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This paper provides an intercomparison of the dispersive and diffusive
properties of several standard numerical methods applied to the 1D linearized
shallow water equations without Coriolis term, including upwind and central
finite-volume, spectral finite-volume, discontinuous Galerkin, spectral element,
and staggered finite-volume. All methods are studied up to tenth-order
accuracy, where possible. A consistent framework is developed which allows for
direct intercomparison of the ability of these methods to capture the behavior
of linear gravity waves. The Courant-Friedrichs-Lewy (CFL) condition is also
computed, which is important for gauging the stability of these methods, and
leads to a measure of approximate equal error cost. The goal of this work is
threefold: first, to determine the shortest wavelength which can be considered
“resolved” for a particular method; second, to determine the effect of increasing
the order of accuracy on the ability of a method to capture wave-like motion;
third, to determine which numerical methods offer the best treatment of wave-
like motion. Copyright c© 2012 Royal Meteorological Society
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1. Introduction

To a close approximation, the atmosphere is in a state
of geostrophic and hydrostatic balance. The dynamic
character of the atmosphere is governed by a slow
adjustment process which gives rise to wave motion over
all scales. Accurate treatment of these waves is important
to capture departures from geostrophic balance, and to
ensure that the adjustment process is correct and free
from spurious numerical errors. As shown by Lauritzen
et al. (2010), an accurate treatment of the equations of
motion is also important to avoid errors due to grid
imprinting. The capability of a numerical method to
capture wave-like motion in atmospheric models is typically
evaluated using dispersion analysis (Randall 1994). This
mathematical technique decomposes the discrete response
in the atmospheric model into diffusive and dispersive
errors introduced by the discretization. Diffusive errors are

typically associated with an unphysical loss of wave energy
from the system and dispersive errors are associated with
an incorrect treatment of individual wave speeds which can
lead to unphysical ringing or incorrect wave packet velocity.

This paper is the first in a series aimed at better
understanding the wave structure of numerical methods
of arbitrary order-of-accuracy. Although previous efforts
(Lauritzen 2007; Skamarock 2008; Thuburn 2008; Thuburn
et al. 2009) have been effective at understanding the
dispersive behavior of particular, generally low-order,
numerical discretizations of the 1D wave equation, this
work aims to provide a consistent framework for the
intercomparison of the dispersive properties of many
standard numerical methods of all orders of accuracy.
Specifically, this paper aims to answer four questions:

• What are the shortest waves which can be considered
“resolved” for a particular numerical method?
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• What is the effect of increasing the order of accuracy
of a numerical discretization on its treatment of
waves?

• For a given order of accuracy, which numerical
methods offer the best treatment of wave-like motion?

• For a given error level, which numerical method
and order of accuracy is the most computationally
efficient?

Along with method-specific papers, which are presented
along with the model formulation in section 3, dispersion
analysis has been a major focus in the literature. However,
to the best of the author’s knowledge, no other work
has presented a comprehensive intercomparison of the
dispersion properties of standard numerical methods.
Specifically, this paper includes an analysis of unstaggered
and staggered finite-volume methods, plus popular compact
schemes such as spectral element, discontinuous Galerkin
and spectral finite-volume.

The structure of this paper is as follows. In section
2 a framework is presented which allows for consistent
expression of a wide class of numerical methods, along with
the methodology for performing linear dispersion analysis
in this framework. The results of dispersion analysis for
eight numerical methods up to tenth-order accuracy are
presented in section 3 along with a brief discussion of
how to formulate each method. Further discussion and
intercomparison of the results of the analysis are presented
in section 4. Conclusions and future work are given in
section 5.

2. Methodology

2.1. Discretization of the continuous equations

The 1D linearized shallow water equations can be written
as a coupled system of differential equations,

∂u

∂t
+
∂Φ

∂x
= 0, (1)

∂Φ

∂t
+ Φ0

∂u

∂x
= 0, (2)

where u(x, t) is the 1D linear velocity in the x direction,
Φ(x, t) = gh(x, t) is the perturbed geopotential, where
h(x, t) is the perturbation in the height of the fluid above
some surface z = z0 and Φ0 = gz0. The acceleration due to
gravity g is assumed constant.

The 1D real line is divided into elements of width ∆xe
which bound the range [j∆xe, (j + 1)∆xe], with index
j ∈ Z. An Eulerian discretization of (1)-(2) which stores
m degrees-of-freedom (DOFs) per variable per element has
a discrete state vector qj = {uj ,Φj} associated with each
element of the form

uj = {uj,1, . . . , uj,m}, (3)
Φj = {Φj,1, . . . ,Φj,m}. (4)

Assuming that the spatial discretization is homogeneous
and linear, the semi-discrete evolution equations can then

be written as

∂uj

∂t
+

1

∆xe

Ng∑
`=−Ng

A(`)Φj+` =

√
Φ0

∆xe

Ng∑
`=−Ng

C(`)uj+`,

(5)

∂Φj

∂t
+

Φ0

∆xe

Ng∑
`=−Ng

B(`)uj+` =

√
Φ0

∆xe

Ng∑
`=−Ng

D(`)Φj+`.

(6)

Here Ng denotes the girth of the semi-discrete stencil,
defined as Ng = (Ns − 1)/2 where Ns is the total stencil
size and ∆xe is the element width. Associated with the
element width is the average distance between degrees of
freedom, ∆x = ∆xe/m, which is a consistent measure
of grid spacing between numerical methods. The unitless
matrices A(`) and B(`) represent the discrete advective
term, whereas the unitless matrices C(`) and D(`) include
effects due to numerical diffusion which arises from
the formulation of the method. Namely, C(`) and D(`)

encapsulate numerical diffusion which is either associated
with an explicit diffusion operator or which arises from
use of a Riemann solver, and should not be confused with
diffusion due to truncation error. For consistency with (1)-
(2) the following conditions must also be satisfied for a
numerical method of order p:

1

∆xe

Ng∑
`=−Ng

A(`)Φj+` =
∂Φ

∂x

∣∣∣∣
x=xj

+O(∆xpe), (7)

1

∆xe

Ng∑
`=−Ng

B(`)uj+` =
∂u

∂x

∣∣∣∣
x=xj

+O(∆xpe), (8)

1

∆xe

Ng∑
`=−Ng

C(`)uj+` = O(∆xpe), (9)

1

∆xe

Ng∑
`=−Ng

D(`)Φj+` = O(∆xpe), (10)

where xj denotes the point (or cell) where the state variable
Φj or uj is defined.

If the A(`) = B(`) and C(`) = D(`), then (5)-(6) can be
condensed into an uncoupled system of two linear advection
equations. Namely, if we define the right-going Riemann
invariant Rj = Φj +

√
Φ0uj and left-going invariant Lj =

Φj −
√

Φ0uj , it then follows that (5)-(6) is equivalent to the
decoupled system of advection equations

∂Lj

∂t
−
√

Φ0

∆xe

Ng∑
`=−Ng

(A(`) + C(`))Lj+` = 0, (11)

∂Rj

∂t
+

√
Φ0

∆xe

Ng∑
`=−Ng

(A(`) − C(`))Rj+` = 0. (12)

Unstaggered numerical discretizations typically satisfy this
property, and consequently dispersion analysis of the
linearized shallow water equations is greatly simplified for
these methods.
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2.2. Dispersion analysis

The discrete evolution equations (5)-(6) can be written in
matrix notation as

∂

∂t

(
u

Φ

)
j

=

Ng∑
`=−Ng

1

∆xe

√Φ0C
(`) −A(`)

−Φ0B
(`)
√

Φ0D
(`)


︸ ︷︷ ︸

≡ M(`)

(
u

Φ

)
j+`

(13)
Now, consider a single element-wise wave mode of the
form (

u(t)

Φ(t)

)
j

=

(
uke

(t)

Φke(t)

)
0

exp(ijθe), (14)

with dimensionless wavenumber θe ∈ [0, 2π)∗, element-
wise wavenumber ke = θe/∆xe and wavelength λe =
2π/ke. The subscript ke here denotes that only a single
element-wise wavenumber is being captured. Following
(13), this mode evolves according to

∂

∂t

(
uke

(t)

Φke
(t)

)
0

=

 Ng∑
`=−Ng

M(`) exp(i`θe)


︸ ︷︷ ︸

≡ Mke

(
uke

(t)

Φke
(t)

)
0

(15)
The linear frequency ω of this wave mode is defined via(

uke(t)

Φke
(t)

)
0

=

(
ũke

Φ̃ke

)
0

exp(−iωt), (16)

in which case (15) satisfies

ω

(
ũke

Φ̃ke

)
0

= iMke

(
ũke

Φ̃ke

)
0

. (17)

This equation describes the behavior of wave modes of
the numerical discretization under exact time integration.
Observe that ω is an eigenvalue of the matrix iMke

, and
so takes on values ω(1), . . . , ω(m), which corresponds to
m distinct waves. Consequently, the matrix iMke

, via
its eigenvectors and eigenvalues, encodes all information
about the natural modes of oscillation of the discretization
and their corresponding frequency and growth rate.
For a given complex eigenvalue ω(p) of iMke

, with
complex decomposition ω(p) = ω

(p)
r + iω

(p)
i the oscillation

frequency of the wave mode is ω(p)
r and the growth rate is

ω
(p)
i . The growth rate corresponds to an amplification factor

associated with a particular wave mode equal to

|A|k = exp(ω
(p)
i ∆x/

√
Φ0). (18)

Here, |A|k represents the degree of amplification
experienced by the wave after one characteristic unit of time
tc = ∆x/

√
Φ0. This normalization ensures that the effect

∗In total, a numerical discretization on a mesh ofNe elements will resolve
Ne real modes with θe = πj/Ne for integer index j ∈ [0, Ne − 1]. The
range [π, 2π) is associated with the complex conjugate of the resolved
modes. Note that this arrangement implies that half of the total storage
requirement is associated with wave modes of 4∆x or shorter.

of amplification on a wave is measured independent of the
choice of Courant number. The subscript k denotes that a
single wave (among the m element-wise waves) is being
captured.

If the numerical discretization is unstaggered with
evolution equation (12), the same analysis can be performed
under the construction

Rj = R0 exp(i(jθe − ωt)), (19)

which leads to

ωR0 = −i

 Ng∑
`=−Ng

√
Φ0

∆xe

(
A(`) − C(`)

)
exp(i`θe)


︸ ︷︷ ︸

= iMke

R0.

(20)
Note that for unstaggered discretizations, the nature of

A(`) as a discretization of the undamped wave operator
suggests that the matrix

Ake
≡

Ng∑
`=−Ng

A(`) exp(ijθe) (21)

will have purely imaginary eigenvalues for all possible
values of θe, and hence as a standalone operator conserves
linear wave energy. Analogously, from the nature of C(`) as
a diffusion operator, the matrix

Cke
≡

Ng∑
`=−Ng

C(`) exp(ijθe) (22)

should have purely real eigenvalues. The matrices Ake

and Cke
retain these properties for all numerical methods

examined herein, but it remains fairly easy to construct
a stable, convergent numerical method for which Ake

has
complex eigenvalues (see, for example, Van den Abeele
et al. (2007)).

2.3. Analysis of compact schemes

Several of the methods in this paper are compact, meaning
that each element only needs to communicate with its
immediate neighbors (in terms of the notation in (5)-(6),
this implies Ng = 1). Compact schemes are particularly
desirable for use on large-scale parallel systems since they
tend to have nearly optimal parallel scalability. For the
compact schemes considered in this paper, the DOFs of each
element are interpreted as the weights of a corresponding set
of compact basis functions on a reference element ξ ∈ [0, 1],
denoted by ûi(ξ) and Φ̂i(ξ). Consequently, they induce the
continuous extension of the discrete state,

û(x) =

∞∑
j=−∞

m∑
i=1

uj,iûi(x/∆xe − j), (23)

Φ̂(x) =

∞∑
j=−∞

m∑
i=1

Φj,iΦ̂i(x/∆xe − j). (24)

Note that the compact basis functions can extend beyond
the interval ξ ∈ [0, 1], such as in the case of spectral element
methods.
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The dimensionless wavenumber θe spans the range
[0, 2π), where each value θe is associated with m
distinct eigenvectors. In the previous section it was
demonstrated that on an element-wise level, linear
numerical discretizations of the linearized shallow water
equations support wave modes (associated with a unique
dimensionless wavenumber) which are decoupled from all
others. However, if nodal degrees of freedom are non-
uniformly distributed within an element (as with any of
the compact numerical schemes discussed herein), this
result will not hold on a nodal level. That is, the natural
modes of oscillation of the numerical discretization cannot
necessarily be characterized as wave-like.† Nonetheless,
one does expect that these modes do exhibit approximately
wave-like character, especially for long waves. This
observation motivates the following definition:

Definition 1: The approximate dimensionless wavenumber
θ ∈ [0, 2π) associated with wavenumber θe and eigenvector
/ eigenvalue pair (q(p), ω(p)) is the value θ(p) = (θe +
2πn)/m for integer 0 ≤ n < m that maximizes∣∣∣∣∫ 1

0

[
Φ̂(ξ) +

√
Φ0û(ξ)

]
exp

(
−imθ(p)ξ

)
dξ

∣∣∣∣ , (25)

where the coefficients of Φ̂(x) and û(x) are determined by
q(p), and λe = 2π/ke.

The approximate dimensionless wavenumber has
wavenumber k = θ(p)/∆x, and corresponding wavelength
λ = 2π/k. For non-compact schemes it is simply the case
that n = 0 and θ = θe. Modes with n > 0 are sometimes
labelled as “spurious modes” or “computational modes” in
the literature (see, for example Hu et al. (1999)), however
this is arguably an incorrect characterization since these
modes correspond to sub-element-scale resolution of
physical wave modes.

Once k has been determined for each discrete wave mode,
the phase speed cp and group speed cg of each wave mode
are defined in the usual manner,

cp =
ωr

k
, and cg =

∂ωr

∂k
, (26)

where ωr is a continuous extension of the set ω(p)
r over k.

2.4. Effective resolution

Loosely defined, the effective resolution of a numerical
method is the resolution at which the numerical method
can be considered to have accurately resolved the character
of the flow. Although waves of wavelength as short as
2∆x (θ = π) can be represented on the discrete grid,
the dispersive properties of these short-wavelength modes
generally diverge from the exact dispersion relation ω =√

Φ0k at much longer wavelengths. To quantify the
effective resolution of the scheme, we follow Hu et al.
(1999) in proposing the following definitions:

†Compact numerical schemes which have a greater density of nodal points
near element edges tend to support high-frequency eigenmodes which are
concentrated in regions of fine grid spacing. It is for this reason that the
CFL condition associated with these methods tends to be more restrictive
than approaches which use a uniformly spaced grid.

Definition 2: For a given error level ẽr, the shortest resolved
wavelength (dispersive limit) is the wavelength λs = a∆x,
such that ∣∣∣∣ωr

∆x√
Φ0

− θ
∣∣∣∣ ≤ ẽr (27)

for all waves with wavelength λ ≥ λs.

Definition 3: For a given error level ẽi, the shortest resolved
wavelength (diffusive limit) is the wavelength λs = a∆x,
such that ∣∣∣∣ωi

∆x√
Φ0

∣∣∣∣ ≤ ẽi (28)

for all waves with wavelength λ ≥ λs.

Although it may not be clear in practice what minimum
standards should be required of a numerical method, this
paper makes use of an error level of ẽr = ẽi = 0.01. This
definition corresponds to the wave being completely out of
phase over a distance of (π/0.01)∆x and to 10% damping
of the wave over a distance of approximately 10∆x.

2.5. Maximum Stable Courant number (CFL condition)

An analysis of the relative efficiency of these methods
is incomplete without some understanding of how large
of a time step can be taken under a corresponding
temporal discretization. This work focuses on five common
Runge-Kutta methods, which have been chosen due
to their robustness when applied to arbitrary spatial
discretizations. These include the standard RK2, RK3 and
RK4 discretizations, plus the strong-stability preserving
five-stage and six-stage third-order Runge-Kutta methods
of Ruuth (2006) (SSPRK53 and SSPRK63, respectively).
Given the characteristic polynomial P (x) of a Runge-Kutta
method, the update equation following from (15) can be
written as (

uk

Φk

)n+1

0

= P (∆tMk)

(
uk

Φk

)n

0

. (29)

This update equation is then stable in the von Neumann
sense if for all θe ∈ [0, π] the matrix P (∆tMk) has
eigenvalues pj which all satisfy |pj | ≤ 1. For the linearized
shallow water equations, this stability criteria can be
formulated as an upper bound on the dimensionless Courant
number,

C =
∆t
√

Φ0

∆x
. (30)

In practice, this upper bound for each numerical method is
determined via a grid search over the 2D domain [θe, C].

2.6. Approximate equal error cost

The procedure described so far is effective at quantifying
the linear dispersive and diffusive error of a particular
numerical method as well as the corresponding time step
constraints. However, a single metric which accounts for
the approximate computational cost required to achieve
a particular error level is desirable. To approximate
computational cost, the average number of non-zero entries
per DOF in the evolution matrices is used, since this
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value approximates the number of memory accesses and/or
floating point operations needed over one Runge-Kutta
stage per DOF. Consequently, if the error rate is fixed
and the mesh resolution is allowed to vary, one can
define an approximate equal error cost associated with each
numerical method and order of accuracy as follows:

〈Approximate equal error cost〉
= 〈Average non-zeros per DOF〉
× 〈Shortest resolved wavelength〉 (31)
× 〈Number of RK stages per time step〉
/ 〈Maximum stable Courant number〉

Here the shortest resolved wavelength refers to the longer
wave among the dispersive and diffusive limits. It should
be emphasized that the approximate equal error cost is
a very rough heuristic measure and does not take into
account many issues which will arise in practice, some of
which are described in section 2.7: In particular, parallel
scalability is not accounted for in this calculation, although
it is an important feature for next-generation atmospheric
models. Furthermore, methods with no implicit diffusion
will exhibit significantly smaller approximate equal error
cost, since they do not require evaluation of the numerical
diffusion matrices (which will be required in practice).

2.7. Caveats

The linear analysis presented in this work has several
important caveats that must be considered in practice:

• The dispersive properties of numerical methods
can change drastically depending on the choice of
temporal discretization. Although most methods with
no implicit diffusion are largely unaffected by this
choice, if implicit diffusion is present the phase
speed and amplification factor of each wave mode
can change drastically as ∆t is scaled towards the
maximum stable Courant number. Nonetheless, the
analysis performed in this work holds in the limit
of ∆t→ 0. Some discussion of this behavior can be
found in Ullrich and Jablonowski (2011).

• The addition of explicit diffusion, as is generally
needed for schemes with no implicit diffusion
and compact schemes of high-order accuracy, will
directly influence the amplification factor of all wave
modes. The phase speed is also generally affected
through the application of explicit diffusion, although
to the best of the author’s knowledge there are no
studies that consider this effect. Some preliminary
evidence suggests that diffusion, if added in an
time-split manner, may improve the phase capturing
properties of numerical methods.

• As noted by Rančic et al. (2008) and Thuburn
(2011), proper simulation of the nonlinear energy
and enstrophy cascade is essential to any long-term
integration of the equations of motion. This cascade
does not appear in the linear analysis, but it is an
important consideration when selecting a numerical
method for scientific operation. In particular, whereas
the spectral transform method is exact in the linear
regime, it is only with the introduction of non-
linearities that this scheme is challenged. How the
choice of numerical method affects the behavior of

the energy and enstrophy spectrum remains an open
question, and the “correct” mechanism for enforcing
diffusion at the smallest scales remains up for debate.
Notably, some evidence suggests that treatment of
small-scale turbulence may require the addition of
parameterizations for backscatter and eddy viscosity
(Frederiksen and Davies 1997).

3. Results

The eight spatial discretizations analyzed in this paper are
summarized in Table 1. Five of these methods are compact.
Seven of these schemes are unstaggered methods, and so
can be completely specified via the matrices A(`) and
C(`). Finally, four schemes have matrices Mk with purely
imaginary eigenvalues and hence implicitly conserve linear
wave energy. In practice, these methods will need some
explicitly added diffusion to remove noise from the system.

Using the analysis procedure discussed in section 2, the
shortest resolved wave, dispersive limit, diffusive limit and
maximum stable Courant number (CFL condition) have
been computed for the eight methods introduced in this
paper. The shortest resolved wavelength for all schemes of
at least second-order accuracy (up to tenth-order accuracy)
are plotted in Figure 1. Tabulated results are given in Table
2, for schemes which exhibit implicit diffusion, including
UFV, SFV, DG and DG∗. Results are given in Table 3 for
schemes with no implicit diffusion, including CFV, SEM,
MB-SEM and stFV.

The methods in this paper which exhibit implicit
diffusion require the use of a Riemann solver to compute
fluxes at element edges. The Lax-Friedrichs Riemann solver
will be used in this case, which for the linearized shallow
water equations take left and right edge values ΦL, ΦR, uL
and uR, and produces velocity and geopotential fluxes given
by

F̂u =
1

2
(ΦR + ΦL)−

√
Φ0

2
(uR − uL), (32)

F̂Φ =
Φ0

2
(uR + uL)−

√
Φ0

2
(ΦR − ΦL). (33)

Other well-known Riemann solvers, including the Roe
Riemann solver (Roe 1981) and HLL Riemann solver
(Harten et al. 1983) yield an identical flux formula for
linearized equations.

The remainder of this section provides a discussion of the
methods analyzed in this work.

3.1. Upwind/Central Finite-Volume (UFV/CFV) methods

The one-element biased UFV method is based on the first-
order upwind scheme of Godunov (1959), and higher-order
generalizations (Van Leer 1979). The dispersive properties
of these methods have been studied in detail by Li (1997).
Upwind finite-volume methods have been implemented in
a shallow-water model (Rossmanith 2006; Ullrich et al.
2010), as a mesoscale atmospheric model (Ullrich and
Jablonowski 2012b) and as a global atmospheric dynamical
core (Ullrich and Jablonowski 2012a). In general, UFV
methods of this type on a stencil of girth Ng = (p+ 1)/2
will have an order-of-accuracy of p, under the constraint of
p odd. Each element only stores one degree of freedom,
given by the element-average within that element. High-
order accuracy is obtained via a reconstruction procedure

Copyright c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 2–25 (2012)
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6 P. A. Ullrich

Table 1. Overview of the numerical methods analyzed in this paper.

Method Acronym Compact? Staggered? Implicit Diffusion?
Upwind Finite-Volume UFV No No Yes
Central Finite-Volume CFV No No No
Spectral Finite-Volume SFV Yes No Yes
Discontinuous Galerkin DG Yes No Yes

Mass-Lumped Discontinuous Galerkin DG* Yes No Yes
Spectral Element Method SEM Yes No No

Modified-Basis Spectral Element Method MB-SEM Yes No No
Staggered Finite-Volume stFV No Yes No
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Figure 1. Shortest resolved wavelength in the (top) dispersive limit and (bottom) diffusive limit with error level ẽr = ẽi = 0.01 for all methods
considered in this paper and order of accuracy ≥ 2. Only results with a shortest resolved wavelength below 15∆x are shown.

which uses neighboring information to obtain an accurate
approximation to the underlying field.

The central finite-volume method on a stencil of girth
Ng = p/2 will have an order-of-accuracy of p, where under
the constraint of symmetry p must be even. Again, each
element has exactly one degree of freedom per state variable
which is interpreted as the element average. At second-
order accuracy, this method reduces to the well-known
central difference method. At fourth-order accuracy, this
class of methods includes the piecewise parabolic method of

Colella and Woodward (1984) when the non-linear limiting
procedure is not used.

For an arbitrary hyperbolic differential equation, both
upwind and central finite-volume methods are constructed
as follows:

1. For each edge j + 1/2 polynomials ΦL(x), ΦR(x),
uL(x) and uR(x) are fit through elements [j −
Ng + 1, . . . , j +Ng − 1] and [j −Ng + 2, . . . , j +
Ng] such that the element-averages of the polynomial
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Table 2. Schemes with implicit diffusion: Shortest resolved wavenumber in the dispersive limit and diffusive limit, maximum stable Courant
number and average number of non-zeros per node. These schemes include the Upwind Finite-Volume (UFV), Spectral Element Method (SEM),
Spectral Volume (SFV) method and Discontinuous Galerkin (DG) method with RK2, RK3, SSPRK53 and SSPRK63 time-stepping schemes.

Shortest Resolved Wavelength Maximum Stable Courant Number
Scheme Order Disp. Limit (∆x) Diff. Limit (∆x) RK2 RK3 RK4 SSPRK53 SSPRK63 Non-zeros

UFV 1 16.01 44.39 1.00 1.26 1.39 2.86 3.60 10
3 7.87 10.52 - 1.63 1.75 2.42 2.73 18
5 5.80 6.58 - 1.44 1.73 2.08 2.33 26
7 4.87 5.19 - 1.24 1.69 1.84 2.07 34
9 4.34 4.49 - 1.13 1.60 1.68 1.90 42

SFV 1 16.01 44.39 1.00 1.26 1.39 2.86 3.60 10
2 14.85 13.18 1.00 1.19 1.39 2.17 2.56 16
3 8.14 8.56 - 0.97 1.09 1.79 2.11 17.3
4 5.78 6.78 - 0.81 0.91 1.54 1.83 19
5 3.72 5.86 - 0.70 0.78 1.36 1.62 20.8
6 3.99 5.30 - 0.62 0.69 1.23 1.47 22.7
7 4.02 4.93 - 0.56 0.62 1.12 1.34 24.6
8 3.99 4.66 - 0.51 0.57 1.03 1.24 26.5
9 3.94 4.45 - 0.47 0.53 0.96 1.15 28.4

10 3.89 4.30 - 0.44 0.49 0.90 1.08 30.4
DG 1 16.01 44.39 1.00 1.26 1.39 2.86 3.60 10

2 8.14 11.16 0.67 0.82 0.93 1.56 1.86 16
3 6.32 7.21 - 0.63 0.71 1.22 1.45 17.3
4 5.43 5.81 - 0.52 0.58 1.02 1.23 19
5 4.93 5.10 - 0.45 0.50 0.89 1.07 20.8
6 4.60 4.67 - 0.40 0.44 0.80 0.96 22.7
7 4.38 4.39 - 0.36 0.40 0.72 0.87 24.6
8 4.21 4.18 - 0.33 0.36 0.66 0.80 26.5
9 4.08 4.03 - 0.30 0.33 0.61 0.75 28.4

10 3.98 3.91 - 0.28 0.31 0.57 0.70 30.4
DG∗ 1 16.01 44.39 1.00 1.26 1.39 2.86 3.60 10

2 23.99 17.82 2.00 2.12 2.47 3.61 4.23 8
3 9.89 9.79 - 1.35 1.54 2.34 2.71 8
4 6.59 7.30 - 1.02 1.15 1.85 2.16 9
5 3.83 6.14 - 0.84 0.95 1.57 1.85 10.4
6 3.97 5.47 - 0.72 0.81 1.38 1.63 12.0
7 4.06 5.04 - 0.64 0.72 1.24 1.47 13.7
8 4.03 4.74 - 0.58 0.65 1.13 1.34 15.5
9 3.98 4.52 - 0.53 0.59 1.04 1.24 17.3

10 3.92 4.34 - 0.49 0.54 0.97 1.16 19.2

over each element matches the known element-
average of that element.

2. The polynomials are evaluated at xj+1/2, yielding
the reconstructed value of the state variable at
the edge ΦL(xj+1/2), ΦR(xj+1/2), uL(xj+1/2) and
uR(xj+1/2).

3. If upwind finite-volume methods are desired, the
flux is calculated via a Riemann solver. If a central
finite-volume method is desired, the flux is instead
calculated via a central flux (that is, the average of
the fluxes on both sides of the volume edge).

4. The element average in cell j is updated in
accordance with the flux F̂ through edges j − 1/2
and j + 1/2.

The coefficients of finite-volume methods are given in
Table 4 up to schemes of order 9. The coefficients of
A(`) correspond to even-order central approximations to
the advective operator, and are identical for both upwind
and central finite-volume methods. The coefficients of C(`)

are non-zero only for upwind finite-volume methods, in
which case they approximate a diffusive operator which is
proportional to ∆xp+1∇p+1, leading to a scheme which
overall is pth-order accurate. The corresponding phase
speed and amplification factor are given in Figure 2
up to ninth-order. Worth noting about the finite-volume
methods is that the phase speed and amplification factor
are decoupled (a property which is not present among the
compact family of schemes present in this paper), and so
both upwind and central schemes have the same phase
speed. In particular, both upwind and central finite-volume
methods maintain lagging phase error under exact time
integration. Compared to the other methods examined in
this paper they exhibit intermediate resolution of waves
below fourth-order and poor resolution above fourth-order
(see Figure 1), but consistently yield the largest stable
Courant number (see Table 2), especially when taken to
high-order.
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8 P. A. Ullrich

Table 3. Schemes with no implicit diffusion: Shortest resolved wavenumber in the dispersive limit and diffusive limit, maximum stable Courant
number and average number of non-zeros per node. These schemes include Central Finite-Volume (CFV) methods, Spectral Element Method
(SEM), Modified Basis Spectral Element Method (MB-SEM) and Staggered Finite-Volume (stFV) method.

Shortest Resolved Wavelength Maximum Stable Courant Number
Scheme Order Disp. Limit (∆x) RK2 RK3 RK4 SSPRK53 SSPRK63 Non-zeros

CFV 2 16.01 - 1.73 2.83 2.69 3.06 4
4 7.87 - 1.26 2.06 1.96 2.23 8
6 5.80 - 1.09 1.78 1.70 1.93 12
8 4.87 - 1.00 1.63 1.56 1.77 16

10 4.34 - 0.94 1.54 1.47 1.66 20
SEM 2 16.01 - 1.73 2.83 2.69 3.07 4

3 6.87 - 1.15 1.89 1.80 2.04 6
4 8.40 - 0.95 1.55 1.48 1.68 8
5 5.78 - 0.83 1.35 1.29 1.47 10
6 4.82 - 0.74 1.21 1.15 1.31 12
7 4.23 - 0.67 1.09 1.04 1.18 14
8 5.43 - 0.60 0.99 0.94 1.07 16
9 4.68 - 0.55 0.90 0.86 0.98 18

10 4.25 - 0.51 0.83 0.79 0.90 20
MB-SEM 4 4.32 - 0.95 1.56 1.48 1.69 8

5 3.36 - 0.85 1.39 1.32 1.50 10
6 4.12 - 0.78 1.28 1.22 1.39 12
7 3.82 - 0.74 1.21 1.15 1.31 14
8 3.52 - 0.71 1.15 1.10 1.25 16

stFV 2 10.08 - 0.87 1.41 1.35 1.53 4
4 5.31 - 0.74 1.21 1.16 1.31 8
6 4.13 - 0.70 1.14 1.09 1.24 12
8 3.60 - 0.67 1.10 1.05 1.19 16

10 3.30 - 0.66 1.07 1.02 1.16 20

Table 4. Coefficients of A(`) for upwind (central) finite-volume methods and C(`) for upwind finite-volume methods up to order 10.

Order A(−5) A(−4) A(−3) A(−2) A(−1) A(0) A(1) A(2) A(3) A(4) A(5)

1 (2) − 1
2 0 1

2

3 (4) 1
12 − 2

3 0 2
3 − 1

12

5 (6) − 1
60

3
20 − 3

4 0 3
4 − 3

20
1
60

7 (8) 1
280 − 4

105
1
5 − 4

5 0 4
5 − 1

5
4

105 − 1
280

9 (10) − 1
1260

5
504 − 5

84
5
21 − 5

6 0 5
6 − 5

21
5
84 − 5

504
1

1260

Order C(−5) C(−4) C(−3) C(−2) C(−1) C(0) C(1) C(2) C(3) C(4) C(5)

1 1
2 −1 1

2

3 − 1
12

1
3 − 1

2
1
3 − 1

12

5 1
60 − 1

10
1
4 − 1

3
1
4 − 1

10
1
60

7 − 1
280

1
35 − 1

10
1
5 − 1

4
1
5 − 1

10
1
35 − 1

280

9 1
1260 − 1

126
1
28 − 2

21
1
6 − 1

5
1
6 − 2

21
1
28 − 1

126
1

1260

3.2. Spectral Finite-Volume (SFV) methods

The spectral finite-volume method of Wang (2002) can
be thought of as a high-order compact version of the

finite-volume method. An advection scheme on the cubed-
sphere using this technique has been developed by Cheruvu
et al. (2007) and a shallow water model was presented by
Choi et al. (2004). Under the SFV framework the problem
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Figure 2. Phase speed and amplification factor of finite-volume methods up to ninth-order. Central finite-volume methods of even order p have the same
phase speed of upwind finite-volume methods of order p− 1 and no amplification.

domain is first broken up into a set of spectral volumes.
The spectral volumes are then broken up into a set of m
control volumes, each of which has an associated element
average (each element average then corresponds to a degree
of freedom within the larger spectral volume). To evolve
the flow, a polynomial is fit through all control volumes
within a spectral volume to approximate the sub-grid-scale
behavior of these fields. Since this fit is continuous within
a spectral volume, fluxes are computed at interior edges by
simple evaluation of the flux function. At spectral volume
boundaries, fluxes are computed via a Riemann solver. The
dispersive properties of this method have been investigated
separately by Van den Abeele et al. (2007).

Note that the dispersive properties of the method are
sensitive to the arrangement of control volumes, which in
this paper are chosen to be bounded by Gaussian quadrature
nodes. Surprisingly, this choice of control volumes leads
to identical dispersive properties to the flux reconstruction
method of Huynh (2007) with gGa correction function.
Under this selection, the coefficients of SFV methods of
order 2 and 3 are given in Table 5. The phase speed and
amplification factor for SFV methods up to order 9 are
depicted in Figure 3. Under exact integration, SFV methods
have lagging phase error up to fourth-order and leading
phase error at sixth-order and above. Due to the use of
an upwind flux and compact stencil, these methods do
not allow for spurious backward propagating wave modes.
Comparing SFV against the other schemes in this paper
indicates that they capture the phase speed very well at
fifth-order and above, compare favorably in terms of their
maximum stable Courant number and exhibit intermediate
diffusion (see Figure 1). The fifth-order version of this
method has the best phase capturing properties, whereas
above fifth-order the dispersive limit actually stagnates, and
improvements are only provided by weakening the effects
of diffusion at longer wavelengths.

If a central flux is used at element boundaries in place of
the Riemann solver, the C(`) matrices are zeroed. If a central
flux is used and the edges of control volumes are placed
at Gauss-Lobatto nodes, SFV then has the same dispersive
properties as SEM.

3.3. Discontinuous Galerkin (DG) and Mass-Lumped DG
(DG∗) methods

DG methods are a cornerstone of high-order compact
numerical methods (Cockburn and Shu 1989; Cockburn
et al. 1990). Although no operational dynamical core
currently utilizes these methods, several experimental codes
have been developed that use DG for transport, shallow-
water and mesoscale modeling. The nodal formulation has
been presented in its standard form (with exact mass matrix)
on Gauss-Legendre (GL) nodes (Giraldo et al. 2002; Nair
et al. 2005a,b) and in its mass-lumped (or diagonalized
mass matrix) form on Gauss-Legendre-Lobatto (GLL)
nodes (Giraldo and Rosmond 2004; Dennis et al. 2006;
Giraldo and Restelli 2008). However, regardless of whether
a GL or GLL basis is chosen, these methods will have
identical dispersion properties if exact integration is used
for the mass matrix. This property further extends to
all possible bases since the DG scheme can be defined
in a basis-independent manner (see, for example, Cotter
and Ham (2011, §3.2)). Both the discontinuous Galerkin
method and mass-lumped discontinuous Galerkin method
were also recovered by Huynh (2007) within the framework
of flux correction schemes using the g1 and g2 correction
functions, respectively. This paper examines the dispersive
properties of DG with both an exact mass matrix and a
diagonalized mass matrix. A similar detailed dispersion
analysis has been performed by Hu et al. (1999) for both
the exact mass matrix and with a central flux, in which case
the dispersive properties closely match those of SEM. The
dispersive properties of discontinuous Galerkin methods
have also been analyzed in detail by Sherwin (2000).

In general, a DG method of order m stores m DOFs
per element. The use of a Riemann solver leads to implicit
numerical diffusion. Coefficients of the A(`) and C(`)

matrices are given in Tables 6 and 7 for the exact (DG) and
diagonalized mass (DG∗) matrix approaches, respectively.
In particular, the DG∗ approach has the weakest coupling
to neighboring elements of all compact numerical methods,
having exactly one non-zero entry among each of A(−1),
A(1), C(−1) and C(1). The structure of the diffusive matrix
C(0) highlights the need for additional diffusion within an
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10 P. A. Ullrich

Table 5. Coefficients A(`) and C(`) for spectral volume methods up to order 3.

Order A(−1) A(0) A(1)

2

( 1
2 − 3

2

0 0

) ( − 1
2

3
2

− 3
2

1
2

) (
0 0

3
2 − 1

2

)

3


− 1

2 −2 + 3
2

√
3 − 7

2

0 0 0

0 0 0



− 5

2 +
√

3 −1 + 3
2

√
3 1

2 −
√

3

−2
√

3 0 2
√

3

− 1
2 +
√

3 1− 3
2

√
3 5

2 −
√

3




0 0 0

0 0 0

7
2 2− 3

2

√
3 1

2



Order C(−1) C(0) C(1)

2

(
− 1

2
3
2

0 0

) ( − 3
2

1
2

1
2 − 3

2

) (
0 0

3
2 − 1

2

)

3


1
2 2− 3

2

√
3 7

2

0 0 0

0 0 0



− 7

2 −2 + 3
2

√
3 − 1

2

0 0 0

− 1
2 −2 + 3

2

√
3 − 7

2




0 0 0

0 0 0

7
2 2− 3

2

√
3 1

2



element (often provided by a Boyd-Vandeven filter (Boyd
1996), for example), since the basic form of this method
does not admit intra-element diffusion. The phase speed and
amplification factor for DG methods with an exact mass
matrix are given in Figure 4 and with a diagonalized mass
matrix in Figure 5. Like SFV methods, the upwind nature
of this formulation implies that these methods do not allow
for spurious backward propagating wave modes.

With the exact mass matrix, DG methods have a leading
phase error and very strong diffusion at short wavelengths.
Below fifth-order, these methods also have the best wave
resolution among all methods with implicit diffusion but
also have the most restrictive CFL condition (see Figure
1 and Table 2). With the diagonalized mass matrix, the
phase error is lagging up to fifth-order and leading for
sixth-order and above. Diffusion is much weaker with
the diagonalized mass matrix and maximum phase speed
significantly slower, and so the CFL condition for the
diagonalized method is significantly more lenient (see Table
2). However, below fifth-order the errors associated with
the diagonalized variant are also significantly larger, and
consequently in this range this method has the worst
resolved waves among competing schemes (see Figure
1). These results agree with the observations of Mullen
and Belytschko (1982), who argue that mass lumping
markedly increase the dispersive errors of the method. On
the other hand, at fifth-order and above the picture changes
dramatically and DG∗ has among the best resolved phase
speeds.

If a central flux is used at element boundaries in place
of the Lax-Friedrichs Riemann solver, the C(`) matrices are
zeroed. In this case DG∗ methods with a central flux have
equivalent dispersive properties to SEM.

3.4. Spectral Element Methods (SEM)

The spectral element method (Patera 1984; Maday and
Patera 1989) has several important properties including
parallel scalability, flexibility and accuracy, that make it a
desirable choice for atmospheric dynamics. This approach
was first adopted in the ocean modeling community by Ma
(1993) and later for shallow water simulations on the sphere
by Taylor et al. (1997). More recently, the spectral element
method has been implemented as an atmospheric dynamical
core (Fournier et al. 2004) and is now included as part of
the Community Atmosphere Model (CAM) as the likely
default dynamical core (Taylor and Fournier 2010; Dennis
et al. 2012). A regional modeling environment using both
the spectral element and discontinuous Galerkin method has
also been developed (Giraldo and Rosmond 2004; Giraldo
and Restelli 2008). SEM has been previously analyzed
by Giraldo (1998),Ainsworth and Wajid (2009), and more
recently by Melvin et al. (2012).

SEM can be formulated either as a finite-element method
with a continuous and compact set of test functions and
mass-lumped mass matrix, or as a conservative finite-
difference method on a compact stencil. Both approaches
lead to an identical formulation over an infinite or
periodic domain. For a SEM of order m+ 1, each spectral
element stores m degrees of freedom per state variable,
which are associated with nodal values at the Gauss-
Lobatto quadrature nodes. This approach reduces to the
central finite-volume approach at second-order, and has
no corresponding first-order analogue. Coefficients of the
evolution matrices for the 1D advection equation up to
fourth-order accuracy are given in Table 8.

The shortest resolved wavelength for SEM up to tenth-
order is given in Table 3. The erratic behavior associated
with the shortest resolved wavelength of the spectral
element method can be attributed to the “spectral gap”,
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Figure 3. Phase speed and amplification factor of SFV methods up to ninth-order.

Table 6. Coefficients A(`) for the discontinuous Galerkin method (on GLL nodes without mass lumping) up to order 3.

Order A(−1) A(0) A(1)

2

(
0 −2

0 1

) (
1 2

−2 −1

) ( −1 0

2 0

)

3


0 0 − 9

2

0 0 3
4

0 0 − 3
2




3
2 4 − 5

2

− 7
4 0 7

4

5
2 −4 − 3

2




3
2 0 0

− 3
4 0 0

9
2 0 0


Order C(−1) C(0) C(1)

2

(
0 2

0 −1

) ( −2 1

1 −2

) ( −1 0

2 0

)

3


0 0 9

2

0 0 − 3
4

0 0 3
2



− 9

2 0 − 3
2

3
4 0 3

4

− 3
2 0 − 9

2




3
2 0 0

− 3
4 0 0

9
2 0 0
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Figure 4. Phase speed and amplification factor of the discontinuous Galerkin (DG) method for up to ninth-order.

which is associated with an unphysical jump in the phase
speed (see Figure 6). The spectral gap is a feature
that arises among compact schemes, and is especially
prominent when these schemes have either insufficient or
zero diffusion. This difference arises when the natural
modes of the discretization become increasingly divergent
from sinusoids and become increasingly localized near
element boundaries. The sinusoidal approximation to these
localized eigenvectors is typically poor and tends to
be discontinuous when transitioning from physical wave
modes to numerical artifacts. Consequently, although SEM
can have highly accurate dispersive properties at shorter
wavelengths, the presence of the spectral gap leads to an
early cutoff in the dispersive limit of this method. For
instance, although the phase speed for k∆x ∈ [1, 1.5] is
fairly well captured for the fourth-order SEM (Figure 6), the
shortest resolved wavelength is determined by the gap near
k∆x = 0.78. It has been observed that the spectral gap can
be effectively removed via the addition of explicit diffusion
or, as described in the following section, by shifting the
interior GLL nodes.

3.5. Modified Basis Spectral Element Methods
(MB-SEM)

The spectral gap associated with SEM can be removed
via an appropriate modified choice of basis functions.
Under this approach Gauss-Lobatto quadrature points
are abandoned, and instead the nodal basis points are
chosen to avoid any jumps in the dispersion spectrum
of the underlying method. To the best of the author’s
knowledge, this approach has not been studied elsewhere.
The evolution equations are assembled using the finite-
difference formulation, and so nodal weights are not
required. Consequently, these restrictions lead to one
remaining free parameter for the fourth- and fifth-order
schemes, two remaining free parameters for the sixth- and
seventh-order schemes, and so forth. Although the N nodal
points within a spectral element (plus one shared node) can
no longer be used for exact integration up to order 2N − 1,
the scheme nonetheless maintains orderN + 1 accuracy on
a uniform mesh.

As with the SEM method, MB-SEM is formulated to
conserve linear wave energy exactly. The phase speed for
waves under this approach is depicted in Figure 7 for
formulations up to ninth-order. As observed in this figure,
the modified basis method successfully removes the spectral
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Figure 5. Phase speed and amplification factor of the mass-lumped discontinuous Galerkin (DG*) method for up to ninth-order.
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Figure 6. Phase speed of SEM up to ninth-order.

gap for the SEM and further improves the accuracy of the
method. Further, as observed in Table 3, this approach also
increases the maximum stable time step for the method,
especially for formulations above fifth-order. The shortest
resolved wavenumber of this approach is also the best of

all approaches studied in the paper, boasting resolution

approaching 4∆x at only fourth-order accuracy.
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Table 7. Coefficients A(`) for the discontinuous Galerkin method (on GLL nodes with mass lumping) up to order 4.

Order A(−1) A(0)

2

(
0 −1

0 0

) (
0 1

−1 0

) (
0 0

1 0

)

3


0 0 −3

0 0 0

0 0 0




0 4 −1

−1 0 1

1 −4 0




0 0 0

0 0 0

3 0 0



4


0 0 0 −6

0 0 0 0

0 0 0 0

0 0 0 0





0 5
2 (1 +

√
5) 5

2 (1−
√

5) 1

− 1
2 (1 +

√
5) 0

√
5 1

2 (1−
√

5)

− 1
2 (1−

√
5) −

√
5 0 1

2 (1 +
√

5)

−1 − 5
2 (1−

√
5) − 5

2 (1 +
√

5) 0




0 0 0 0

0 0 0 0

0 0 0 0

6 0 0 0


Order C(−1) C(0) C(1)

2

(
0 1

0 0

) ( −1 0

0 −1

) (
0 0

1 0

)

3


0 0 3

0 0 0

0 0 0



−3 0 0

0 0 0

0 0 −3




0 0 0

0 0 0

3 0 0



4


0 0 0 6

0 0 0 0

0 0 0 0

0 0 0 0




−6 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −6




0 0 0 0

0 0 0 0

0 0 0 0

6 0 0 0



Table 8. Coefficients A(`) for the spectral element method up to order 4.

Order A(−1) A(0) A(1)

2
(
− 1

2

)
0

(
1
2

)
3

( 1
2 −2

0 0

) (
0 2

−1 0

) (
− 1

2 0

1 0

)

4


− 1

2 − 5
4 (1−

√
5) − 5

4 (1 +
√

5)

0 0 0

0 0 0




0 5
4 (1 +

√
5) 5

4 (1−
√

5)

− 1
2 (1 +

√
5) 0

√
5

− 1
2 (1−

√
5) −

√
5 0




1
2 0 0

1
2 (1−

√
5) 0 0

1
2 (1 +

√
5) 0 0



3.6. Staggered Finite-Volume (stFV) methods

Staggered methods have been an integral part of
atmospheric modeling since the early work of Arakawa
and Lamb (1977) introduced the second-order Arakawa C-
grid staggered scheme. To extend this approach to higher-
orders, a successively wider polynomial is fit through

neighboring Φ and u nodes and derivatives computed
where needed. This approach is roughly equivalent to
the use of Richardson extrapolation with successively
larger stencils (Morinishi et al. 1998). Consequently, the
evolution coefficients satisfy the criteria B(`) = A(`+1). The
coefficients for the stFV methods up to tenth-order are given
in Table 10.

Copyright c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. 00: 2–25 (2012)
Prepared using qjrms4.cls



Understanding the treatment of waves ... 15

0 0.5 1 1.5 2 2.5 3
0.6

0.7

0.8

0.9

1

1.1

Dimensionless wavenumber (k ∆ x)

P
h

a
s
e

 S
p

e
e

d

 

 

Order 2
Order 3

Order 4
Order 5

Modified Basis SEM (MB−SEM) eigenstructure

0 0.5 1 1.5 2 2.5 3
0.6

0.7

0.8

0.9

1

1.1

Dimensionless wavenumber (k ∆ x)

P
h

a
s
e

 S
p

e
e

d

 

 

Order 6
Order 7

Order 8
Order 9

Modified Basis SEM (MB−SEM) eigenstructure

Figure 7. Phase speed of MB-SEM up to ninth-order.

Table 9. Nodal coordinates within a [0, 1] reference element used for
MB-SEM, obtained by a search over the space of all possible nodal
coordinate values.

Order ξ2 ξ3 ξ4
4 0.2810046
5 0.1839285
6 0.1320270 0.3699272
7 0.1006624 0.2875576
8 0.0795166 0.2399534 0.3881677
9 0.0652070 0.1984990 0.3282781

As shown by Randall (1994), staggering of geopotential
and velocity nodes greatly improves the dispersive
properties of both the short- and long-wavelength scale as
long as the grid spacing remains smaller than the Rossby
radius of deformation (as is typically the case for modern
climate models). These observations agree with the results
in Figure 1, which show consistently strong performance for
these methods. At second-order these methods have nearly
twice the resolution of CFV methods, but also cost twice as
much if run with the maximum stable Courant number (see
Table 3). The higher-order variants of these methods also
show rapid improvement in how well they handle wave-
like motion. The phase speed for this class of methods
is depicted in Figure 8; note that unlike the unstaggered
methods that have been examined so far, staggered methods
do not require zero phase speed when k∆x = π, and
consequently tend to perform better for shorter waves.

As pointed out by Ullrich and Jablonowski (2011),
staggered grid methods also tend to support physical
wave reflection in the presence of grid refinement. This
result is closely associated with the fact that A(`) 6= B(`),
and consequently the left-going and right-going Riemann
invariants of the linearized shallow water equations do not
decouple.

3.7. Other methods

The mixed finite-element approach (Raviart and Thomas
1977) is not addressed in this work, although this

method has experienced renewed interest for geophysical
applications. Low-order finite-element methods and mixed
finite-element methods on triangles have been analyzed by
Foreman (1984); Le Roux et al. (1998); Hanert et al. (2004).
In the context of atmospheric motions, mixed finite-element
methods have more recently been analyzed by Staniforth
et al. (2012).

Several second- and fourth-order numerical finite-
difference methods have been analyzed by Sei and Symes
(1995), using both a criteria related to accurate treatment
of the dispersion relation and a measure of relative
computational cost. Other numerical methods which have
not been addressed in this work include the spectral
difference method of Liu et al. (2006), the residual
distribution method of Deconinck et al. (1993), the
constrained interpolation profile scheme of Xiao (2004),
the full set of flux recovery methods (Huynh 2007; Vincent
et al. 2011) and the general class of characteristic-based
methods (Norman et al. 2011).

4. Discussion and Intercomparison

The analysis procedure in this paper suggests an approach
for answering the questions posed in section 1. Several other
interesting results have also emerged from this analysis,
many of which have been discussed in the context of
specific numerical methods. This section now aims to
address the comparative properties of each method.

One result from this work that may seem counter-
intuitive is that, in the context of wave propagation, compact
schemes emerge as competitive or better than similar non-
compact methods. This result is of particular importance
moving forward, since the growth of massively parallel
supercomputers makes these methods particularly desirable
(Dennis et al. 2012).

The questions posed earlier have also been addressed:

What are the shortest waves which can be considered
“resolved” for a particular numerical method?

Ignoring effects due to explicitly imposed diffusion,
Figure 1 and Tables 2-3 present the shortest resolved
wavelength from several popular numerical methods at an
error rate of ẽr = ẽi = 0.01. These results suggest that the
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Table 10. Coefficients A(`) for the staggered finite-volume method up to order 10. The B(`) coefficients satisfy B(`) = A(`+1).

Order A(−4) A(−3) A(−2) A(−1) A(0) A(1) A(2) A(3) A(4) A(5)

2 −1 1

4 1
24 − 9

8
9
8 − 1

24

6 − 3
640

25
384 − 75

64
75
64 − 25

384
3

640

8 5
7168 − 49

5120
245
3072 − 1225

1024
1225
1024 − 245

3072
49

5120 − 5
7168

10 − 35
294912

405
229376 − 567

40960
735
8192 − 19845

16384
19845
16384 − 735

8192
567

40960 − 405
229376

35
294912
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Figure 8. Phase speed and amplification factor of stFV methods up to tenth-order.

shortest resolved wavelength for many operational models
is 8∆x or longer. In fact, the current generation of models
largely fall short of the shortest resolved wavelength of 4∆x
which is frequently posited for these methods. A shortest
resolved wavelength at this level is only reached by DG,
MB-SEM and stFV.

Note that the strong falloff of the phase speed and
amplification factor as a function of k∆x for these
methods implies variations in the error level will not lead
to significantly different results for the shortest resolved
wavelength. For example, for many of the fourth-order
methods discussed in this paper, an error level of ẽr = ẽi =
0.1 is needed in order for waves at 4∆x to be considered
resolved. For reference, this error level is ten times larger
than the reference value chosen in this paper, corresponding
to complete phase reversal over a distance of (π/0.1)∆x
and 65% damping over a distance of 10∆x.

Examining Table 2, it is clear that the shortest resolved
wavelength predicted by methods with implicit diffusion is
determined almost exclusively by diffusive errors (except
for the highest order DG methods). This result can be
either taken to suggest that methods with implicit diffusion
are overly-diffusive, or that the error level ẽi = 0.01 is
an overly strict requirement. To answer this question, it is
necessary to study the non-linear equations to understand
how much diffusion is necessary to prevent an accumulation
of enstrophy at the shortest scales.

What is the effect of increasing the order of accuracy of a
numerical discretization on its treatment of waves?

From Figure 1, it is clear that although increasing the
order of accuracy of numerical methods does typically
reduce the shortest resolved wavelength of these methods,
there appears to be diminishing returns above fourth-order
accuracy. On the other end of the spectrum, second-order
methods seem insufficient to even provide resolution above
10∆x. Consequently, there is a “sweet spot” around fourth-
order accuracy where most numerical methods provide the
desired accuracy without an overly strict restriction on the
Courant number.

For a given order of accuracy, which numerical methods
offer the best treatment of wave-like motion?

For purposes of intercomparsion, schemes with and
without implicit diffusion are considered separately. Among
schemes with implicit diffusion, DG methods offer the
best overall resolution, but also have the most restrictive
CFL condition. SFV and DG∗ generally perform poorly
below fifth-order, but at fifth-order and higher have the
best representation of the phase speed among all competing
methods. Among schemes without implicit diffusion, the
presence of the spectral gap appears to severely damage the
dispersive properties of SEM above third-order. If the SEM
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basis is modified by adjusting the location of nodal points
to obtain MB-SEM, the resulting approach has the best
dispersive properties among all other competing methods.
Staggering the grid, as with the stFV method, yields a
very accurate dispersion relation at second-order, but this
approach is still outperformed by any third-order or higher
unstaggered method.

For a given error level, which numerical method and order
of accuracy is the most computationally efficient?

For a fixed error level (and variable grid resolution),
Figure 9 shows the approximate equal error cost (31)
computed from Tables 2-3 for RK4 and SSPRK53 time
integration. Among schemes with implicit diffusion, the
DG∗ method, with its weak inter-nodal coupling, is the clear
winner. On the other hand, DG with its highly restrictive
CFL condition, is the most costly of these methods. Both
SFV and UFV sit somewhere between these two methods
in terms of cost. However, all four of these methods
exhibit minimum approximate equal error cost at third-order
accuracy. Comparing time-integrators, SSPRK53 yields a
lower overall cost for SFV, DG and DG∗, whereas RK4 is
more efficient for UFV. Among schemes with no implicit
diffusion, SEM provides the lowest cost, again at third-order
accuracy. However, the minimum of the cost curve is less
clear than for methods with implicit diffusion. All schemes
exhibit a monotone increase of approximate equal error cost
with order of accuracy above fourth-order.

It should be noted that approximate equal error cost does
not necessary apply in 2D or higher, where the expense
of increased grid resolution can quickly outweigh other
cost factors. In this case, methods higher than third-order
(with longer resolved wavelengths) are more likely yield
minimum cost. This topic will be tackled in a following
paper.

5. Conclusions

This paper has presented a framework for intercomparison
of the dispersive and diffusion properties of numerical
methods for the 1D linearized shallow water equations
without Coriolis term. This investigation aimed to
determine the effective resolution of eight numerical
methods, in terms of the shortest wavelength which could be
considered to be well resolved. Such an approach to better
understanding these methods is arguably more relevant to
studies of atmospheric motion (where wave motion is the
dominant feature) than convergence studies for instance,
which emphasize the longest, already resolved wave modes.
Implementations of these methods from first-order accuracy
to tenth-order accuracy were examined. To the best of the
author’s knowledge, this is the first paper to provide an
intercomparison of dispersive properties over many classes
of numerical methods (compact, non-compact, staggered,
with and without implicit diffusion).

Several observations have emerged from this analysis
related to specific numerical methods. For non-compact
schemes it was shown that the dispersive and diffusive
properties of the method were decoupled when these
operators were applied in an operator split manner. The
use of mass-lumping of the DG method was explored,
and although the mass-lumped DG method significantly
weakened the CFL condition, it also led to an increase
in the strength of implicit diffusion at long wavelengths

and led to greater inaccuracy in the phase speed for
methods below fifth-order. The spectral gap present in SEM
led to erratic behavior under the criteria explored in this
work. To combat this problem MB-SEM was introduced
as a spectral element-based approach which removed the
spectral gap by making an adjustment to the interior
nodal points. This modified method provided outstanding
dispersion properties and actually improved on the CFL
condition of SEM. It was also verified that staggering of the
geopotential and velocity greatly improves the dispersive
properties of the underlying method, although the second-
order staggered scheme underperforms any third-order
or higher unstaggered scheme, and consequently is not
recommended.

In addition, several general observations were made
that seem to be applicable across all of the numerical
methods investigated. Perhaps most importantly, it was
verified that compact methods are competitive with non-
compact methods for resolution of waves. At the error
level used in this paper (ẽr = ẽi = 0.01) it was also
observed that numerical methods of fourth-order accuracy
or higher were the absolute minimum for resolving waves
near 4∆x. However, it also emerged that the ability of
many of these numerical methods to correctly capture
waves does not seem to significantly improve above fifth-
order accuracy. Since the CFL condition for these methods
(compact schemes, in particular) leads to a rapid decrease
in maximum stable Courant number with order of accuracy,
it seems evident that there is a “sweet spot” between third-
and fifth-order where resolution and cost are balanced. In
fact, computing the approximate equal error cost of each of
these methods suggested that third-order accuracy provided
optimal efficiency, as long as grid resolution was allowed to
vary.

This paper is a first step in better understanding how
well numerical methods capture the wave-like nature of
geophysical phenomena. Moving forward, several topics
remain to be examined, including how the addition of
explicit diffusion influences the numerical phase speed,
how this analysis can be extended to the case of inexact
time integration, and what effect fully implicit time
discretizations have on the ability of these methods to
accurately capture waves. Most importantly, this analysis
will be extended to the 1D and 2D shallow water equations
to better understand how well they are able to capture
shallow-water wave modes in the presence of Coriolis
forcing.
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