more uniform

distribution of the resulting error. This result reflects

the lack of a contribution from geometric error in the

GECoRe scheme, which tends to dominate near the

singularities of the cubed-sphere grid. Hence, we can

further conclude that, compared to SCRIP and CaRS,

the GECoRe scheme tends to be affected less strongly

by the shape of the underlying grid.

e. Impact of the reconstruction method

We briefly turn our attention to derivative error in the

GECoRe schemes by comparing four methods for

computing the reconstruction coefficients in each cell.

We focus on the nonequidistant parabolic fit (three

point) and quartic fit (five point) methods, both com-

puted in gnomonic coordinates, to the stretched equi-

distant three- and five-point methods computed in equi-

angular coordinates. Results from this comparison are

given in Fig. 10.

Observe that there is no significant difference be-

tween both three-point schemes and both five-point

schemes for the nonsmooth Y16
32 and VX test cases, since

the natural derivative error dwarfs any error that would

be present from stretching of the equiangular recon-

struction. However, for the smooth test case, there are

obvious deviations between the four methods in the

third-order PPM scheme. In particular, we clearly ob-

serve an immediate benefit to computing the recon-

struction coefficients directly in gnomonic coordinates.

From the nonsmooth test cases we also observe an ob-

vious benefit to increasing the stencil size.

f. Impact of the monotone filter

To ensure monotonicity in the reconstruction, we em-

ploy the monotone filter of Barth and Jespersen (1989).

This simple monotone filter simply scales the subgrid-

scale reconstruction so that its minimum and maximum

values do not exceed the cell averages of the neighboring

cells. In the case of the second-order linear reconstruc-

tion, the extreme values within a cell will occur at the

four corner points. For the third-order reconstruction,

FIG. 7. As in Fig. 6, but with Nc 5 40.
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FIG. 8. As in Fig. 6, but remapping from an RLL grid (Nl 5 128, Nu 5 64) to an ABP grid (Nc 5 80).

FIG. 9. Spatial distribution of the error (31022) for the remapping of Y16
32 from a coarse-resolution ABP grid (Nc 5 40) to an RLL grid

(Nl 5 128, Nu 5 64) using (a) GECoRe, (b) SCRIP, and (c) CaRS with piecewise parabolic (third order) reconstructions.
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the extrema could also possibly occur along the boundary

or within the cell. Hence, five additional points must be

checked in the third-order scheme.

The effect of applying the monotone filter to the

remapping scheme is given in Fig. 11. We observe that

this simple monotone limiter tends to reduce the ac-

curacy of the method by an order of magnitude, but, as a

consequence, maintains that global extreme points are

not enhanced. Tests performed on a simple cosine hill

field, which is more susceptible to overshoots and un-

dershoots, actually result in improved accuracy of the

remapped field under the monotone limiter (not

shown).

As resolution is increased, we expect that the loss of

accuracy due to the monotone limiter will be reduced,

since higher resolution results in less relative variation

in the scalar field. Furthermore, advanced limiters, such

as that of Zerroukat et al. (2005), if extended to two

dimensions, are certain to result in an improved accur-

acy of these results.

5. Summary

A general modeling environment consists of different

model components, usually implemented on different

grid systems. Hence, accurate translation of scalar field

data between grid systems is important in order to en-

sure overall accuracy of the model. For variables such as

fluxes conservation is a particularly important property

that should also be maintained by the remapping scheme,

as it ensures that a given model does not disobey the

fundamental laws of nature. The accuracy of existing

conservative schemes, such as the Spherical Coordinate

Remapping and Interpolation Package and the Cascade

Remapping between Spherical Grids scheme is often

limited by the capacity of these methods to accurately

model the geometry of the problem. Here we have pre-

sented a high-order geometrically exact scheme for

conservative and monotone remapping of scalar fields

between the regular latitude–longitude and gnomonic

cubed-sphere geometries. The new remapping scheme

FIG. 10. Performance measures for the remapping of Y2
2, Y16

32, and the idealized vortices (VX) from a

high-resolution ABP grid (Nc 5 80) to an RLL grid (Nl 5 128, Nu 5 64) using GECoRe with four choices

of subgrid-scale reconstruction techniques: three-point stretched equiangular (3-St), five-point stretched

equiangular (5-St), three-point nonequidistant gnomonic (3-NE), and five-point nonequidistant (5-NE):

(left) l1, (middle) l2, and (right) l‘ error.
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is referred to as Geometrically Exact Conservative

Remapping.

GECoRe is based on the principle that we can inte-

grate certain fields in exact closed-form along grid lines

in the gnomonic cubed-sphere grid and regular latitude–

longitude grid. The advantage of this approach is the

removal of geometric error associated with low-order

approximations to line segments at a similar computational

cost to existing techniques. Here we provide mecha-

nisms for constructing schemes up to the third-order,

possibly combined with an inexpensive monotone filter.

GECoRe is validated by remapping a standard set of

both smooth and rapidly varying test functions. Standard

error measures are compared with existing SCRIP

and CaRS schemes at low and medium resolutions of

the cubed-sphere grid. We observe that the GECoRe

scheme excels in both cases when applied at second order

or higher, often yielding a one or two order of magnitude

improvement over the existing schemes without addi-

tional tweaking. However, SCRIP is more general than

GECoRe, since it can, in principle, handle any kind of

spherical grid. Generalized versions of GECoRe can be

obtained by replacing the exact integrals, where the exact

formulas are too complicated or do not exist, with Gaussian

quadrature of the potentials (Lauritzen et al. 2009, manu-

script submitted to J. Comput. Phys.).
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APPENDIX A

Calculation of Antiderivatives

In general, for interpolation between the RLL grid

and ABP grid, we must evaluate the contour integral in

(17) along four types of line segments:

1) Lines of constant a. Since da 5 0, any integral along

a line of constant a will always evaluate to zero.

FIG. 11. Performance measures for the remapping of Y2
2, Y16

32, and the idealized vortices (VX) from a

high-resolution ABP grid (Nc 5 80) to an RLL grid (Nl 5 128, Nu 5 64) using GECoRe with (dotted line)

and without (solid line) monotone filtering: (left) l1, (middle) l2, and (right) l‘ error.
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Hence lines of constant a can be ignored in the

computation.

2) Lines of constant b. In this case the integral can be

evaluated directly from (18), on taking b 5 constant.

3) Lines of constant longitude (l). In this case we can

rewrite the integrand of (18) in terms of a and l via

the RLL and ABP coordinate relations given in (D1)

and (D3) and then integrate to obtain a closed-form

expression. Alternatively, transforming these inte-

grals to make use of u as the dummy variable and

then rewriting all a and b components in terms of l

and u may be helpful when performing the integra-

tion. Furthermore, observe that lines of constant l

are lines of constant a on panels 1–4, and hence the

resulting integral will evaluate to 0.

4) Lines of constant latitude (u). In this case we can

rewrite the integrand of (18) in terms of a and u via

the RLL and ABP coordinate relations given in (D1)

and (D3) and then integrate to obtain a closed-form

expression. Alternatively, it may be helpful to make

use of l as the dummy variable and rewrite all a

and b components in terms of l and u prior to

integrating.

On performing the integration for each of the cases in

(2)–(4), we then obtain antiderivatives I(p, q)
s that can be

evaluated at the endpoints of each line segment in order to

give a numerically computed line integral. In Cartesian

geometry computing exact line integrals of polynomials is

straightforward (see Bockman 1989); however, on the

sphere the integration is nontrivial and is hence performed

using the computational mathematics software Maple and

then simplified by hand. In the following sections we

provide I(p, q)
s for p 1 q , 3, as required for constructing

remapping schemes up to third-order accuracy as well as

the associated subgrid-cell reconstruction functions. Ex-

tensions to fourth order and beyond can be obtained via

the process of integration also described below.

a. First-order scheme

We now turn our attention to the piecewise-constant

GECoRe scheme as an example of the requisite calcu-

lations. Under this scheme, the subgrid-cell recon-

struction for each cell on the source grid is given by the

constant value a
(0, 0)
n , that is,

f n 5 a(0, 0)
n , (A1)

and hence the remapping scheme in (8) and (9) reduces

to

f k 5
1

Ak
�
N

n51
a(0, 0)

n

ð
An, k

dA. (A2)

One can quickly observe that for this scheme we only

require knowledge of the area covered by the over-

lapping regions, which is given by the interior integral

term. Hence, in order to apply the divergence theorem

and rewrite the area integral in terms of line integrals

we require knowledge of the potential C(0,0) associated

with the constant field f 5 1. A simple calculation using

(11) gives

Cb

r cosa
5

tanb

r
. (A3)

The area integral is then evaluated via (17), where the

antiderivatives I(0, 0)
s follow from (18), and hence are

given by

I(0, 0)
s 5

ð
tanb

r
da. (A4)

Integration of this quantity is then performed over

each of the line segments described previously. For this

constant field, we obtain the following closed-form

relations.

Lines of constant b:

I(0, 0)
s 5�arccos(sina sinb). (A5)

Lines of constant l (panels 5 and 6):

I(0, 0)
s 5 sign(sinl sinu) arcsin(cosl cosa). (A6)

Lines of constant u (panels 1–4):

I(0, 0)
s 5 a sinu. (A7)

Lines of constant u (panels 5 and 6):

I(0, 0)
s 5 sign(sinu) arctan

tana

tanb sinu

� �
� l sinu. (A8)

b. Second-order scheme

We now turn our attention to the higher-order GECoRe

schemes, beginning with the second-order scheme, which is

based on a piecewise-linear reconstruction. First, the anti-

derivatives associated with the background fields used in

these high-order schemes are presented without derivation.

Second, we provide a derivation of the reconstruction co-

efficients for this scheme.

1) ANTIDERIVATIVES

For the second-order-accurate reconstruction, fol-

lowing (16), we must find potentials C(1,0) and C(0,1)

that satisfy
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$ �C(1, 0) 5 tana and $ �C(0, 1) 5 tanb, (A9)

where the divergence operator is defined in accordance

with (11). From (16) we obtain

C
(1, 0)
b

r cosa
5

tana tanb

r
, and

C
(0, 1)
b

r cosa
5� 1

r cos2a
.

(A10)

The antiderivatives of these expressions then lead to

I(1, 0)
s and I(0, 1)

s , when evaluated along lines of constant

b, constant latitude, and constant longitude (recall the

antiderivatives along lines of constant a are zero).

Lines of constant b:

I(1, 0)
s 5�arcsinh(tanb cosa), (A11)

I(0, 1)
s 5�arcsinh(tana cosb). (A12)

Lines of constant l (panels 5 and 6):

I(1, 0)
s 5 sign(sinu)[arctanh(cosl cosu)

� coslarctanh(cosu)], (A13)

I(0, 1)
s 5�sinl arctanh(cosu). (A14)

Lines of constant u (panels 1–4):

I(1, 0)
s 5�sinu ln(cosa), (A15)

I(0, 1)
s 5�cosu ln(seca 1 tana). (A16)

Lines of constant u (panels 5 and 6):

I(1, 0)
s 5 sign(sinu)[�cosl cosu

1 arctanh(cosl cosu)], (A17)

I(0, 1)
s 5�sinl cosu. (A18)

2) PIECEWISE LINEAR (SECOND ORDER)
RECONSTRUCTION

We can extend upon the first-order reconstruction by

including a linear term in the subgrid-scale reconstruc-

tion. That is, for each cell n on the source grid, the field

fn, from (5), takes the following form:

f n(x, y) 5 a(0, 0)
n 1 a(1, 0)

n (x� x0) 1 a(0, 1)
n (y� y0). (A19)

For the second-order method, the reconstruction co-

efficients a
(i, j)
n obtained from the Taylor series expan-

sion are clearly the most natural choice. Recall that we

can write the Taylor series expansion about x0 asA1

f n 5 f n 1
›f

›x

� �
n

(x� x0) 1
›f

›y

� �
n

(y� y0). (A20)

Hence, on comparing (A19) and (A20) we are inclined

to choose the reconstruction coefficients according to

a(0, 0)
n 5 f n, a(1, 0)

n 5
›f

›x

� �
n

, a(0, 1)
n 5

›f

›y

� �
n

. (A21)

It can quickly be verified that this choice satisfies the

area-averaged field constraint in (7), and hence is a valid

choice of reconstruction coefficients. Computationally,

each of these coefficients can then be easily approxi-

mated via a discretized derivative operator. Numerous

possibilities exist for the choice of discretized derivative

operator that vary in both order and stencil size. We

refer the reader to Chung (2002) for a list of possible

discrete operators. The discretized derivative operator

must be at least first-order accurate so as to obtain a

second-order method, and must correspondingly in-

crease in order for increasingly higher-order schemes.

Note that the second-order scheme requires knowl-

edge of the area integrals (or line segment weights)

for the fields x 5 tana and y 5 tanb, in addition to

the constant field, for a total of three weights per line

segment.

c. Third-order scheme

In this section we provide the antiderivatives and

reconstruction coefficients required for the third-order-

accurate piecewise-parabolic scheme.

1) ANTIDERIVATIVES

For the third-order-accurate reconstruction, follow-

ing (16), we must find potentials C(2,0), C(0,2), and C(1,1)

that satisfy

$ �C(2, 0) 5 tan2a, $ �C(0, 2) 5 tan2b,

$ �C(1, 1) � tana tanb. (A22)

From (16) we find

C
(2, 0)
b

r cosa
5

tan2a tanb

r
, (A23)

C
(0, 2)
b

r cosa
5

1

cos2a
� tanb

r
1 arcsinh(tanb cosa)

� �
, (A24)

A1 Observe that (A20) is analogous to Eq. (5) in Jones (1999).
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C
(1, 1)
b

r cosa
5� tana

r cos2a
. (A25)

The antiderivatives of these expressions then lead to

I(2, 0)
s , I(0, 2)

s , and I(1, 1)
s when evaluated along the appro-

priate line segments.

Lines of constant b:

I(2, 0)
s 5 tanb arcsinh(cosb tana)

1 arccos(sina sinb), (A26)

I(0, 2)
s 5 tana arcsinh(cosa tanb)

1 arccos(sina sinb), (A27)

I(1, 1)
s 5�r. (A28)

Lines of constant l (panels 5 and 6):

I(2, 0)
s 5�sinl cosl

sinu
1 arctan

tanl

sinu

� �
, (A29)

I(0, 2)
s 5�sinl cosl

sinu
� sinl cotu arctanh(cosl cosu)

� arctan(cotl sinu), (A30)

I(1, 1)
s 5� sin2l

j sinuj . (A31)

Lines of constant u (panels 1–4):

I(2, 0)
s 5 sinu(tana� a), (A32)

I(0, 2)
s 5 tana[�sinu 1 arcsinh(tanu)], (A33)

I(1, 1)
s 5�cosu

cosa
. (A34)

Lines of constant u (panels 5 and 6):

I(2, 0)
s 5�cos2u

2 sinu
sinl cosl� l sinu

1

2
cos2u 1 1

� �

1 arctan
tanl

sinu

� �
, (A35)

I(0, 2)
s 5

cos2u

2 sinu
sinl cosl 1

l

sinu

1

2
cos2u� 1

� �
� cotu sinl arctanh(cosl cosu)

1 arctan
tanl

sinu

� �
, (A36)

I(1, 1)
s 5�1

2
sinu tan2a.

���� (A37)

2) PIECEWISE PARABOLIC (THIRD ORDER)
RECONSTRUCTION

We can devise a third-order scheme by including

parabolic terms in the subgrid-scale reconstruction.

That is, for each cell n on the source grid, the field fn

takes the following form:

f n(x, y) 5 a(0, 0)
n 1 a(1, 0)

n (x� x0) 1 a(0, 1)
n (y� y0)

1 a(2, 0)
n (x� x0)

2
1 a(1, 1)

n (x� x0)(y� y0)

1 a(0, 2)
n (y� y0)2.

(A38)

As with the second-order method, we begin by writing

the Taylor series expansion of fn about the centroid x0,

obtaining

f n(x, y) 5 f n(x0) 1
›f

›x

� �
n

(x� x0) 1
›f

›y

� �
n

(y� y0)

1
1

2

›2f

›x2

� �
n

(x� x0)2

1
›2f

›x›y

� �
n

(x� x0)(y� y0)

1
1

2

›2f

›y2

� �
n

(y� y0)2. (A39)

Observe that in this expansion we have not fixed the

value of the source field at x0 to be equal to f n. In fact,

one can quickly verify that the choice f n(x0) 5 f n does

not lead to a method consistent with the constraint in

(7). The ‘‘correct’’ choice for fn(x0) is instead obtained

by integrating (A39) over the source volume and re-

writing the left-hand side in terms of the area-averaged

field f n. Following this approach, we findA2

a(0, 0)
n 5 f n(x0) 5 f n 1

1

2

›2f

›x2

� �
n

[x2
0 �m(2, 0)

n ]

1
›2f

›x›y

� �
n

[x0y0 �m(1, 1)
n ] 1

1

2

›2f

›y2

� �
n

[y2
0 �m(0, 2)

n ],

(A40)

where m
(p, q)
n are the area-averaged moments, defined

via

m( p, q)
n 5

1

An

ð
An

xpyq dA. (A41)

The remaining reconstruction coefficients are obtained

from the Taylor expansion in (A39):

A2 This choice reduces our reconstruction to the well-known

PPM devised by Colella and Woodward (1984).
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a(1, 0)
n 5

›f

›x

� �
n

, a(0, 1)
n 5

›f

›y

� �
n

, (A42)

a(2, 0)
n 5

1

2

›2f

›x2

� �
n

, a(1, 1)
n 5

›2f

›x›y

� �
n

, a(0, 2)
n 5

1

2

›2f

›y2

� �
n

.

(A43)

Each of these coefficients must be constructed from a

discretized derivative operator of at least second order,

and must increase in order correspondingly for higher-

order schemes.

The third-order scheme requires knowledge of the

area integrals, or line potentials, of the fields x2 5 tan2a,

xy 5 tana tanb, and y2 5 tan2b, in addition to all po-

tentials from the first- and second-order schemes.

APPENDIX B

High-Order Bisected Element Reconstruction

Observe that for each of the high-order schemes

described in appendix A the reconstruction is per-

formed over the gnomonic coordinates, which are in-

herently discontinuous between panels. Hence, special

consideration must be taken when performing

remapping over an RLL source volume that covers two

or more panels. The simplest solution to this problem

is to divide the RLL cell into two or more cells,

bisected by the panel edge. All high-order recon-

struction coefficients can be maintained in this case,

but the first-order cell average must be reevaluated in

each subcell.

a. A second-order-accurate bisected element
reconstruction

One can obtain a simple second-order approximation

that conserves the scalar field by imposing

A1f 1 1 A2f 2 5 Anf n, (B1)

where f 1 and f 2 are the new area-averaged field values

in the subcells spanning the panel edge and f n is the

area-averaged field in the original source cell. To solve

this equation uniquely for f 1 and f 2, we also impose

that the reconstructions in each subcell must be identi-

cal in RLL coordinates:.

f 1 � f 2 5
›f

›l

� �
n

(l1 � l2) 1
›f

›u

� �
n

(u1 � u2). (B2)

These two conditions then lead to a simple second-order

approximation that conserves the scalar field, given by

f 1 5 f n 1
A2

An

� �
›f

›l

� �
n

(l1 � l2) 1
›f

›u

� �
n

(u1 � u2)

� �
(B3)

and

f 2 5 f n �
A1

An

� �
›f

›l

� �
n

(l1 � l2) 1
›f

›u

� �
n

(u1 � u2)

� �
.

(B4)

Since the reconstruction in gnomonic coordinates

requires that derivatives are aligned along x and y co-

ordinate axes, additional work must be performed in

order to rotate the reconstructed derivative in spherical

coordinates to the gnomonic coordinate system. Ap-

pendix C gives equations for translating the recon-

structed derivatives in gnomonic coordinates from a re-

construction in RLL coordinates for both the second-

and third-order schemes.

b. A third-order-accurate bisected element
reconstruction

A third-order-accurate reconstruction for a bisected

cell can be obtained as an extension of the method

discussed in the previous section, and is necessary for

remapping from the RLL grid to CS grid using the PPM

scheme. Henceforth, we will use the notation (xi, yi) to

denote the centroid of each subcell (i 2 {1, 2}) in gno-

monic coordinates and (li, ui) to denote the centroid in

RLL coordinates.

In this case, the second derivatives of the field are

inherited from the parent cell in each subcell, but the

cell-averaged values and first derivatives must be com-

puted separately. Using a simple Taylor series expan-

sion in RLL coordinates, we can write the subcell first

derivatives as

›f

›l

� �
i

5
›f

›l

� �
n

1
›2f

›l›u

� �
n

(ui � un) 1
›2f

›l2

� �
n

(li � ln)

(B5)

and

›f

›u

� �
i

5
›f

›u

� �
n

1
›2f

›l›u

� �
n

(li � ln) 1
›2f

›u2

� �
n

(ui � un).

(B6)

However, one cannot simply use a Taylor series to ob-

tain f(x0), since we have no guarantee that it would

satisfy the conservation constraint given in (B1). In-

stead, we impose (B1), which, in conjunction with the

area-averaged constraint in (A40), gives
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A second equation can be obtained by imposing that the

subcells have the same reconstruction in RLL coordi-

nates, which can be expressed as

a
(0, 0)
2
� a

(0, 0)
1

5
›f

›l

� �
2

l2 �
›f

›l

� �
1

l1

� �
1

›f

›u

� �
2

u2 �
›f

›u

� �
1

u1

� �

� 1

2

›2f

›l2

� �
(l2

2 � l2
1)� ›2f

›l›u

� �
(l2u2 � l1u1)

� 1

2

›2f

›u2

� �
(u2

2 � u2
1). (B8)

If we define the right-hand side of (B7) as cA and the

right-hand side of (B8) as cB, then the a
(0, 0)
i in each

subcell take the following form:

a
(0, 0)
1

5
cA �A2cB

A1 1 A2
, and a

(0, 0)
2 5

cA 1 A1cB

A1 1 A2
. (B9)

The reconstruction coefficients a
(0, 0)
i can then be con-

verted back to area-averaged values f i on applying (7).

APPENDIX C

The Gnomonic Cubed-Sphere Projection

A point on the cubed sphere in the gnomonic pro-

jection is normally given in terms of (x, y, np) coordi-

nates, where x, y 2 [21, 1] and np 2 {1, 2, 3, 4, 5, 6}. By

convention, we choose panels 1–4 to be along the

spherical equator, with panels 5 and 6 centered on the

southern and northern pole, respectively. As in (1),

gnomonic coordinates are related to equiangular coor-

dinates via the relations

x 5 a tana and y 5 a tanb, (C1)

where, without loss of generality, we have chosen a 5 1.

Since gnomonic coordinates are panel dependent, the

change of coordinates relations are dependent on the

choice of panel.

a. Panels 1–4 (equatorial panels)

In terms of spherical coordinates, x and y take the

following form:

x 5 tanl* and y 5 tanu secl*, (C2)

where l* is the panel-centric longitude coordinate, de-

fined in terms of the panel k by

l* 5 l� p

2
(k� 1). (C3)

Inverting (C2) yields

l* 5 arctanx and u 5 arctan
yffiffiffiffiffiffiffiffiffiffiffiffiffi

1 1 x2
p
� �

. (C4)

b. Panels 5 and 6 (polar panels)

For simplicity, we define a panel indicator variable as

k 5 sign(u). (C5)

Observe that on the south polar panel in (5) and the

north polar panel in (6), the indicator variables takes on

the values 21 and 11, respectively, over the entire

panel.

In terms of spherical coordinates, x and y take the

following form:

x 5 k sinl cotu and y 5�cosl cotu. (C6)

Inverting (C6) yields

l 5�k arctan(x/y) and u 5 k arctan
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 1 y2
p
 !

.

(C7)

c. Change-of-coordinates matrices for high-order
schemes

When performing interpolation between RLL and

cubed-sphere grids, we are required to obtain values for

the reconstruction coefficients in terms of gnomonic

coordinates. Since obtaining the reconstructed deriva-

tives in RLL coordinates is relatively simple, a quick

application of the chain rule leads to a change-of-co-

ordinates matrix of the following form:

›f
›x
›f
›y

2
64

3
755

›l
›x

›u
›x

›l
›y

›u
›y

2
4

3
5 ›f

›l

›f
›u

2
64

3
75. (C8)

A1a
(0, 0)
1

1 A2a
(0, 0)
2 5 f n(A1 1 A2)

1 A1
1

2

›2f

›x2

� �
1

f[x2
1 �m

(2, 0)
1

]g1
›2f

›x›y

� �
1

[x1y1 �m
(1, 1)
1

] 1
1

2

›2f

›y2

� �
1

[y2
1 �m

(0, 2)
1

]

� �

1 A2
1

2

›2f

›x2

� �
2

[x2
2 �m

(2, 0)
2

] 1
›2f

›x›y

� �
2

[x2y2 �m
(1, 1)
2

] 1
1

2

›2f

›y2

� �
2

[ y2
2 �m

(0, 2)
2

]

� �
. (B7)
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Hence, the following matrices allow us to rotate the

reconstructed derivatives in RLL coordinates, which

can be easily obtained via a discretized derivative op-

erator, to gnomonic coordinates.

Panels 1–4 (equatorial panels):

›f

›x
›f

›y

2
664

3
7755

cos2l �1

4
sin(2l) sin(2u)

0 cosl cos2u

2
4

3
5 ›f

›l

›f

›u

2
664

3
775, (C9)

Panels 5 and 6 (polar panels):

›f

›x
›f

›y

2
664

3
7755

k cosl tanu � k sinl sin2u

sinl tanu cosl sin2u

" # ›f

›l

›f

›u

2
664

3
775. (C10)

For third and higher order schemes, we also require

equations that express the second-order gnomonic de-

rivatives

›2f

›x2
,

›2f

›x›y
, and

›2f

›y2

in terms of derivatives in RLL coordinates. Again, ap-

plying the chain rule, we find

The matrix A(2,2) is trivial to calculate, given (C9) and

(C10), and hence is not provided here.

APPENDIX D

The Equiangular Cubed-Sphere Projection

In this appendix we briefly provide details on coor-

dinate relations and the metric associated with the

equiangular cubed-sphere projection. For a more thor-

ough treatment of this material, we refer to Nair et al.

(2005).

A point on the cubed sphere in the equiangular

projection is normally given in terms of (a, b, np)

(ABP) coordinates, where a, b 2 [�p/4, p/4] and np 2
{1, 2, 3, 4, 5, 6}. By convention, we choose panels 1–4 to

be along the spherical equator, with panels 5 and 6 cen-

tered on the southern and northern pole, respectively.

a. Panels 1–4 (equatorial panels)

In terms of spherical coordinates, a and b take the

following form:

a 5 l*, b 5 arctan(tanu secl*), (D1)

where l* is the panel-centric longitude coordinate, de-

fined earlier in (C3). Inverting (D1) yields

l* 5 a, u 5 arctan(tanb cosa). (D2)

›2f

›x2

›2f

›x›y

›2f

›y2

2
66666664

3
77777775

5

›2l

›x2

›2u

›x2

›2l

›x›y

›2u

›x›y

›2l

›y2

›2u

›y2

2
66666664

3
77777775

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
A(1, 2)

›f

›l

›f

›u

2
664

3
7751

›l

›x

� �2

2
›l

›x

›u

›x

›u

›x

� �2

›l

›x

›l

›y

›u

›x

›l

›y
1

›u

›x

›l

›y

›u

›y

›u

›x

›l

›y

� �2

2
›l

›y

›u

›y

›u

›y

� �2

2
666666664

3
777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A(2, 2)

›2f

›l2

›2f

›l›u

›2f

›u2

2
66666664

3
77777775

. (C11)

Evaluating the matrix A(1,2) on panels 1–4 gives

A(1, 2) 5

�cos2l sin(2l) �1

2
cos2l sin(2u)[ cos(2l)�sin2l cos(2u)]

0 �1

2
cosl sin(2l) cos2u cos(2u)

0 �cos2l sin(2l) cos2u

2
6664

3
7775. (C12)

On panels 5 and 6 we obtain

A(1, 2) 5

�sin(2l) tan2u �sin2u[ cos2l tanu� sin2l sin(2u)]

k cos(2l) tan2u �1

2
k sin(2l) sin2u[ tanu 1 sin(2u)]

sin(2l) tan2u �sin2u[ sin2l tanu� cos2l sin(2u)]

2
664

3
775. (C13)
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b. Panels 5 and 6 (polar panels)

In terms of spherical coordinates, a and b take the

following form:

a 5 k arctan(sinl cotu), b 5�arctan(cosl cotu).

(D3)

Inverting (D3) yields

l 5�k arctan
tana

tanb

� �
, u 5�arctan

cosl

tanb

� �
. (D4)

A useful identity that follows from these relationships is

tan2a 1 tan2b 5 cot2u. (D5)

c. The equiangular cubed-sphere metric

The equiangular cubed-sphere metric is given by

gi, j 5
1

r4 cos2a cos2b

1 1 tan2a �tana tanb

�tana tanb 1 1 tan2b

� �
,

(D6)

where r is defined by

r2 5 1 1 tan2a 1 tan2b. (D7)

The volume element for this metric is then

ffiffiffi
g
p

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det(gi, j)

q
5 (r3 cos2a cos2b)�1. (D8)

We can use the metric to define unit basis vectors, such

that e � e 5 gi,je
ie j 5 1. In terms of the natural basis â

and b̂, these can be written as

(ea) 5 (r2 cos2a cosb)â, (eb) 5 (r2 cosa cos2b)b̂.

(D9)

The nonorthogonality parameter, which determines the

degree or nonorthogonality of the basis vectors at each

point on the manifold, is then given by

cos(f) 5 ea � eb 5�sina sinb. (D10)
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