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This paper presents a third-order and fourth-order finite-volume method for solving the
shallow-water equations on a non-orthogonal equiangular cubed-sphere grid. Such a grid
is built upon an inflated cube placed inside a sphere and provides an almost uniform grid
point distribution. The numerical schemes are based on a high-order variant of the Mono-
tone Upstream-centered Schemes for Conservation Laws (MUSCL) pioneered by van Leer.
In each cell the reconstructed left and right states are either obtained via a dimension-split
piecewise-parabolic method or a piecewise-cubic reconstruction. The reconstructed states
then serve as input to an approximate Riemann solver that determines the numerical
fluxes at two Gaussian quadrature points along the cell boundary. The use of multiple
quadrature points renders the resulting flux high-order. Three types of approximate Rie-
mann solvers are compared, including the widely used solver of Rusanov, the solver of
Roe and the new AUSM+-up solver of Liou that has been designed for low-Mach number
flows. Spatial discretizations are paired with either a third-order or fourth-order total-
variation-diminishing Runge–Kutta timestepping scheme to match the order of the spatial
discretization. The numerical schemes are evaluated with several standard shallow-water
test cases that emphasize accuracy and conservation properties. These tests show that the
AUSM+-up flux provides the best overall accuracy, followed closely by the Roe solver. The
Rusanov flux, with its simplicity, provides significantly larger errors by comparison. A brief
discussion on extending the method to arbitrary order-of-accuracy is included.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Atmospheric models are difficult to engineer, largely due to two factors. Firstly, the flow occurs over the surface of a
sphere, rather than in much simpler planar Cartesian geometry and secondly, there are vast scale differences between the
large-scale horizontal flow, with length scales that extend to thousands of kilometers, and vertical motions with length
scales of about 1–10 km. In addition, the dominant motions in the atmosphere are an example of a low-Mach number regime
that is mostly characterized by Mach numbers around M < 0.4. Therefore, care must be taken when applying numerical
methods from other research fields. In particular, in atmospheric flows high-speed motions are only present in fast atmo-
spheric gravity waves or sound waves. The latter are a solution to the 3D nonhydrostatic equation set, but play a negligible
role from a physical viewpoint. Nevertheless, an adequate numerical scheme for atmospheric flows must guarantee stability
for fast waves and treat the slow, physically important, motions with high accuracy.
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A common test bed for atmospheric model development is based on the shallow-water equation set that mimics atmo-
spheric flow in a single layer. A shallow-water model thereby tests the horizontal and temporal discretizations and provides
guidance for the numerical schemes suitable for flows with low-Mach numbers. Note that the shallow-water equations do
not support sound waves but do capture the fast gravity wave propagation.

There are many numerical schemes that have been tested in shallow-water models on the sphere, all of which have both
pros and cons. The spectral transform method discussed in Jakob-Chien et al. [17] achieves high accuracy but tends to exhibit
non-physical numerical oscillations near sharp gradients – so-called Gibb’s ringing. Spectral transform methods also demand
a high computational expense at high resolution that is associated with the computational cost of the Legendre transforms.
Finite-difference approaches include those of Heikes and Randall [16] and Ronchi et al. [32]. Hybrid finite-volume methods
incorporate both a finite-volume treatment of conservative variables and a finite-difference treatment of momentum and
include the models of Lin and Rood [22] and Chen and Xiao [8]. Finite-element type models, including spectral-element
(SE) and discontinuous-Galerkin (DG) models have been presented by Taylor et al. [37], Côté and Staniforth [10], Thomas
and Loft [39], Giraldo et al. [13] and Nair et al. [26].

The aforementioned models represent a wide variety of computational grids on the sphere such as the latitude–longitude
mesh, icosahedral and hexagonal grids, and cubed-spheres meshes. The latter three have become popular over the last dec-
ade as they provide an almost regular grid point coverage on the sphere. The uniform distribution of elements avoids the
convergence of the meridians that is characteristic for latitude–longitude grids, and thereby alleviates the use of polar filters
and other numerical damping techniques. The cubed-sphere grid has also been proven to scale efficiently on massively par-
allel computing platforms as shown by Taylor et al. [38] and Putman and Lin [30]. These two models are therefore under
consideration for operational climate and weather applications at atmospheric modeling centers in the US.

This paper introduces a set of third- and fourth-order-accurate fully-conservative finite-volume methods on cubed-
sphere grids and assesses the impact of the high-order accuracy. These finite-volume methods are built upon the reconstruc-
tion techniques adopted by the Monotone Upstream-centered Schemes for Conservation Laws (MUSCL) pioneered by Van
Leer [44]. Previously, second-order finite-volume methods of this type have been studied for geostropic flows on the sphere
by Rossmanith [33], which is based on the flux-difference-splitting technique of LeVeque [20] on a curved manifold.

Fully-conservative finite-volume methods share local conservation properties with spectral-element and discontinuous-
Galerkin discretizations, but are potentially more computationally efficient due to their relatively weak Courant–Friedrichs–
Lewy (CFL) constraints. Explicit timestepping techniques, when used in combination with these methods, suffer from severe
CFL timestep restrictions related to the clustering of nodal points near element edges (which worsens at high-order). On the
other hand, finite-volume methods possess a large computational stencil at high-order and so are also potentially difficult to
parallelize as effectively as these more compact methods. This difficulty arises primarily in the algorithmic complexity
associated with determining which information needs to be communicated between processors. Although DG and SE
methods only require information to be communicated between elements and their immediate neighbors, the number of
prognotistic quantities associated with each element is significantly larger for these schemes. Whereas for each state
variable finite-volume methods store only one value per element, DG and SE methods can, at fourth-order-accuracy, can
have up to 10 values per element.

The use of neighboring elements by high-order FV schemes also means that element values must be remapped across
coordinate discontinuities, such as those that appear on the cubed-sphere grid. This requirement results in the need for
wider ghost regions near coordinate discontinuities on parallel systems in order to accommodate remapping. Schemes with
local degrees of freedom, on the other hand, including DG and SE methods, may be more attractive in this regard since
remapping is not required, and hence work can be distributed more evenly on parallel architectures.

Although we do not present a technique for constructing a monotone or non-oscillatory scheme in this paper, significant
research has been done on this topic for applications in other research areas. For instance, (Weighted) Essentially Non-Oscil-
latory ((W) ENO)-type reconstructions (e.g. [2,27]), slope limiters (e.g. [43,25]) or flux-corrected transport methods [49] can
all be applied to this class of finite-volume methods presented herein. Monotone DG methods, on the other hand, are an ac-
tive research area.

The method we present involves the use of approximate Riemann solvers to calculate edge fluxes. Most widely used
approximate Riemann solvers (such as the solver of Roe [31]) are designed to model flow in the transsonic or supersonic
regime rather than in the relatively slow flow regime that is typical for the atmosphere. However, recent advances in the
design of approximate Riemann solvers have led to an extension of the Advection Upstream Splitting Method (AUSM,
[24]) to low Mach numbers [23]. The use of this new numerical flux formulation, known as AUSM+-up, has so-far been lar-
gely limited to the aerospace community. Hence, a test of this new approximate Riemann solver will gauge its applicability
for atmospheric models. We also compare the Roe and AUSM+-up schemes to the widely-used and simpler Rusanov solution
[19,34,42].

The performance of all schemes will be analyzed via selected standard test cases from the suite of Williamson et al. [46].
Among them are the advection of a cosine bell, steady-state geostrophic flow, steady-state geostrophic flow with compact
support, flow over an isolated mountain and the Rossby–Haurwitz wave. In addition, we assess the barotropic instability
problem of Galewsky et al. [12] that exhibits sharp vorticity gradients.

The paper is organized as follows: In Section 2 we introduce the cubed-sphere grid with an equiangular projection, which
is the underlying grid for all simulations. Section 3 discusses the shallow-water equations in cubed-sphere geometry. The
high-order finite-volume framework is described in Section 4. Special attention is paid to a careful discretization of the
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topography term. Section 5 gives two examples of finite-volume methods that can be composed under this framework. In
particular, the third-order dimension-split piecewise-parabolic method and a fourth-order piecewise-cubic-method are
introduced. Section 6 describes the three approximate shallow-water Riemann solvers we will be using in our analysis.
The simulation results, discussion and performance assessments are presented in Section 7. Finally, the main findings are
summarized in Section 8.

2. The cubed-sphere

We make use of the cubed-sphere grid, which is obtained from projecting a gridded cube onto the surface of the sphere.
The cubed-sphere grid has been suggested by Sadourny [35] and Ronchi et al. [32], and has become popular in recent years as
an alternative to the classical spherical latitude–longitude mesh. The latter requires special treatment of singularities at the
North and South poles due to convergence of the meridians. The cubed-sphere grid instead replaces these two strong singu-
larities with eight weaker singularities that occur at the intersections of three cube faces. These intersections are the corner
points of the original cube.

From a mathematical standpoint, the cubed-sphere grid is a tiling of the sphere consisting of six panels that form the faces
of a concentric cube projected onto the surface of the sphere. Multiple options exist for the choice of grid on each panel, such
as the gnomonic grid, which follows from applying a Cartesian grid to each panel of the cube, or the cubic conformal grid,
which maximizes the orthogonality of coordinate vectors (see, for instance, Putman and Lin [29] for a review of the types of
cubed-sphere grids). In our model we will make use of the gnomonic (equiangular) cubed-sphere grid, which uses grid lines
that have equal central angles relative to the center of the sphere (i.e., this property is also exhibited by equispaced lines of
constant longitude). This choice of grid projection leads to elements of similar size, and further leads to coincident grid lines
on neighboring panels. A depiction of the cubed-sphere grid and its singularities are given in Fig. 1.

A point on the cubed-sphere in the equiangular projection can be given in terms of equiangular coordinates (a,b,np), with
a; b 2 � p

4 ;
p
4

� �
, or in terms of gnomonic coordinates (X,Y,np), with X, Y 2 [�1,1]. In both cases the panel number

np 2 {1,2,3,4,5,6}. By convention, we choose panels 1–4 to be along the equator, with panels 5 and 6 centered on the north-
ern and southern pole, respectively. One can think of equiangular coordinates as being along the surface of the sphere,
whereas gnomonic coordinates are along the surface of the cube. These two coordinate systems are related via
Fig. 1.
the cub
X ¼ tan a; Y ¼ tan b: ð1Þ
In this paper we will also make use of the definition
d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2 þ Y2

q
; ð2Þ
which appears frequently in the calculation of metric quantities associated with the cubed-sphere.
The discrete resolution of the cubed-sphere is usually written in the form Nc � Nc � 6 (in the case of symmetric tiling in

the a and b direction), where Nc denotes the number of grid cells in each horizontal direction on a panel. A list of some
properties of the cubed-sphere grid is given in Table 1. The table lists the approximate equatorial spacing of grid elements,
Left: A 3D view of the tiling of the cubed-sphere, shown here with a 16 � 16 tiling of elements on each panel. Right: A closeup view of the corner of
ed-sphere, showing the overlap of grid lines from the upper panel ghost cells on the neighboring panels.



Table 1
Properties of the cubed-sphere grid for different resolutions. Here Dx is the grid spacing at the equator, Aavg is the average area of all cubed-sphere grid
elements, Amin is the minimum element area and Amax is the maximum element area. RLLequiv denotes the equivalent grid spacing (in degrees) on the regular
latitude–longitude grid with the same number of elements and Tequiv denotes the approximate triangular truncation of a spectral transform method.

Resolution Dx (km) Aavg (km2) Amin/Amax RLLequiv Tequiv

20 � 20 � 6 500 2.125 � 105 0.7359 5.2� T21
40 � 40 � 6 250 5.313 � 104 0.7213 2.6� T42
80 � 80 � 6 125 1.328 � 104 0.7141 1.3� T85
160 � 160 � 6 62.5 3.321 � 103 0.7106 0.65� T170
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average area per element on the sphere, maximum area ratio and equivalent model resolutions of the regular latitude–lon-
gitude finite-volume and spectral transform models (under triangular truncation, as argued by Williamson [47]).

3. The shallow-water equations on the cubed-sphere

Under equiangular coordinates, the covariant 2D metric on the cubed-sphere (see, for example, [26]) is given by
1 Not
overloa
gij ¼
r2ð1þ X2Þð1þ Y2Þ

d4

1þ X2 �XY

�XY 1þ Y2

 !
; ð3Þ
with contravariant inverse
gij ¼ d2

r2ð1þ X2Þð1þ Y2Þ
1þ Y2 XY

XY 1þ X2

 !
: ð4Þ
The square root of the metric determinant, denoted by
ffiffiffi
g
p

, is then
ffiffiffi
g
p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgijÞ

q
¼ r2ð1þ X2Þð1þ Y2Þ

d3 : ð5Þ
The quantity
ffiffiffi
g
p

is exactly the Jacobian of the associated coordinate transform, and corresponds to the area of an infinitesmal
region da � db. Without loss of generality we will set the radius of the sphere r to one, which fixes the characteristic length
scale to be in terms of Earth radii.

The shallow-water equations in equiangular coordinates can be written as a conservation law of the form (summation
over repeated indices is implied)
@

@t
qðx; tÞ þ 1ffiffiffi

g
p @

@xk
Fk ¼ Wðq;xÞ; ð6Þ
where q is the state vector describing the properties of the fluid at each point, Fk is the flux vector describing the physical
response of the flow to gradients in the state vector and W denotes forcing due to source terms. The state vector q consists of
the height of the fluid, denoted by h, and its horizontal momentum hu, which we can write as a linear combination of the
basis vectors along the cubed-sphere as
hu ¼ hu1g1 þ hu2g2; ð7Þ
where g1 and g2 denote the geometric basis vectors in the a and b directions, respectively. Hence, hu1 and hu2 can be thought
of as the components of the angular momentum along geodesics that are aligned with the grid.1 The state vector and flux
vector then take the form
qðx; tÞ ¼
h

hu1

hu2

264
375; Fk ¼ ffiffiffi

g
p Uk

T k1

T k2

264
375: ð8Þ
The source terms can be written as
W ¼
0

W1
M þW1

C þW1
B

W2
M þW2

C þW2
B

264
375; ð9Þ
e that uk does not denote exponentiation of u, and should instead be read as ‘‘the kth contravariant component of the vector u.” Unfortunately, the
ded nature of this notation may be (understandably) confusing.
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where WM, WC and WB are 2-component vectors and correspond to the forcing of the momentum terms due to the metric, the
Coriolis force and the bottom topography, respectively. Here we have denoted the components of ‘‘mass” flux vector by Uk

and the ‘‘momentum” flux tensor by T kn. In terms of the state vector q the components of the flux can be written as
Uk ¼ huk and T kn ¼ hukun þ gkn 1
2

Gh2
; ð10Þ
where G denotes the gravitational constant.
In general, the metric source term describes forcing due to the underlying curvature of the coordinate system and, in gen-

eral curvilinear coordinates, takes the form
Wi
M ¼ �Ci

nkT
kn; ð11Þ
where Ci
nk are the Christoffel symbols of the second kind associated with the metric. In particular, Christoffel symbols can be

thought of as terms describing the kth component of the variation of the nth geometric basis vector in the ith direction, and
hence can be written as
Ci
nk ¼

@gn

@xk
� gi: ð12Þ
Note that this definition implies that the Christoffel symbols are exactly zero in a Cartesian frame. In component form, the
Coriolis source term is given by
Wi
C ¼ �f k� hu ¼ fffiffiffi

g
p

g12 g22

�g11 �g12

� �
hu1

hu2

" #
; ð13Þ
where f = 2Xsinh is the Coriolis parameter in terms of the angular velocity of the Earth X and the latitude h. Finally, the
source terms due to varying bottom topography (denoted by z) can be written as
Wi
B ¼ �Ghriz ¼ �Ghgij @z

@xj
: ð14Þ
Given the metric (3) associated with the equiangular cubed-sphere, the metric source term can be written as
WM ¼
2
d2

�XY2hu1u1 þ Yð1þ Y2Þhu1u2

Xð1þ X2Þhu1u2 � X2Yhu2u2

" #
: ð15Þ
Note that in the special case of equiangular coordinates we have that Ci
kngkn ¼ 0, which removes any dependence of the met-

ric source term on the gravitational term 1
2 Gh2. The Coriolis source term differs depending on whether the underlying panel

is equatorial or polar, since
sin h ¼
Y
d if np 2 f1;2;3;4g;
p
d if np 2 f5;6g;

(
ð16Þ
where p is a panel indicator given by, for instance,
p ¼ signðhÞ ¼
1 on the northern panel ðnp ¼ 5Þ;
�1 on the southern panel ðnp ¼ 6Þ:

�
ð17Þ
Hence, for equatorial panels, we have
WC;eq: ¼
2X

d2

�XY2 Yð1þ Y2Þ
�Yð1þ X2Þ XY2

" #
hu1

hu2

" #
: ð18Þ
And for polar panels, we have
WC;pol: ¼
2pX

d2

�XY ð1þ Y2Þ
�ð1þ X2Þ XY

" #
hu1

hu2

" #
: ð19Þ
4. The high-order finite-volume approach

In this section we present the high-order finite-volume approach we use as a framework for solving the shallow-water
equations in cubed-sphere geometry.
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4.1. Overview

In the full finite-volume approach we first integrate the shallow-water conservation laws in the form (6) over a given ele-
ment Z (with area jZj) and make use of Gauss’ divergence theorem to write the flux term as an integral around the boundary
@Z, giving
@

@t
�qþ 1
jZj

I
@Z

Fkð�qÞd‘ ¼ W; ð20Þ
where the integration is along the line segment d‘ and the overline denotes an average of the form
�/ ¼ 1
jZj

Z
Z

/dV ; ð21Þ
where dV ¼ ffiffiffi
g
p

dadb denotes the infinitesmal volume element. Note that the volume-averaged formulation (20) is exactly
equivalent to the original shallow-water equations, and it is left to us to define an appropriate discretization over each of
the terms in this expression.

In this paper we will only consider discretizations where each panel consists of a regular rectangular arrangement of ele-
ments of dimension Nc � Nc. The angle subtended by an element is then defined by
D ¼ 1
Nc

p
2
: ð22Þ
Hence, for each cubed-sphere panel with equiangular coordinate axes (a,b) and equiangular element arrangement, we can
define
ai ¼ �
p
4
þ i� 1

2

� 	
D and bj ¼ �

p
4
þ j� 1

2

� 	
D; ð23Þ
where full indices i, j = 1, . . . ,Nc are used to denote element center-points and half-indices i; j ¼ 1
2 ;

3
2 ; . . . ;Nc þ 1

2


 �
are used to

denote element edges. Hence, the region in (a,b)-space occupied by the element (i, j) is defined by
Zij ¼ ai�1=2;aiþ1=2
� �

� bj�1=2;bjþ1=2

h i
: ð24Þ
4.2. Orthonormalization and the orthonormal Riemann problem

The schemes discussed in this paper all transform the reconstructed velocity field at element edges into an orthonormal
frame consisting of velocity components perpendicular and parallel to the element edge (here denoted by u and v). This ap-
proach significantly reduces the complexity of the problem since we only need to solve orthonormal Riemann problems (see
Section 6) in order to obtain the corresponding fluxes across each interface. In particular, this approach allows us to sidestep
problems due to the discontinuity of the coordinate system at panel edges, since the Riemann problem is solved in a single
consistent reference frame. Orthonormalization is performed via multiplication with an orthonormalization matrix at each
point (see, for instance, [5]),
u

v

� �
¼ OðX;YÞ u1

u2

" #
; ð25Þ
where O also depends on the type of edge. In general, for translating velocity components along lines of constant a and con-
stant b we have
O1 ¼
1ffiffiffiffiffi
g11
p 0

g12ffiffiffiffiffi
g22
p

ffiffiffiffiffiffiffi
g22
p

24 35 and O2 ¼
0 1ffiffiffiffiffi

g22
pffiffiffiffiffiffiffi

g11
p g12ffiffiffiffiffi

g11
p

24 35: ð26Þ
Using the metric for equiangular cubed-sphere coordinates, we have for grid lines of constant a that the orthonormalization
matrix is
O1 ¼

ffiffiffiffiffiffiffiffi
1þX2
p

d 0

�XY
ffiffiffiffiffiffiffiffi
1þX2
p
d2

ð1þY2Þ
ffiffiffiffiffiffiffiffi
1þX2
p
d2

264
375; ð27Þ
and for grid lines of constant b we have
O2 ¼
0

ffiffiffiffiffiffiffiffi
1þY2
p

d

ð1þX2Þ
ffiffiffiffiffiffiffiffi
1þY2
p
d2

�XY
ffiffiffiffiffiffiffiffi
1þY2
p
d2

264
375: ð28Þ
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Similarly, to obtain the components of the momentum flux in the equiangular cubed-sphere basis we apply a deorthonormal-
ization matrix at each point, which is simply the inverse of the corresponding orthonormalization matrix.

In orthonormal form, the source-free shallow-water equations are given by
Fig. 2.
(right).
Here c
@h
@t
þ @

@x
ðhuÞ þ @

@y
ðhvÞ ¼ 0; ð29Þ

@ðhuÞ
@t
þ @

@x
hu2 þ 1

2
Gh2

� 	
þ @

@y
ðhuvÞ ¼ 0; ð30Þ

@ðhvÞ
@t
þ @

@x
ðhuvÞ þ @

@y
hv2 þ 1

2
Gh2

� 	
¼ 0; ð31Þ
where x and y denote components of the coordinate vector within the orthonormal frame and u and v are the corresponding
velocities.

4.3. Discretization of the metric and Coriolis terms

To discretize the metric and Coriolis terms, we make use of Gaussian quadrature in 2D to evaluate the integral. For a
second-order scheme, this requires the evaluation of these source terms at one point within each element – namely, at
the element center-point (see Fig. 2). For a fourth-order scheme, we can obtain fourth-order accuracy by evaluating the
source terms at four points within each element – in particular, for an element defined on the region [a1,a2] � [b1,b2], at
ða; bÞ ¼ a1 þ a2

2
� a2 � a1

2
ffiffiffi
3
p ;

b1 þ b2

2
� b2 � b1

2
ffiffiffi
3
p

� 	
: ð32Þ
For Gaussian quadrature up to fourth-order, all points contribute equally to the integral.

4.4. Discretization of the topography term

Before making a choice of discretization for the underlying topography (denoted by z(a,b,np)), we must consider the
important equilibrium case of stationary flow. In this case we have ui = 0 with constant total height H = h + z everywhere,
which physically is an equilibrium solution that should be maintained indefinitely. Not all discretizations will automatically
retain this property, however those that do are referred to as well-balanced schemes (or, alternatively, schemes that preserve
the C-property, e.g. see [27] or [8]). It is a well-known fact that discretizations that are not well-balanced may introduce spu-
rious oscillations into the flow that are especially evident for states near this equilibrium solution. In order to develop our
topography discretization, we begin with the topography source in the form,
WB ¼ �Ghrz; ð33Þ
and observe that it can be rewritten as
WB ¼ �GhrH þr 1
2

Gh2
� 	

: ð34Þ
Gaussian quadrature points used for a first- or second-order finite-volume scheme (left) and for a third- and fourth-order finite-volume scheme
Edge points used for calculating fluxes through the boundary are depicted as uncircled �’s. Interior quadrature points are depicted as circled �’s.
is chosen so that the Gaussian quadrature is fourth-order accurate in the size of the grid.
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We note that for u = 0 the flux-form momentum equations from (6)–(16) take the form of a balance law,
hFlux Termsi ¼ �G
Z
Z

hrH dV|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
ðaÞ

þ
Z
Z
r 1

2
Gh2

� 	
dV|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðbÞ

: ð35Þ
The benefit of writing the topography source in the form (34) is now revealed; namely, if we can guarantee thatrH = 0 when
H is constant and calculate (35.b) in a manner identical to the calculation of the flux, then our discretization will satisfy the
well-balanced property.

We observe that this choice of discretization is, in general, non-zero even when no bottom topography is present (z = 0).
This observation follows from the fact that in the discrete case, the left-hand-side flux term is non-zero when calculated on
the manifold (even over a constant field) since we cannot boast the symmetry properties present in purely Cartesian
coordinates. Without this additional correction, the model would be unable to maintain a constant height field h with zero
flow velocity u = 0, since in discrete form the contour integral would not be exactly zero.

Our choice of discretization of the first term of (34) for the third- and fourth-order schemes is based on using only
the evaluated state vector at the Gauss points given in Fig. 2. This choice has the twofold benefit of only requiring the
user-specified topography to be given at each Gauss point, and further enforces consistency of the discretization with the
second term of (34), which is obtained from the Gauss points along each edge.

Our scheme follows an approach similar to that of Noelle et al. [27]. To begin, we write the first term of (34) in the form
�GhrH ¼ �G
hg11 @H

@a

hg21 @H
@a

" #
� G

hg12 @H
@b

hg22 @H
@b

24 35: ð36Þ
Integrating this expression term-by-term gives
Z
Z
�GhrH dV ¼ �G

R
Z p11 @H

@a dadbR
Z p21 @H

@a dadb

" #
� G

R
Z p12 @H

@b dadbR
Z p22 @H

@b dadb

" #
; ð37Þ
where we have defined
pij ¼ hgij ffiffiffi
g
p
¼ h

d
1þ Y2 XY

XY 1þ X2

" #
: ð38Þ
Without loss of generality, we consider an approach for discretizing an expansion of the form
Z
Z

p
@H
@a

dadb; ð39Þ
observing that this form closely matches that of each of the topography terms in (37). We will make use of the Gauss points
given by (ai ± D/2,bj ± c) and (ai ± c,bj ± c) so that the usual Gaussian quadrature can be performed in the b direction. We now
require a O(D4) discretization of the integral in the a direction, which we now construct from two O(D2) discretizations. Con-
sider centered discretizations of (39) given by
Z

p
@H
@a

da �
p�D=2 þ pD=2

2

� 	
HD=2 � H�D=2

 �

þ OðD2Þ; ð40Þ
and
 Z
p
@H
@a

da �
p�D=2 þ p�c

2

� 	
H�c � H�D=2

 �

þ
pc þ p�c

2

� 	
Hc � H�c

 �

þ
pD=2 þ pc

2

� 	
HD=2 � Hc

 �

þ OðD2Þ: ð41Þ
Here the subscripts ±D/2 and ±c denote evaluation of these quantities at (xi ± D/2) and (xi ± c). Now, for any c that is a linear
function of D (except, of course, c = ±D/2) there exists coefficients A1 and A2 so that
Z

X
p
@H
@X

dX ¼ A1 ½Eq:ð40Þ� þ A2 ½Eq:ð41Þ� þ OðD4Þ; ð42Þ
and, in particular, for c ¼ D=ð2
ffiffiffi
3
p
Þ we obtain a fourth-order accurate approximation with
A1 ¼
ffiffiffi
3
p
� 3ffiffiffi

3
p
þ 3

and A2 ¼
6ffiffiffi

3
p
þ 3

: ð43Þ
4.5. The sub-grid-scale reconstruction

All of the numerical approaches discussed in this paper make use of a high-order polynomial sub-grid-scale reconstruc-
tion to evaluate the underlying state variables. The order of the sub-grid-scale reconstruction then determines the underly-
ing order of the scheme, when combined with a sufficiently high-order integration scheme for the boundary and the interior.
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For a general order-n finite-volume method on the cubed-sphere, we define a sub-grid-scale reconstruction (an approx-
imation to the exact field q, here denoted by ~q) of the form
~qða;bÞ ¼ �qþ
X

sþt<n

ða� a0Þsðb� b0Þ
t � aðs;tÞ

� � 1
s!t!

dnq
dasdbt

� 	
0

; ð44Þ
where (a0,b0) is the element centroid and the a(s,t) are a family of constants defined so that
Z
Z
ða� a0Þsðb� b0Þ

t � aðs;tÞ
� �

dV ¼ 0: ð45Þ
Here we have made use of s and t to denote terms containing s derivatives in a and t derivatives in b. Further, the discrete
approximations to the derivatives of q are denoted with d instead of @ so as to distinguish them from the exact operators; the
subscript 0 further denotes evaluation at the element centroid (a0,b0). The reconstruction (44) and (45) is chosen so as to
preserve the element average, i.e.
1
jZj

Z
Z

qdV ¼ �q: ð46Þ
In order to achieve order-n accuracy with the reconstruction (44), we also require that
1
s!t!

dnq
dasdbt

� 	
0

¼ 1
s!t!

@nq
@as@bt þ OðDn�s�tÞ: ð47Þ
For instance, this restriction requires that for a third-order scheme all first derivative terms must be at least �O(D2), and all
second-derivative terms be at least �O(D).

Notes.

1. In general, an order-n sub-grid-scale reconstruction will yield an order-n scheme when combined with a flux integral
(taken around the boundary of each element) of order n and an interior integration procedure (for source terms) of order
n � 1. Thus, one could potentially sacrifice an order of accuracy for evaluating the source terms and still obtain an order-n
scheme. In fact, experiments involving the methods described in this paper have shown that a reduction in the order of
the metric and Coriolis source terms has little discernable impact on the results of each simulation since the error in these
schemes is primarily dominated by the flux terms.

2. Reconstruction-based schemes have the beneficial property of being, in general, Riemann solver agnostic. That is, in order
to solve for the edge fluxes we can make use of any approximate Riemann solver that takes as input a left state qL and a
right state qR as input.

4.6. Treatment of panel edges

The edges of each panel of the cubed-sphere require special consideration, since they represent discontinuities in the
coordinate system. There are two instances where data must be communicated across panel edges: first, we require this
information to calculate the reconstructed derivatives in elements near panel edges, and second, we require this information
when computing fluxes across these interfaces. For the latter case, fluxes computed across panel interfaces are handled no
differently than interfaces within panels, since the orthonormalization procedure rewrites the velocities in terms of a local
coordinate system that is valid regardless of the panel. Note that this technique differs from that of [33], where fluxes are
instead calculated on each panel independently, with the obvious shortfall being that there is no guarantee of mass conser-
vation along panel edges.

In order to provide boundary information to the reconstruction calculation, our choice of boundary conditions can have
significant influence on the numerical method. We consider two possible approaches for handling remapping of information
across panel boundaries:

	 Under the first approach, we interpolate a 1D polynomial parallel to the panel boundary (either through cell centers of
elements on the source panel, or using element-averages). This approach is known as cascade interpolation, made possible
by a previously identified feature of the equiangular coordinate system; namely that grid lines parallel to panel edges are
shared by both coordinate systems (see Fig. 1). Unfortunately, this approach is at most second-order accurate since any
1D interpolated polynomial does not take into account the variation perpendicular to the edge.
	 Under the second approach, we compute one-sided approximations of the derivatives within each boundary element.

Then, by applying four-point Gaussian quadrature within each destination element we approximate the element average
in the neighboring panel’s ghost elements. A detailed description of this method is given in Appendix A.

In CFD lore, it is generally believed that an n-order accurate numerical method with (n � 1)-order boundary conditions
will still be n-order accurate. However, the strong coupling of the interior cubed-sphere panel boundaries to the numerical
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solution does not give us this grace. We have witnessed in several tests that a third-order interior scheme, when combined
with a second-order boundary scheme (in this case, a cubic cascade approach), will lead to purely second-order performance
in convergence tests. Based on this conclusion, we will make use of the second approach for all of our third- and fourth-order
schemes.

As an aside, we note that we must also transform the vector velocities between the panel-specific coordinate systems
when performing remapping. This adjustment is achieved by simply applying a transformation matrix in the interpolation
step (hence, for each ghost cell the transformation matrix must be applied once for a second-order scheme and four times for
a third- or fourth-order scheme).

4.7. Extensions to arbitrary order-of-accuracy

The framework for finite-volume methods presented in this section can be easily extended to arbitrarily large order-of-
accuracy, however for every increase in the order-of-accuracy, the finite-volume approach requires a corresponding increase
in the size of the stencil. Besides ensuring that the reconstruction is sufficiently accurate, one must also ensure that the flux
calculation and source terms are handled appropriately.

In order to ensure that flux calculations are at least nth order accurate, we must solve Riemann problems at dn/2e points
per edge. Similarly, source terms must be evaluated at dn/2e2 interior points.
5. Numerical approaches

Using the general framework presented in Section 4, we construct two schemes for the shallow-water equations on the
sphere. The first scheme is a dimension-split piecewise-parabolic method (FV3s) that is formally second-order accurate, but
leads to a method which behaves with third-order accuracy on smooth problems. The second scheme we consider is a
fourth-order piecewise-cubic method (FV4).

5.1. A dimension-split piecewise-parabolic scheme (FV3s)

Dimension-split techniques which do not make use of cross-derivatives are formally limited to be no more than second-
order accurate. In many cases however, one finds that the error introduced due to neglecting the cross-derivatives is approx-
imately negated when using a symmetric approach. Since dimension-split schemes can be efficiently parallelized, we con-
sider here one such dimension-split approach that combines a formally second-order reconstruction (because cross-
derivatives are suppressed) with higher-order approaches for the flux, source terms and panel boundaries.

This method differs from the well-known piecewise-parabolic method of [9] since it uses an inherently discontinuous
reconstruction, does not explicitly limit the reconstructed derivatives and uses two Gaussian quadrature points along each
edge in order to achieve high-order accuracy in the flux estimates.

In our approach, the discrete derivatives are calculated in equiangular coordinates via
dq
da

� 	
i;j
¼ �

�qiþ2;j þ 8�qiþ1;j � 8�qi�1;j þ �qi�2;j

12D
; ð48Þ

dq
db

� 	
i;j
¼ �

�qi;jþ2 þ 8�qi;jþ1 � 8�qi;j�1 þ �qi;j�2

12D
; ð49Þ

d2q
da2

 !
i;j

¼ �
�qiþ2;j þ 16�qiþ1;j � 30�qi;j þ 16�qi�1;j � �qi�2;j

12D2 ; ð50Þ

d2q

db2

 !
i;j

¼ �
�qi;jþ2 þ 16�qi;jþ1 � 30�qi;j þ 16�qi;j�1 � �qi;j�2

12D2 : ð51Þ
Using this form of the reconstructed derivatives all derivative terms are formally O(D2), since element-averages only repre-
sent a O(D2) approximation to the centroid value. Nonetheless, this scheme would be formally third-order accurate if the
cross-derivative d2q/dadb was included in the reconstruction. The stencil used by this scheme is depicted in Fig. 3.

In order to preserve stability and high-order accuracy in time, we also make use of the total-variation-diminishing (TVD)
third-order Runge–Kutta (RK3) timestepping scheme (see, for example, [14]). For a given semi-discretization with right-
hand-side L(q), this scheme can be written as
qð1Þ ¼ qn þ DtLðqnÞ;

qð2Þ ¼ 3
4

qn þ 1
4

qð1Þ þ 1
4

DtLðqð1ÞÞ;

qnþ1 ¼ 1
3

qn þ 2
3

qð2Þ þ 2
3

DtLðqð2ÞÞ:

ð52Þ



Fig. 3. The stencil for the dimension-split FV3s scheme.
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We make use of the CFL number in the form
CFL ¼ Dt
4jZj

I
@Z
jkjmax ds; ð53Þ
where the contour integral is taken around the outside of the element Z and jkjmax denotes the maximum value of the abso-
lute gravity wave speed. Under this definition, the maximum CFL number for the FV3s scheme can be empirically deter-
mined to be �1.05. The maximum CFL number is strongly dependent on the choice of timestepping scheme; if we
discretize FV3s with a RK4 timestep scheme, the CFL limit for this scheme increases to �1.30.

5.2. The piecewise-cubic (FV4) scheme

Our fourth-order finite-volume scheme makes use of a piecewise-cubic sub-grid-scale reconstruction. We first make use
of a convolution operator to obtain point values at the center-point of each element. Using these point values, we can then
apply a set of standard finite difference operators in order to obtain approximations to the derivatives at the center-points of
each element.

Note that the scheme described in this section requires three ghost-elements, which will lead to an increase in parallel
communication over the FV3s scheme, for instance. A more efficient fourth-order method (in terms of parallel computa-
tional) can be formulated using a 5 � 5 stencil, but such a decrease in stencil size will also lead to a reduction in computa-
tional accuracy. By comparison, the resulting method would only require two ghost cells.

Following the approach of [6] element-averages of a scalar field �q and the corresponding point-values at element centers
q0 can be interchanged via the formula
�q ¼ q0 þ
D4

12jZj
dq
da

� 	
0

@
ffiffiffi
g
p

@a

� 	
0
þ dq

db

� 	
0

@
ffiffiffi
g
p

@b

� 	
0

� �
þ D2

24
d2q
da2

 !
0

þ d2q

db2

 !
0

" #
þ OðD4Þ: ð54Þ
In order to obtain O(D4) accuracy via this formula, the first and second derivatives in this expression must be approximated
to O(D2), and so can be obtained from
dq
da

� 	
0
¼

�qiþ1;j � �qi�1;j

2D
þ OðD2Þ;

d2q
da2

 !
0

¼
�qiþ1;j � 2�qi;j þ �qi�1;j

D2 þ OðD2Þ;
and similarly in the b-direction. The derivatives of the metric terms that appear in (54) can be computed analytically at the
element center-points from (5).

Using the point-values obtained from (54) we then apply a standard set of 5-point finite-difference operators in order to
approximate derivatives at the center-point. With this technique we obtain sufficiently accurate approximations to the
derivatives to support a fourth-order scheme. The stencil obtained from this approach is depicted in Fig. 4.

In order to preserve stability and high-order accuracy in time, we combine our spatial discretization with a fourth-order
Runge–Kutta (RK4) timestepping scheme of the form



Fig. 4. The reconstruction stencil for the FV4 scheme.
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qð1Þ ¼ qn þ 1
2

DtLðqnÞ;

qð2Þ ¼ qn þ 1
2

DtLðqð1ÞÞ;

qð3Þ ¼ qn þ DtLðqð2ÞÞ;

qnþ1 ¼ �1
3

qn þ 1
3

qð1Þ þ 2
3

qð2Þ þ 1
3

qð3Þ:

ð55Þ
Using this choice of timestep scheme, the maximum CFL number for the FV4 scheme can be empirically determined to be
�1.30.

6. Approximate Riemann solvers

In each of the methods presented here we make use of an approximate Riemann solver to obtain the local flux across a
discontinuous interface. We will compare three approximate Riemann solvers, given in order of increasing complexity as
Rusanov, Roe and AUSM+-up.

It is a well-known (see, for example, [45]) result that the Roe solver is less dissipative than Rusanov’s scheme. In general,
dissipiation will be proportional to the wave speed of each characteristic flow variable, which is exaggerated in Rusanov’s
scheme by taking the wave speed of each wave to be equal to the largest wave speed. Roe’s scheme, on the other hand, dis-
tinguishes all waves and hence provides a significantly tighter bound on the diffusivity. The AUSM+-up scheme does not dis-
tinguish all waves, but instead uses asymptotic analysis and a separation of the advective and pressure terms in order to fight
excess diffusivity at small Mach numbers. For details on specific Riemann solvers and their properties, we recommend Toro
[42]. We only show the flux formulations in the x-direction. The numerical fluxes in the y-direction are analogous.

6.1. Rusanov

The Rusanov solution to the Riemann problem (first given in [34]) is perhaps the simplest to implement, using a straight
flux difference between left and right edge values plus the maximum wave speed across the interface to regulate diffusion.
Given left state vector qL = (hL, (hu)L, (hv)L) and right state vector qR = (hR, (hu)R, (hv)R), the Rusanov numerical flux in the x-
direction assumes the form
F
 ¼ FðqLÞ þ FðqRÞ
2

� 1
2

k
qL þ qR

2

 ���� ���ðqR � qLÞ; ð56Þ
where, in the orthonormal frame,
FðqÞ ¼
hu

hu2 þ 1
2 Gh2

huv

0B@
1CA ð57Þ
is the flux function of the associated continuous equations (see (29)–(31)) and jk(q)j is the absolute value of the maximum
wave speed. For the orthonormal shallow-water equations, one can quickly verify
jkðqÞj ¼ juj þ
ffiffiffiffiffiffi
Gh
p

: ð58Þ
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As documented in the literature, the major downfall of the Rusanov scheme is its tendency for strong diffusivity compared
with other approximate Riemann solvers. However, its ease of implementation and relative computational efficiency have
resulted in its frequent use in numerical models.

6.2. Roe

The approximate Riemann solver of Roe [31] is ubiquitous in aerospace applications, but its use has been fairly limited in
the atmospheric science community. A description of this method as applied to the shallow-water equations in Cartesian
coordinates can be found in [2], for instance.

As with the Rusanov scheme, we are given left state vector qL = (hL, (hu)L, (hv)L) and right state vector qR = (hR, (hu)R, (hv)R)
and must solve for the flux from the associated Riemann problem. We begin with the flux Jacobian in the x-direction for the
orthonormal shallow-water equations, given by
eA ¼ dF
dq
¼

0 1 0
ðGh� u2Þ 2u 0
�uv v u

0B@
1CA: ð59Þ
Following the approach of Roe, we construct a modified system of conservation laws with eigenvalues
~k1 ¼ ~uþ ~c; ~k2 ¼ ~u; ~k3 ¼ ~u� ~c; ð60Þ
and corresponding eigenvectors
e1 ¼
1

~uþ ~c
~v

0B@
1CA; e2 ¼

0
0
~c

0B@
1CA; e3 ¼

1
~u� ~c

~v

0B@
1CA: ð61Þ
Here the eigenvalues and eigenvectors are written in terms of so-called Roe-averaged velocities ~u and ~v and the Roe-aver-
aged gravity wave speed ~c, defined by
~u ¼ uR þ uLw
1þw

; ~v ¼ vR þ vLw
1þw

; ~c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðhR þ hLÞ

2

r
; ð62Þ
where w ¼
ffiffiffiffiffi
hL

p
=
ffiffiffiffiffi
hR

p
.

The Roe numerical flux function then takes the form
F
 ¼ FR þ FL

2
� 1

2

X3

k¼1

~akj~kkj~ek; ð63Þ
where ~ak are the coefficients obtained by decomposing the difference qR � qL in terms of the basis of eigenvectors via
qR � qL ¼
X3

k¼1

~akek: ð64Þ
They can be written in terms of the jumps D = ()R � ( )L in the height and momentum field via
~a1 ¼ 1
2~c

DðhuÞ � ð~u� ~cÞDhð Þ; ð65Þ

~a2 ¼ 1
~c

DðhvÞ � ~vDhð Þ; ð66Þ

~a3 ¼ � 1
2~c

DðhuÞ � ð~uþ ~cÞDhð Þ: ð67Þ
The Roe numerical flux tends to perform well for flows in the transsonic and supersonic regime but, similar to the Rusa-
nov scheme, is generally diffusive for low-Mach number flows (see, for example, [15]).

6.3. AUSM+-up

The AUSM+-up approximate Riemann solver of [23] was recently developed with the purpose of improving numerical
accuracy in the low-Mach number regime. In particular, the AUSM+-up scheme works by splitting the advective component
of the flux from the pressure component. We refer the reader to [23] for the mathematical details of this algorithm, instead
giving a short overview of the implementation of this approach for the shallow-water equations.

Given left state vector qL = (hL, (hu)L, (hv)L) and right state vector qR = (hR, (hu)R, (hv)R), with orthonormal velocity compo-
nents, we define the averaged height,
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h1=2 ¼
1
2
ðhL þ hRÞ; ð68Þ
averaged gravity wave speed,
a1=2 ¼
1
2

ffiffiffiffiffiffiffi
ghL

q
þ

ffiffiffiffiffiffiffiffi
ghR

q� 	
; ð69Þ
perpendicular Mach numbers at the interface,
ML ¼
uL

a1=2
and MR ¼

uR

a1=2
; ð70Þ
and mean local Mach number,
M2 ¼ u2
L þ u2

R

2a2
1=2

: ð71Þ
The advective component of the flux is then defined by
_m1=2 ¼ a1=2M1=2
hL if M1=2 > 0;
hR otherwise;

�
ð72Þ
for some appropriate choice of the interface Mach number M1/2. By defining
M�
ð2ÞðMÞ ¼

1
4
ðM � 1Þ2; M�

ð4ÞðMÞ ¼
1
2 ðM � jMjÞ if jMjP 1;

M�
ð2ÞðMÞð1� 16bM�

ð2ÞðMÞÞ otherwise;

(
ð73Þ
we can obtain an expression for M1/2 consistent with [23],
M1=2 ¼Mþ
ð4ÞðMLÞ þM�

ð4ÞðMRÞ � Kp maxð1� rM2;0ÞGðh
2
R � h2

L Þ
2h1=2a2

1=2

: ð74Þ
To obtain the pressure-driven component of the flux, we make use of the definition
P�ð5ÞðMÞ ¼
1
2 ð1� signðMÞÞ if jMjP 1;

M�
ð2ÞðMÞ ð�2�MÞ � 16aMM�

ð2ÞðMÞ
h i

otherwise:

8<: ð75Þ
The interface pressure-driven flux is then given by
p1=2 ¼ Pþð5ÞðMLÞpL þ P�ð5ÞðMRÞpR � KuPþð5ÞðMLÞP�ð5ÞðMRÞðhL þ hRÞa1=2ðuR � uLÞ: ð76Þ
Combining (72)–(74) and (76), we obtain that the total numerical flux across the interface in the x-direction is then given
by
F
 ¼ _m1=2
WL if _m1=2 > 0;
WR otherwise

�� �
þ p1=2; ð77Þ
with
errors in the height field h for [46] test case 1 – advection of a cosine bell (at a resolution of 40 � 40 � 6 and after t = 12 days) for the FV3s scheme (top)
scheme (bottom).

Direction L1 error L2 error L1 error Maximum Minimum

method
a = 0� 1.03060(�1) 6.68703(�2) 4.94155(�2) �3.49156(�2) �2.76913(�2)
a = 45� 1.02219(�1) 6.42548(�2) 5.01053(�2) �3.14562(�2) �2.42758(�2)

a = 0� 4.87889(�2) 2.95893(�2) 2.34241(�2) �6.66680(�3) �1.59017(�2)
a = 45� 4.49184(�2) 2.55575(�2) 1.89556(�2) �5.48348(�3) �1.00990(�2)

method
a = 0� 4.42623(�2) 2.69819(�2) 2.30115(�2) 1.50290(�4) �2.25188(�2)
a = 45� 4.21728(�2) 2.36737(�2) 1.86956(�2) 1.51660(�3) �1.48344(�2)

a = 0� 3.83263(�2) 2.31939(�2) 1.99693(�2) �8.35479(�5) �1.92501(�2)
a = 45� 3.50956(�2) 1.96006(�2) 1.41711(�2) 3.51985(�4) �1.25210(�2)



Fig. 5. Time series of the normalized errors for the cosine bell advection test case with FV3s method (left) and FV4 method (right) in the direction a = 45� for
one rotation (12 days) with CFL = 1.0 on a 40 � 40 � 6 grid. Note the difference in the vertical scales of these plots.

Fig. 6. Reference height field (long-dashed line) and numerically computed height field (solid line) with FV3s method (left) and FV4 method (right) in the
direction a = 45� after one rotation (12 days). Contours are from 0 m to 800 m in intervals of 160 m with the zero contour of the numerically computed
solution shown as a dotted line so as to emphasize the numerical oscillations. The direction of motion is to the bottom-right.

Fig. 7. Difference between the numerically computed solution and true solution with FV3s method (left) and FV4 method (right) in the direction a = 45�
after one rotation (12 days) and at a resolution of 40 � 40 � 6. Contours are in intervals of 10 m with solid lines denoting positive contours and dashed lines
denoting negative contours. The zero line is enhanced.
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Table 4
As Tabl

Reso

Rusa
20
40
80
160
Orde

Roe s
20
40
80
160
Orde
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20
40
80
160
Orde
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WL ¼
1
uL

vL

0B@
1CA; WR ¼

1
uR

vR

0B@
1CA; p1=2 ¼

0
p1=2

0

0B@
1CA: ð78Þ
Several free parameters are available in this scheme. For simplicity, we follow [23] by choosing
a ¼ 3
16

; b ¼ 1
8
; Kp ¼

1
4
; r ¼ 1: ð79Þ
The constant Ku, which governs velocity diffusivity, does not seem to play a major role in these results and is chosen to be
zero.

The AUSM+-up flux has been constructed with the goal of improving convergence and accuracy in the low-Mach number
limit (M ? 0), and so we anticipate it to be less diffusive than Rusanov or Roe in this regime.
7. Numerical results

For all calculations we use a normalized length scale in terms of Earth radii and use time given in days. For the Earth the
physical parameters under these scalings are given by
errors in the height field h for [46] test case 2 – Geostrophically balanced flow (at t = 5 days with a = 45�) for the FV3s scheme with Rusanov, Roe and
up Riemann solvers. The computed order of accuracy is obtained from a least squares fit through the data.

lution (Nc) L1 error L2 error L1 error

nov solver
1.86793(�4) 2.65483(�4) 8.52171(�4)
2.42357(�5) 3.42298(�5) 1.06972(�4)
3.05468(�6) 4.31159(�6) 1.36274(�5)
3.82801(�7) 5.40185(�7) 1.83789(�6)

r 2.978 2.981 2.954

olver
1.97019(�4) 2.78152(�4) 8.28123(�4)
2.56497(�5) 3.65241(�5) 1.20533(�4)
3.23454(�6) 4.61740(�6) 1.82294(�5)
4.05309(�7) 5.79033(�7) 2.49317(�6)

r 2.976 2.971 2.785
+-up solver

1.29301(�4) 1.84921(�4) 5.84845(�4)
1.68287(�5) 2.41594(�5) 8.20936(�5)
2.12139(�6) 3.05250(�6) 1.22420(�5)
2.65731(�7) 3.82725(�7) 1.67872(�6)

r 2.977 2.973 2.808

e 3 except with the FV4 scheme.

lution (Nc) L1 error L2 error L1 error

nov solver
1.23147(�5) 1.83684(�5) 5.28083(�5)
3.92605(�7) 6.14237(�7) 3.30766(�6)
1.42768(�8) 2.19348(�8) 1.94550(�7)
6.44784(�10) 9.23157(�10) 1.09139(�8)

r 4.744 4.765 4.081

olver
3.33670(�6) 4.71855(�6) 1.33113(�5)
1.56059(�7) 2.14543(�7) 5.63099(�7)
8.67290(�9) 1.17659(�8) 2.79641(�8)
5.19851(�10) 7.03778(�10) 1.62477(�9)

r 4.211 4.232 4.333
+-up solver

3.26183(�6) 4.66310(�6) 1.19600(�5)
1.54530(�7) 2.14661(�7) 5.14470(�7)
8.65658(�9) 1.18352(�8) 2.70597(�8)
5.19867(�10) 7.06975(�10) 1.64234(�9)

r 4.200 4.224 4.274



Fig. 8. Background height field (top-left, in m) and absolute errors associated with the FV3s scheme on a 40 � 40 � 6 grid with Rusanov (top-right), Roe
(bottom-left) and AUSM+-up (bottom-right) solvers for [46] test case 2 with a = 45�. Contour lines are in units of 5 � 10�2 m, with solid lines corresponding
to positive values and long-dashed lines corresponding to negative values. The thick line corresponds to zero error. The short dashed lines show the location
of the underlying cubed-sphere grid.
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G ¼ 11489:57 Earth radii=day2 and X ¼ 6:300288 day�1
: ð80Þ
Unless stated otherwise we make use of a CFL number of 1.0 for all simulations.
Fig. 9. As Fig. 8 except using the FV4 scheme. Contour lines are in units of 5 � 10�4 m.
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Error measures are calculated in the height field via the usual global error norms,
Table 5
Relative
with Ru

Reso

Rusa
20
40
80
160
Orde

Roe s
20
40
80
160
Orde

AUSM
20
40
80
160
Orde

Table 6
As Tabl

Reso

Rusa
20
40
80
160
Orde

Roe s
20
40
80
160
Orde

AUSM
20
40
80
160
Orde
‘1ðhÞ ¼
I½jh� hT j�

I½jhT j�
; ð81Þ

‘2ðhÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I ðh� hTÞ2
h i

I½h2
T �

vuut
; ð82Þ

‘1ðhÞ ¼
max jh� hT j

max jhT j
; ð83Þ
where hT is the reference (true) height field and I denotes an approximation to the global integral, given by
I½x� ¼
X

all cells k

xkAk; ð84Þ
with Ak denoting the area of element k. For the advection test case we also make use of the relative maximum and minimum,
hRelative Maximumi ¼max h�max hT

max jhT j
; ð85Þ

hRelative Minimumi ¼min h�min hT

max jhT j
: ð86Þ
errors in the height field h for [46] test case 3 – Geostrophically balanced flow with compact support (at t = 5 days with a = 60�) for the FV3s scheme
sanov, Roe and AUSM+-up Riemann solvers. The computed order of accuracy is obtained from a least squares fit through the data.

lution (Nc) L1 error L2 error L1 error

nov solver
5.29489(�4) 1.04318(�3) 6.98472(�3)
4.14616(�5) 7.62192(�5) 4.36449(�4)
4.90936(�6) 8.83443(�6) 4.42438(�5)
6.24068(�7) 1.11900(�6) 5.91343(�6)

r 3.226 3.270 3.392

olver
1.72217(�4) 3.13719(�4) 1.60254(�3)
1.79322(�5) 3.39544(�5) 1.93667(�4)
2.41481(�6) 4.62184(�6) 2.70813(�5)
3.09483(�7) 5.94444(�7) 3.46030(�6)

r 3.025 3.001 2.940
+-up solver

1.47699(�4) 2.71802(�4) 1.26574(�3)
1.89854(�5) 3.69259(�5) 2.24091(�4)
2.61576(�6) 5.16111(�6) 3.13437(�5)
3.36013(�7) 6.64243(�7) 4.00544(�6)

r 2.920 2.887 2.775

e 5 except with the FV4 scheme.

lution (Nc) L1 error L2 error L1 error

nov solver
3.95805(�4) 7.38801(�4) 4.44070(�3)
1.65282(�5) 3.13826(�5) 1.89074(�4)
5.41290(�7) 1.02393(�6) 5.96072(�6)
1.70040(�8) 3.19845(�8) 1.79530(�7)

r 4.845 4.842 4.877

olver
1.22144(�4) 2.35850(�4) 1.28707(�3)
4.48290(�6) 8.67097(�6) 4.67861(�5)
1.50958(�7) 2.89663(�7) 1.50027(�6)
5.49471(�9) 1.04223(�8) 5.04890(�8)

r 4.821 4.830 4.888
+-up solver

1.01946(�4) 2.01244(�4) 1.22075(�3)
3.76651(�6) 7.45425(�6) 4.44324(�5)
1.29063(�7) 2.53563(�7) 1.44834(�6)
4.93269(�9) 9.55944(�9) 4.99077(�8)

r 4.787 4.796 4.867
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7.1. Advection of a cosine bell

The first test case of [46] simulates the advection of a cosine bell through one rotation around the sphere over a 12-day
time period. The prescribed wind field is nondivergent, and so the flux-form continuity equation in orthonormal form,
Fig. 10. Background height field (top-left, in m) and absolute errors associated with the FV3s scheme on a 40 � 40 � 6 grid with Rusanov (top-right), Roe
(bottom-left) and AUSM+-up (bottom-right) Riemann solvers for [46] test case 3 with a = 60�. Contour lines are in units of 10�1 m, with solid lines
corresponding to positive values and dashed lines corresponding to negative values. The thick line corresponds to zero error.

Fig. 11. As Fig. 10 except using the FV4 scheme. Contour lines are in units of 3 � 10�2 m.
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@h
@t
þ @

@x
ðhuÞ þ @

@y
ðhvÞ ¼ 0; ð87Þ
represents an advection equation for the tracer distribution. Here, x and y denote the components of the coordinate vector
within the orthonormal frame. The velocity vector is not evolved, and is instead obtained by directly evaluating the velocity
field as needed. For this equation the Riemann flux solution reduces to
. Total height field for [46] test case 5. We show the simulation results for the FV4 scheme with AUSM+-up Riemann solver simulated on a
� 6 grid. The dashed circle represents the location of the conical mountain. Contour levels are from 5050 m to 5950 m in intervals of 50 m, with the
elevation being near the equator (the small enclosed contours). The results for the FV3s scheme are visually identical.



Fig. 13.
simulat
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F
 ¼
hLu if u > 0;
hRu if u < 0:

�
ð88Þ
The initial height field is given by
h ¼
h0
2

 �
1þ cos pr

R


 �
if r < R;

0 otherwise;

(
ð89Þ
where r is the great circle distance from the center of the height profile. The free parameters are given as h0 = 1000 m =
1.5696 � 10�4 Earth radii and R ¼ 1

3 Earth radii. The divergence-free velocity field is given in terms of spherical coordinates
as
uk ¼ u0ðcos h cos aþ cos k sin h sinaÞ; ð90Þ
uh ¼ �u0 sin k sina; ð91Þ
where u0 = (p/6) Earth radii/day. Here the parameter a denotes the rotation angle transcribed between the physical north
pole and the center of the northern panel on the cubed-sphere grid (and should not be confused with the equiangular coor-
dinate a).

This test case is particularly useful at verifying accuracy of the panel boundaries. We give the relative errors after one
rotation in Table 2 using Dt = 90 min (CFL = 1.0) and Dt = 45 min (CFL = 0.5), and the corresponding time series of these er-
rors (with CFL = 1.0) in Fig. 5. In all cases we use a resolution of 40 � 40 � 6. A graphical comparison of the reference field and
results after one rotation at a = 45� are given in Fig. 6 and absolute differences in Fig. 7. These results do not show any obvi-
ous noise due to the patch boundaries and the numerical errors we observe are essentially independent of the flow direction.
As expected, identical error measures at a = 0 and a = p/2 are observed and so are not repeated. Interestingly, we do observe
a significant sensitivity of the method due to choice of the CFL number (see Table 2) with halving of the CFL number leading
to a decrease of more than half in the error norms for the FV3s scheme.

No attempt to include a monotonicity filter was made in these results, which leads to obvious overshoots and
undershoots of the cosine bell profile and oscillations in the tracer field away from the cosine bell profile. These errors
Normalized potential enstrophy (top) and total energy (bottom) difference for the flow over an isolated mountain test case using the FV3s scheme
ed on a 40 � 40 � 6 grid.
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are reduced in the FV4 scheme. The error norms presented here are competitive with existing numerical methods of
equivalent order-of-accuracy.

7.2. Steady-state geostrophically balanced flow

Test case 2 of [46] simulates a zonally symmetric geostrophically balanced flow. The analytic height field, in terms of lat-
itude h and longitude k, is given by
Fig. 14.
simulat
h ¼ h0 �
1
G

Xu0 þ
u2

0

2

� 	
� cos k cos h sin aþ sin h cos að Þ2; ð92Þ
with background height h0 and background velocity u0 chosen to be
h0 ¼ 4:7057� 10�4 Earth radii and u0 ¼
p
6

Earth radii=day: ð93Þ
As in Section 7.1, the parameter a denotes the angle transcribed between the physical north pole and the center of the north-
ern panel. The background velocity field is the same as in (90) and (91). This test case represents an unstable equilibrium
solution to the shallow-water equations, and so is not preserved in the long-term in most atmospheric models. However,
it is useful to use this test case to study the convergence properties of a given numerical method.

We use high-order Gaussian quadrature to initialize the height and momentum fields in the numerical model and run the
model for 5 days. The timestep at 40 � 40 � 6 resolution for this case is Dt = 16.5 min. The results of the convergence study
for the three schemes with all approximate Riemann solvers is given in Tables 3 and 4 using a = 45�. We see third-order con-
vergence for the dimension-split FV3s scheme and super-convergence above order 4 for the FV4 scheme. When looking at
the approximate Riemann solvers, we see significantly different results for the FV3s scheme and the FV4 scheme. For the
FV3s scheme the error norms do not differ substantially, and we actually observe the Roe solver performing slightly worse
than the Rusanov solver. The FV4 scheme instead shows a significant improvement in error norms when using the Roe or
AUSM+-up flux over the Rusanov flux. The high-order-of-accuracy for the Rusanov flux is attributed to the improvement
in continuity of the reconstruction, so we do not expect the error norms from the Rusanov solver to be less than those of
the Roe or AUSM+-up flux. The actual error norms presented here are competitive with existing methods (see [8,33,41]).
Normalized potential enstrophy (top) and total energy (bottom) difference for the flow over an isolated mountain test case using the FV4 scheme
ed on a 40 � 40 � 6 grid.
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Error plots are given in Figs. 8 and 9. The clear diffusivity of the Rusanov solver is apparent here, especially in the FV4
scheme where Rusanov demonstrates approximately five times worse errors than the other fluxes. In this case errors at
the panel corners appear to be greatly enhanced. We see very little difference between the error distribution for the Roe
and AUSM+-up solvers.

7.3. Steady-state geostrophically balanced flow with compact support

Test case 3 of [46] again simulates a geostrophically balanced flow, but this time with a height field that has compact
support. The analytic velocity field is given in rotated latitude–longitude coordinates (h0,k0) (with rotation angle a) by
Fig. 15.
up solv
the inn
u0k ¼ u0bðxÞbðxe � xÞ expð4=xeÞ and u0h ¼ 0; ð94Þ
where
bðxÞ ¼
0 if x 6 0;
expð�1=xÞ if 0 < x:

�
ð95Þ
and
x ¼ xe
ðh0 � hbÞ
ðhe � hbÞ

: ð96Þ
The details of the rotated coordinate system are described in [46]. The analytic height field is given by
h ¼ h0 �
1
G

Z h0

�p=2
2X sinsþ u0kðsÞ tan s

 �

u0kðsÞds; ð97Þ
which must be integrated numerically at each point where h is desired. The background height and velocity fields are again
chosen to be
Wavenumber four Rossby–Haurwitz wave (test case 6 in [46]). The solution is computed on a 80 � 80 � 6 grid using the FV3s scheme with AUSM+-
er on day 0, 7 and 14 (left column, from top to bottom) and day 30, 60 and 90 (right column, from top to bottom). The contour interval is 100 m, with
ermost contours being the highest (10, 500 m). The lowermost contours at day 0, 7, 14 are 8100 m, 8300 m and 8200 m, respectively.
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h0 ¼ 4:7057� 10�4 Earth radii and u0 ¼
p
6

Earth radii=day: ð98Þ
Further, the compact height field is determined by the parameters
hb ¼ �
p
6
; he ¼

p
2
; and xe ¼ 0:3: ð99Þ
This test case again represents an unstable equilibrium solution to the shallow-water equations, and so is not preserved in
the long-term in most atmospheric models. We again use high-order Gaussian quadrature to initialize the height and
momentum fields in the numerical model and run the model for 5 days. In all cases we make use of a rotation angle of
60�. The timestep at 40 � 40 � 6 resolution for this case is Dt = 17.5 min.

The results of the convergence study for the two schemes with all Riemann solvers is given in Tables 5 and 6. Again we see
similar convergence rates to that of test case 2, except noting that we see a significant gain in accuracy (a 3 � improvement
in the L1 norm) when going from the Rusanov Riemann solver to either the Roe or AUSM+-up Riemann solver. For the FV3s
scheme we observe slightly better performance from the Roe solver over AUSM+-up, and the opposite for the FV4 scheme.

Error plots are given in Figs. 10 and 11. The error plots from the Roe and AUSM+-up Riemann solvers are very similar, as
expected given their similar error norms. However, we see very strong error due to diffusivity in the results from the Rusa-
nov scheme of almost an order of magnitude more than the other two approaches.

7.4. Zonal flow over an isolated mountain

Test case 5 in [46] considers flow with a topographically driven source term. The wind and height fields are defined as in
Section 7.2, except with a = 0, h0 = 5960 m and u0 = 20 m/s. A conical mountain is introduced into the flow, given by
z ¼ z0ð1� r=RÞ; ð100Þ
with z0 = 2000 m, R = p/9 and r2 = min[R2, (k � kc)2 + (h � hc)2]. The center of the mountain is taken as kc = 3p/2 and hc = p/6.
We plot the height field at day 5, 10 and 15 in Fig. 12 on a 40 � 40 � 6 grid with a timestep of 12.5 min.
Fig. 16. As Fig. 15 except for the FV4 scheme.
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Potential enstrophy n and total energy E are invariant under the shallow-water equations, and are defined by
Fig. 17
simulat
n ¼ ðfþ f Þ2

2h
and E ¼ 1

2
hv � v þ 1

2
GðH2 � z2Þ: ð101Þ
From the element-averages of the height and momentum field, we calculate total energy directly, weighting element-wise
totals by element area. Similarly, potential enstrophy is calculated by using a central-difference approximation to the curl
and then using element-averages. The resulting computed invariants are accurate up to O(D2).

We compare our results with the reference solution of [17], which is run on the spectral transform shallow-water model
(STSWM) at T426 resolution. This high resolution reference solution was computed by the German Weather Service (DWD)
and is available online (http://icon.enes.org/swm/stswm/node5.html). The T426 simulation utilized a Gaussian grid with
640 � 1280 grid points in latitudinal and longitudinal direction which corresponds to a grid spacing of about 31 km at
the equator. To directly compare with our model, the spectral coefficients from STSWM are sampled on the cubed-sphere
grid at high-resolution Gaussian quadrature points in order to obtain element-averages of the state variables on a
40 � 40 � 6 grid. Invariants are then calculated from the resampled cubed-sphere solution and our own cubed-sphere runs
using standard difference operators.

The normalized total potential enstrophy and total energy difference from the initial state versus time are given for the
FV3s scheme in Fig. 13 and for the FV4 scheme in Fig. 14. We observe very good performance of both schemes with respect to
conservation of these quantities, with the best conservation properties coming from the AUSM+-up Riemann solver (the Roe
Riemann solver also matches very closely). The Rusanov Riemann solver performs significantly worse in all cases, due to the
significant diffusion in this scheme.
7.5. Rossby–Haurwitz wave

The Rossby–Haurwitz wave (test case 6 in [46]) is an analytic solution of the nonlinear barotropic vorticity equation on
the sphere. The height and velocity field can be analytically computed with several free parameters, however for the pur-
poses of testing the numerical model we only make use of the wave number 4 test. Our parameters are analogous to those
of [46], who also provides expressions for the analytic fields for this test case. Again, we make use of high-order Gaussian
quadrature to calculate the initial height and momentum fields.
. Normalized potential enstrophy (top) and potential energy (bottom) difference for the Rossby–Haurwitz wave test case using the FV3s method
ed on a 40 � 40 � 6 grid.

http://icon.enes.org/swm/stswm/node5.html
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It is well known that the wave number 4 Rossby–Haurwitz wave is susceptible to instability which can be driven by trun-
cation error in the initial conditions (see, for example, [40]), and hence will eventually collapse into a turbulent flow. The
time of the breakdown varies based on the numerical scheme employed and the choice of grid resolution. For the FV3s
and FV4 schemes discussed in this paper, we begin to see breakdown at about day 80, but find that adding perturbations
on the order of the scheme’s truncation error can drive the collapse to as early as day 30.

We plot the height field for the FV3s scheme in Fig. 15 and for the FV4 scheme in Fig. 16 at day 0, 7, 14, 30, 60 and 90 at a
resolution of 80 � 80 � 6. The higher resolution is required for the plots to capture some of the small scale features of the
wave profile. The total energy and potential enstrophy computed at each day of the simulation (up to day 14) is presented
in Figs. 17 and 18, compared against the STSWM reference solution at T511 (26 km) resolution truncated to the cubed-
sphere at 40 � 40 � 6 for consistency with Figs. 13 and 14. The timestep is chosen to be 4.2 min for the 80 � 80 � 6 runs
and 8.4 min for the 40 � 40 � 6 runs. Again, the Roe and AUSM+-up Riemann solvers perform very well, whereas the Rusanov
Riemann solver performs noticably worse. The finite-volume nature of the underlying scheme imposes fairly strong diffusiv-
ity on the energy when compared to the reference solution, but nonetheless we observe similar conservation properties to
competing schemes.
7.6. Barotropic instability

The barotropic instability test case of [12] consists of a zonal jet with compact support at a latitude of 45�. A small height
disturbance is added which causes the jet to become unstable and collapse into a highly vortical structure. The relative vor-
ticity is used here as a comparison between the solution presented in [12] (obtained via a spectral transform method) and
the solution obtained by direct simulation. We present the potential vorticity at varying resolutions for the FV3s and FV4
scheme with AUSM+-up Riemann solver in Figs. 19 and 20, respectively. The timestep used for this test case is 9 min at a
resolution of 40 � 40 � 6. No artificial viscosity is added in our simulation, since the numerical diffusion introduced by
the finite-volume method is sufficient to ensure stability.

As observed by St-Cyr et al. [36], this test case is particularly difficult for models using the cubed-sphere to handle. Since
the jet passes over cubed-sphere panel edges eight times and is driven by a relatively mild perturbation, wave number four
grid forcing is significant in disturbing the collapse for resolutions less than approximately 100 � 100 � 6. For higher
Fig. 18. Normalized potential enstrophy (top) and potential energy (bottom) difference for the Rossby–Haurwitz wave test case using the FV4 simulated on
a 40 � 40 � 6 grid.



Fig. 19. Relative vorticity field associated with the barotropic instability test at day 6 obtained from the FV3s scheme with AUSM+-up solver on a
40 � 40 � 6 mesh (top), 80 � 80 � 6 mesh (2nd from top), 120 � 120 � 6 mesh (3rd from top) and 160 � 160 � 6 mesh (bottom). Contour lines are in
increments of 2.0 � 10�5 s�1 from �1.1 � 10�4 s�1 to �0.1 � 10�4 s�1 (dashed) and from 0.1 � 10�4 s�1 to 1.5 � 10�4 s�1 (solid). The zero line is omitted.
Only the northern hemisphere is depicted in this plot.
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resolutions however, we observe convergence to the reference solution given by Galewsky et al. [12] and similarity to the
solution calculated by Rossmanith [33] (except without the need to split the geostrophically balanced and unsteady modes).
7.7. Computational performance

The utility of any computational scheme is a function of both accuracy and computational performance. Hence, we pres-
ent the relative cost of the third- and fourth-order schemes (along with each choice of Riemann solver) in Table 7. As ex-
pected, we see an overall increase in cost with increasing complexity of the Riemann solver, as well as a much more



Fig. 20. As Fig. 19 except for the FV4 scheme.

Table 7
The approximate computational performance for each of the numerical schemes paired with each Riemann solver, as obtained from serial runs on a MacBook
Pro with 2.4 GHz Intel Core 2 Duo. The timings correspond to the number of seconds required to simulate one day of Williamson test case 2 (described in
Section 7.2) on a 40 � 40 � 6 grid. A CFL number of 1.0 is used in all cases.

Scheme Rusanov Roe AUSM+-up

FV3s (s) 10.0 10.6 10.9
FV4 (s) 23.8 24.5 25.0
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significant jump in computational cost associated with going from the third- to fourth-order scheme. As is usual for explicit
methods, a doubling of the resolution will lead to an eight times increase in the computational time for the scheme when
keeping the CFL number constant.
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Considering the significant improvement in accuracy we have observed from using the Roe or AUSM+-up Riemann solv-
ers, the added expense they incur in computation time is negligible.
8. Conclusions and future work

In this paper, we have successfully demonstrated both a dimension-split piecewise-parabolic scheme and a fourth-order
accurate piecewise-cubic method for solving the shallow-water equations on the sphere. We have applied both of these
schemes to a set of test problems in order to verify accuracy, stability and convergence, including the shallow-water test
cases of Williamson et al. [46] and the barotropic instability of Galewsky et al. [12]. Third- and fourth-order accuracy of these
schemes is apparent in the smooth simulations tested in this paper.

Three Riemann solvers have been considered in this analysis, including the Rusanov numerical flux, the Roe solver of [31],
and the AUSM+-up numerical flux of Liou [23]. Our simulations have shown that the AUSM+-up flux provides the best overall
accuracy when applied to various shallow-water test cases, followed very closely by the Roe flux. The Rusanov solver has
demonstrated significantly worse performance in terms of accuracy and conservation of flow invariants, which we believe
outweighs its simplicity. Importantly, the overall improvement in accuracy due to the Roe or AUSM+-up solvers has been
shown to come without a significant added computational expense.

Extension of the work described herein to a full 3D atmospheric model certainly deserves some attention. Adaption of the
Riemann solvers to the full Euler equations is a trivial task, but one must be careful in the reconstruction step and in making
a choice of the timestepping method. The choice of reconstruction is dependent on the vertical coordinate system, of which
there are three possible routes forward: First, the high-order FV approach discussed herein is perhaps most directly applied
with a semi-Lagrangian vertical coordinate, such as that described by Lin [21]. Second, a static terrain-following coordinate
could be adopted (see, for instance, [18,28,48]). Finally, a static height-based coordinate could be used, with topography
incorporated via partial-shaved cells (see, for example, [1,7]). For the first two choices of vertical coordinate, it is unknown
what effect the vertically non-Cartesian geometry will have on the accuracy of the reconstruction step. Analysis of these ap-
proaches represents ongoing research. The second two choices of vertical coordinate also introduce issues with regard to the
choice of a vertical timestepping scheme, since atmospheric models must incorporate horizontal/vertical aspect ratios that
are sometimes on the order of �103. In this case, the vertical CFL condition tends to be unmanageably restrictive. To over-
come this problem, one could either use a modified equation set that removes vertically-propagating soundwaves (see, for
example, [3,11]) or use a dimension-split implicit–explicit integrator (such as the IMEX-RK scheme of Ascher et al. [4]). Other
methods include semi-implicit treatment of sound waves or a split-explicit approach with subcycling. Research is ongoing as
to the best route forward.
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Appendix A. Treatment of panel boundaries

In this appendix we give a detailed description of the high-order boundary reconstruction process we apply at panel
edges. For sake of brevity, we will focus on the third-order reconstruction, but note that a fourth-order reconstruction
can be easily obtained using a similar method. The basic steps in our reconstruction process are summarized in Fig. A.21.

The first step in the treatment of panel boundaries requires a reconstruction of the form (44) to be built on the source
panel. For the third-order boundary reconstruction we make use of minimal 3 � 3 stencils so as to obtain a piecewise-par-
abolic reconstruction. Increasing the accuracy of the boundary reconstruction via larger stencils or a higher-order recon-
struction will generally lead to an increase in the model’s global accuracy, but the effect on the overall accuracy of the
scheme is generally minor. Since information in ghost regions is not known, elements that are immediately adjacent to panel
edges must approximate derivatives perpendicular to the panel edge using one-sided stencils. One such set of stencils used
for these reconstructions are depicted in Fig. A.22.

In Fig. A.22(a) and (c), we make use of one-sided reconstructions for the first and second derivatives in the a direction,
dq
da

� 	
i
¼ �3�qi þ 4�qiþ1 � �qiþ2

2Da
þ OðDa2;Db2Þ; ðA:1Þ

d2q
da2

 !
i

¼
�qi � 2�qiþ1 þ �qiþ2

Da2 þ OðDa;Db2Þ: ðA:2Þ
In (c) these one-sided approximations must also be utilized for derivatives in the b direction. Cross-derivatives are approx-
imated in reconstruction (a) via



Fig. A.21. (a) Reconstruction at panel boundaries is necessitated by the fact that the ghost-elements of one panel (Panel 1) do not correspond exactly to
elements on a neighboring panel (Panel 2) where element-averages are known exactly. (b) The first step in reconstruction requires one-sided derivative
approximations to be calculated on Panel 2 so as to develop a sub-grid-scale reconstruction of the form (44). (c) The one-sided reconstructions are then
sampled over four Gauss points (per element on Panel 1) so as to ensure high-order accuracy.

Fig. A.22. A set of one-sided stencils for the third-order boundary reconstruction along the left edge. Shading indicates ghost-elements, where information
is unavailable. Elements used for computing a reconstruction in the specified element are shown with diagonal hatching. Reconstructions along other panel
edges can be obtained via a straightforward rotation of the given stencils.
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d2q
dadb

 !
i;j

¼
�qiþ1;jþ1 � �qi;jþ1 � �qi;j�1 þ �qi;j�1

2DaDb
þ OðDa;Db2Þ; ðA:3Þ
and in (c) by
d2q
dadb

 !
i;j

¼
�qiþ1;j � �qi;j � �qiþ1;j�1 þ �qi;j�1

DaDb
þ OðDa;DbÞ: ðA:4Þ
Note that in Fig. A.22(b) we may utilize standard central reconstructions on a 3 � 3 stencil to approximate all derivatives.
Once the one-sided reconstruction is established, we can sample each ghost element on the source grid using four-point

Gaussian quadrature so as to obtain element-averages on the destination grid. Since the reconstruction obtained in the first
step is at least third-order accurate, the reconstructed element-averages in each ghost cell will also be third-order accurate.

The process described in this section must be applied whenever boundary information is needed from an adjacent panel.
Hence, under a RK3 timestepping scheme, this process must be applied three times per timestep.
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