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ABSTRACT

2



The location, timing, and intermittency of precipitation in California makes

the state integrally reliant on winter season snowpack accumulation to main-

tain its economic and agricultural livelihood. Of particular concern, winter

season snowpack has shown a net decline across the western USA over the

past 50 years resulting in a major uncertainty in water resource management

heading into the next century. Cutting edge tools are available to help nav-

igate and preemptively plan for these uncertainties. This paper uses a next-

generation modeling technique, variable-resolution global climate modeling

within the Community Earth System Model (VR-CESM), at horizontal res-

olutions of 0.125◦ (14km) and 0.25◦ (28km). VR-CESM provides means to

include dynamically large-scale atmosphere-ocean drivers, limit model bias,

provide more accurate representations of regional topography, while doing so

in a more computationally efficient manner than conventional general circu-

lation models. This paper validates VR-CESM at climatological and seasonal

timescales for Sierra Nevada snowpack metrics by comparing them to the

DAYMET, CAL-ADAPT, NARR, NCEP, and NLDAS reanalysis datasets, the

MODIS remote sensing dataset, SNOTEL observational dataset, a standard

practice global climate model (CESM) and regional climate model (WRF)

dataset. Overall, considering California’s complex terrain, intermittent pre-

cipitation, and that both of the VR-CESM simulations were only constrained

by prescribed sea surface temperatures and sea ice extent data, a 0.68 centered

Pearson product-moment correlation, negative mean SWE bias of <7 mm,

interquartile range well within the values exhibited in the reanalysis datasets,

and mean DJF SNOWC within 7% of the expected MODIS value, the efficacy

of the VR-CESM framework is apparent.
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1. Introduction34

California receives half of its total annual precipitation in five to fifteen days of the year, making35

its precipitation patterns some of the most intermittent in the USA (Dettinger et al. 2011). Im-36

portantly, most of the state’s precipitation falls during the winter months (December to February)37

and two-thirds of it precipitates in the northern and mountainous parts of the state (Wise 2012).38

The precipitation that falls in the mountainous region largely accumulates as snow (Pandey et al.39

1999). Thus, winter snowpack acts as a natural surface reservoir for water that is then released dur-40

ing dry portions of the year. Snowpack provides approximately three-fourths of the annual fresh41

water supply in the western USA (Palmer 1988; Cayan 1996), and 60% of California’s developed42

water supply originates from the snowpack dominated Sierra Nevada (Bales et al. 2011). Along43

with the Colorado River, this natural store of water contributes to the maintenance of California’s44

economy and its stance as one of the largest agricultural providers in the world (Tanaka et al. 2006;45

Hanak and Lund 2012). These water reserves also provide up to 21% of the energy found within46

California’s diverse energy portfolio via hydroelectric plants (Stewart 1996). Therefore, the in-47

tegrity of California’s economy, and agricultural identity, is largely dependent on ample snowpack48

accumulation in the Sierra Nevada.49

A major cause of interannual variability in winter precipitation in California, and the50

greater western USA, are global teleconnections. Teleconnections are recurrent and persistent51

atmosphere-ocean patterns impacting large swaths of latitudinal and longitudinal bands (Wallace52

and Gutzler 1981; Glantz et al. 1991). They are important from a water resources perspective53

because they determine overall temperature, precipitation, and snowpack trends within California.54

Atmosphere-ocean climate interactions have been found to vary annual precipitation by 20-45% in55

the western USA (Dettinger et al. 1998), and include the El Niño Southern Oscillation (ENSO), the56
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Pacific Decadal Oscillation (PDO), the Pacific North American Pattern (PNA), the North American57

Monsoon, and the Aleutian Low, as well as more short term events known as atmospheric rivers58

(ARs) (i.e., equatorially generated whip-like water vapor bands) (Dettinger et al. 1998; Cayan59

et al. 1999; Ralph et al. 2004; Dettinger 2011; Wise 2012; Guan et al. 2013; Fang et al. 2014). The60

internal variability associated with teleconnections modulate the spatial and temporal variability61

of strong precipitation events in the western USA (Wise 2012). Therefore, teleconnection modu-62

lation, on both yearly and decadal time frames, has a direct impact on the amount of total seasonal63

snowpack deposited in the Sierra Nevada. This modulation is also essential in resolving historical64

trends as well as projecting future snowpack tendencies. For example, atmospheric rivers alone65

account for around 30-40% of seasonal snowpack accumulation in the Sierra Nevada (Guan et al.66

2010). Thus, a representation of global processes, ideally via a global climate model, is necessary67

to accurately account for California’s temperature, precipitation, and snowpack trends.68

To observe how this crucial natural fresh water reserve is characterized, both spatially and tem-69

porally, snowpack metrics such as snow water equivalent (SWE), snow centroid date (SCD), and70

the extent of snow cover (SNOWC) have been developed to quantify the patterns of Sierra Nevada71

snowpack. SWE is used to determine the total water content for a given snow depth. It can be72

quantified by taking a given depth of snow and melting it; the resultant water content represents73

the SWE. This is useful since snow densities can fluctuate due to variations in snowfall as well74

as melt and ablation events in the snowpack. SCD represents the date of peak snowpack accu-75

mulation, which is useful in understanding snowmelt onset. SNOWC characterizes the total areal76

coverage of snow over a given region. This is helpful in quantifying shifts in regional to global77

albedo as well as the freezing line extent in mountainous environments. Over the historical record,78

the Sierra Nevada has shown a mean difference in April 1st SWE of 2.2% (i.e., northern Sierra79

decline of 50-75% and southern Sierra accumulation of 30%) (Mote et al. 2005), western USA80
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SCD was found to shift 0.7 days earlier per decade (Kapnick and Hall 2012), and total SNOWC81

declined by 9% across the Northern Hemisphere (Rupp et al. 2013). The shift in SCD appears to82

be eight days earlier per ◦C of warming in end of winter season (March and April) temperatures.83

Additionally, Bales et al. (2006) found that the fraction of storms that occur with surface temper-84

atures in the range of -3 ◦C to 0 ◦C account for up to 36% of the annual precipitation events in85

many parts of the Sierra Nevada, highlighting the sensitivity of snow storms in the Sierra Nevada86

to increasing temperatures due to anthropogenic global climate change. Using IPCC AR5 RCP87

4.5 and 8.5 scenarios, projected end-of-the-century trends for snowpack highlight that western88

USA SWE may decline by 40-70% (Pierce and Cayan 2013), snowfall may decrease by 25-40%89

(Pierce and Cayan 2013), more winter storms may tend towards rain rather than snow (Bales et al.90

2006), and relatively warmer storms (e.g., atmospheric rivers) may be more frequent and intense91

for California (Dettinger 2011). In a review paper by Gimeno et al. (2014), Dettinger et al. (2011)92

represented the only western USA specific paper on the future projected trends of ARs. Of note,93

the authors expressed that the results in this study were a preliminary step and should be assessed94

more from a qualitative sense due to the small sample size of AR events in the CMIP5 archive and95

the various assumptions associated with the relatively coarser temporal and spatial extents of the96

models in the CMIP5 archive. Therefore, if the aforementioned projected outcomes hold, mean97

precipitation is not expected to change dramatically, but interannual variability will likely increase98

through modulation in atmospheric river events. Since snowpack is affected by both precipitation99

and temperature, it is expected that increased end-of-century temperatures coupled with more in-100

tense warmer storms in the western USA will prevent snow accumulation and lead to changes in101

runoff timing that could be problematic for water management. Thus, an analysis of causal mech-102

anisms of snowpack accumulation and snowmelt timing, with a dynamic inclusion of large-scale103

atmosphere-ocean drivers, and an accurate representation of the complex topography of Califor-104
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nia is needed to allow water managers to make more informative and preemptive decisions on105

Californias water future.106

One key approach to address the aforementioned need is via climate models. However, both107

global and regional climate models have limitations in their predictive capacities. As demonstrated108

by the North American Regional Climate Change Assessment Program (NARCCAP), regional cli-109

mate models (RCMs) were shown to produce too dry, too warm, and too little SWE conditions for110

the western USA and snow cover duration was found to start too late and end too early (Salz-111

mann and Mearns 2012). Model bias was associated with inadequate topography representation,112

imperfections in observational data, and differing land surface model components (Salzmann and113

Mearns 2012). Similarly, Caldwell (2010) found that RCMs generally overpredict winter precipi-114

tation in California, whereas global climate models (GCMs) generally underpredict winter precip-115

itation in California. The precipitation bias associated with GCMs was not solely related to model116

resolution (as this was standardized before comparison), but rather factors such as subgrid-scale117

parameterizations and coarse model topography too (Caldwell 2010). The aforementioned RCM118

findings regarding precipitation and SWE appear contradictory to one another, but it should be119

noted that California hydroclimatic trends have shown dissimilarities from several of those shown120

in other parts of the western USA (Mote et al. 2005; Kapnick and Hall 2012), likely due to a com-121

bination of relatively higher topographical elevation in the southern Sierra Nevada (compared to122

other western USA mountain ranges), proximity to the Pacific Ocean, and effects from ARs.123

This paper aims to analyze the efficacy of variable-resolution modeling using the Community124

Earth System Model (VR-CESM) at resolutions of 0.125◦ (14km) and 0.25◦ (28km) in repre-125

senting Sierra Nevada snowpack, in comparison with observational, reanalysis and dynamically126

downscaled model results. Variable-resolution modeling is a novel tool for modeling the climate127

system and represents a hybrid of global and regional climate models. We envision that this new128
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modeling framework will bring added value to the snowpack modeling community with the bene-129

fit of a global solution, accounting for major teleconnections, and regional high-resolution, better130

representation of winter storms and orographic forcings. This hypothesis has been corroborated131

for temperature and precipitation climatic trends within California in Huang et al. (2015). These132

benefits will lead to a better representation of observed summary statistics for winter snowpack133

within a GCM framework. Further, several studies have shown that CESM has skill in represent-134

ing the major wintertime teleconnections of the western USA including the ENSO (DeFlorio et al.135

2013; Wang et al. 2014), the PDO (DeFlorio et al. 2013), and the Pacific-North American (PNA)136

pattern (Li and Forest 2014). Teleconnection representation in these studies is expected to carry137

over into VR-CESM.138

The structure of the remainder of the paper is as follows: Section 2 contains information about139

the CESM setup and experimental design, including VR-CESM grid implementation. Section 3140

discusses the comparative datasets used to assess model efficacy. Section 4 provides summary141

statistic comparisons of seasonal to multidecadal snow trends, including SWE and SNOWC. Fi-142

nally, section 5 provides further discussion and the conclusions of this study.143

2. CESM Setup and VR-CESM Grid Implementation144

CESM Setup145

This project utilized version 1.2 of the Community Earth System Model (CESM), a widely used146

and community-supported climate model developed by the National Center for Atmospheric Re-147

search (NCAR) and the US Department of Energy (DoE). CESM is a fully coupled global climate148

model comprised of seven geophysical models that simulate the major components of the Earth149

system including the atmosphere, land-surface, land-ice, ocean, ocean-wave, river run-off and sea150
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ice, all of which can be coupled dynamically. One of the F-component sets in CESM, FAMIPC5,151

is the standard protocol for the Atmospheric Model Intercomparison Project (AMIP) and was152

used for each of the CESM simulations in this study (Gates 1992). This component set consists153

solely of the atmosphere-land coupled model with prescribed sea-surface temperatures (SSTs) and154

sea ice extent. This limited configuration maximizes computational efficiency and inhibits model155

bias propagation. This is advantageous for a local server environment (<1000 processors per156

simulation), like the one used in this study. Although the oceanic and sea ice systems were not157

incorporated dynamically into this study, this component set ensures that interannual climate vari-158

ability (mainly via SST anomalies) and global albedo effects from sea ice extent are incorporated159

into the simulations. Future research will target the VR-CESM simulation performance with and160

without a dynamic ocean model. Thus, for this study, only the atmosphere model (Community At-161

mosphere Model (CAM) version 5.3) (Neale et al. 2010) and the land-surface model (Community162

Land Model (CLM) version 4.0 with satellite phenology) (Oleson et al. 2010) were utilized.163

CAM was run with the Spectral Element (SE) dynamical core with a cubed-sphere grid structure164

(Taylor et al. 1997; Dennis et al. 2011). CAM-SE uses a continuous Galerkin spectral finite-165

element method for solving the hydrostatic atmospheric primitive equations. CAM-SE provides166

several benefits over other CESM dynamical cores including linear scalability with increasing167

computer processor counts, machine precision conservation of mass and tracers, elimination of168

non-uniform grid spacings due to convergence zones at higher latitudes, and variable-resolution169

capabilities (Taylor and Fournier 2010; Dennis et al. 2011; Zarzycki et al. 2014a,b; Zarzycki and170

Jablonowski 2014). CAM5 physics are broken down into six main categories: shallow convection171

(Park and Bretherton 2009), deep convection (Neale et al. 2008), microphysics (Morrison and172

Gettelman 2008), macrophysics (Park et al. 2014), radiation (Iacono et al. 2008), and aerosols173

(Ghan et al. 2012). Details on each of the physics schemes can be found in Neale et al. (2010).174
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CLM subdivides each cell into land types such as glacier, lake, urban, vegetated, and wetland175

(Oleson et al. 2010; Lawrence et al. 2011). The vegetated component of the grid cell is further bro-176

ken down into various soil types which are then characterized by 16 unique Plant Functional Types177

(PFTs), including non-vegetated. CLM4.0 PFTs include five evergreen species and six deciduous178

species for temperate, boreal, and tropical climates, three grasses for arctic and non-arctic climates179

(with C-3 and C-4 variations) and a few staple cereal crops. PFT cover is derived from the Moder-180

ate Resolution Imaging Spectroradiometer (MODIS) satellite data at 0.5◦ resolution with canopy181

heights for each of the PFTs assumed to range from 0.5 meters (crops, grasses, and shrubs) to 35182

meters (trees). PFT types and percent cover of PFTs within each vegetated land-unit play a crucial183

role in shaping snowpack trends. This is because the interaction between the canopy and snowpack184

are PFT specific for biogeochemical, radiative, and hydrological processes such as interception,185

throughfall, canopy drip, water removal via transpiration, and optical property interactions based186

on leaf angle and specific PFT (Lawrence et al. 2011).187

The parameterizations of snowpack within CESM are based primarily on work done by Ander-188

son (1976), Jordan (1991), and Yongjiu and Qingcun (1997). These parameterizations characterize189

several important state variables for snowpack including the mass of water, mass of ice, snowpack190

layer thickness, temperature profile of the snowpack layer, black carbon and mineral deposition,191

and snowpack aging and optical properties. The model is discretized using five snow layers with192

dynamic compaction, water transfer, and energy transfer.193

VR-CESM Grid Implementation194

The VR-CESM grids were generated using a freely available software package (SQuadGen)195

(Ullrich 2014). To generate the variable-resolution grid files, SQuadGen interpolates a picture196

image file, with variations in its gray scale properties, creates a refinement map, and uses spring197
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dynamics to smooth the transitional regions between various grid resolutions. VR-CESM 0.25◦198

(28km resolution) and VR-CESM 0.125◦ (14km resolution) grids were constructed for both CAM199

and CLM (Figure 1). Topographic smoothing was varied between the two VR-CESM 0.25◦ sim-200

ulations (VR-CESM 0.25◦ (smooth) and VR-CESM 0.25◦ (rough)) without modifying the grid201

structure to assess the sensitivity of topographical influences on VR-CESM simulations. This202

study further represents the first time variable-resolution grids were implemented into CLM.203

Topographic Representation in the VR-CESM Simulations204

Topographical datasets were generated for each variable resolution grid. The topographic205

smoothing was varied between the two VR-CESM 0.25◦ simulations by adjusting the c parameter206

from Eqn. (1) in Zarzycki et al. (2015). In the case of the VR-CESM 0.25◦ (smooth) topog-207

raphy, this parameter was equal to 1.33 times that used for generating VR-CESM 0.25◦ (rough)208

case. This resulted in the differences in topographical representation seen in Figs. 2a-b. Care-209

ful consideration is required when generating the VR-CESM topographical datasets due to the210

fact that CAM-SE uses terrain-following vertical coordinates that exhibit, with excessive terrain211

roughness, a tendency towards generation of spurious vertical velocities and numerical artifacts212

(Zarzycki et al. 2015). The topographical datasets were derived using bilinear interpolation with213

a linear smoothing operator on the 2-minute National Geophysical Data Center (NGDC) Gridded214

Global Relief Dataset (ETOPO2v2) (National Geophysical Data Center 2006) coinciding with the215

variable-resolution grids surface geopotential and order of the hyperviscosity term. This provides216

more (less) topographical structure in the high (low) resolution region of the nest. For example,217

maximum Sierra Nevada topographical elevations (see Figure 2) in the 111 km, 28 km, and 14218

km resolutions of CESM were 1583.31 meters, 2677.08 meters, and 3147.28 meters, respectively.219
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When compared with the ETOPO2v2 NGDC dataset, topographical elevation in the Sierra Nevada220

matches more closely as model resolution increases (Figure 2).221

3. Reference Datasets and Statistical Methods222

Reference Datasets223

Observational datasets for snowpack metrics such as snow water equivalent (SWE) and snow224

cover (SNOWC) are particularly difficult to develop in mountainous environments. The fractal225

nature of snowpack deposits, quick shifts in elevation, angular differences in topography, alpine226

vegetation cover, cloud cover, and large footprint radius associated with satellite instrumentation227

are key challenges. Additionally, many satellite products span less than a decade, preventing228

analysis of climate patterns over decadal timeframes. In situ measurements help alleviate some of229

the highlighted issues, yet they are irregularly located, and so may not be representative in regions230

of rapidly varying topography. Land surface models have been used to abate the discontinuous231

nature of in situ observations, but often contain their own biases. Therefore, to provide a rigorous232

assessment, a blend of the aforementioned data types will be used in this assessment.233

The datasets that this study used for validation purposes are listed in Table 1. Datasets vary234

in snowpack product availability (i.e., SWE and SNOWC), spatial and temporal resolution, map235

projection, and temporal range. Therefore, all datasets were standardized to monthly averaged,236

seasonally averaged (DJF), and climate averaged (DJF from 1980-2005) temporal resolutions dur-237

ing the assessment of the VR-CESM simulations. In order to accomplish this task, utilities from238

the NetCDF Operators (NCO), Climate Data Operators (CDO), and the NCAR Command Lan-239

guage (NCL) were used.240
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The North America Land Data Assimilation System Phase 2 (NLDAS-2) produced 0.125◦241

datasets by incorporating large quantities of observational and model reanalysis datasets into three242

non-atmosphere coupled land-surface models (i.e., Princeton’s implementation of VIC, NOAA’s243

Noah, and NASA’s Mosaic) over the continental United States. The three datasets provide SWE244

and SNOWC and are extensively analyzed by Xia et al. (2012a,b). For the 2008 California climate245

change assessment, four GCM (i.e., CCSM3, CNRM, GFDL, and PCM1) datasets were down-246

scaled using Bias Corrected Statistical Downscaling (BCSD) methods along with the VIC model247

at a resolution of 0.125◦. This dataset, known as CAL-ADAPT, provides SWE values over the en-248

tirety of California, with the methodology discussed in Maurer and Hidalgo (2008). The DAYMET249

dataset provides SWE estimations based on meteorological stations. The station data is then ex-250

trapolated, using a truncated Guassian weighting filter, to create a high resolution gridded output251

(Thornton et al. 2014). The Moderate Resolution Imaging Spectroradiometer (MODIS) satellite252

remote sensing dataset (MODIS/Terra Snow Cover Monthly 0.05◦ (5 km), Version 5 (MOD10CM253

V005)) provides SNOWC using a snow mapping algorithm with a Normalized Difference Snow254

Index (NDSI) (Hall et al. 2006). The NDSI is used to distinguish between snow and other features255

(such as cloud cover) by using visible and short-wave near-IR spectral bands. A comprehensive256

analysis and validation of the MODIS dataset for a region of the Sierra Nevada was conducted in257

Hall and Riggs (2007). The SNOwpack TELemetry (SNOTEL) in situ dataset is comprised of 32258

automated observational stations spread throughout the Sierra Nevada mountain range measuring259

SWE (Serreze et al. 1999). The areal extent of the SNOTEL stations range from 38.07◦ to 42.99◦260

latitude by -120.79◦ to -119.23◦ with an average elevation of 2,343 meters. Of the 32 stations,261

only 19 were utilized as they spanned the entire 1980-2005 temporal range. The North American262

Regional Reanalysis (NARR) dataset provides monthly averaged SNOWC output variables using263

a high resolution atmospheric model (Eta Model) forced by a Regional Data Assimilation System264
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(RDAS) (Mesinger et al. 2006). The other reanalysis dataset used (NCEP - CFSV2) is an up-265

dated version (2013) of its predecessor (2004) and provided SNOWC data (Saha et al. 2014). The266

NCEP dataset provides better representations of 2m surface temperature, Madden-Julian Oscilla-267

tion (MJO), and SST forecasts while upgrading overall performance in seasonal to subseasonal268

forecasting results, compared to its predecessor, and has been advised for decision makers in the269

water management and agricultural sectors (Saha et al. 2014).270

A 0.25◦ (finite volume) and 1◦ (spectral element) uniform resolution CESM run were used for271

comparison to the VR-CESM simulations as well. The 0.25◦ simulation is described in Wehner272

et al. (2014) and the 1◦ simulation was performed by the research team with the same component273

set and dynamical core as the VR-CESM simulations. The final datasets utilized for this assess-274

ment were a pair of simulations conducted at UC Davis using the Weather Research and Forecast275

(WRF) model, which has been used extensively for regional climate studies. Several common pa-276

rameterization combinations (including different cumulus schemes and radiation schemes) were277

tested over a one-year simulation period and compared with gridded observations. Those final278

options were chosen for climate applications that balance long-term reliability and computational279

cost, representing a typical RCM configuration. Subgrid parameterizations include: the Kain-280

Fritsch cumulus scheme (Kain 2004), the WSM 6-class graupel microphysics scheme (Hong and281

Lim 2006), and the CAM short-wave and long-wave radiation schemes (Collins et al. 2004). The282

simulations used a nested domain with a coarse resolution of 27km (WRF-27) and a finer resolu-283

tion domain of 9km (WRF-9) situated over the western USA (centered over the Sierra Nevada).284

The initial, boundary conditions, and sea surface temperatures were all provided by ERA-Interim285

reanalysis data, a widely used and validated dataset for this type of work (Dee et al. 2011). Both286

WRF domains provide SWE and SNOWC output variables via the Noah Land Surface Model287
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(Chen and Dudhia 2001) coupled with the Yonsei University (YSU) boundary layer scheme (Hong288

et al. 2006).289

The Noah and CLM4.0-SP land surface models (LSMs) derive from similar snow model formu-290

lations (i.e., Anderson (1976)), yet deviate in several ways too. The Noah LSM pulls primarily291

from Yen (1965), whereas CLM4.0-SP draws from Jordan (1991). This creates differences in both292

of the snow model’s fundamental equations and parameterizations. Differences include number293

of snow layers (Noah LSM has three, whereas CLM4.0-SP has five), snow thermal conductivity294

(CLM4.0-SP uses a snow density function and Noah LSM uses a constant), snow cover hyperbolic295

functions (CLM4.0-SP utilizes a slightly more complicated formulation) and snowpack-canopy in-296

teractions (Oleson et al. 2010; Yang et al. 2011). Of relevance to this paper’s overall conclusions,297

snow depths (and thus SWE) estimations in the Noah LSM have been noted to be significantly298

overestimated in certain cases due to the assumption that snowpack density, physical character-299

istics, and thermal conductivity are constant, therefore neglecting heat transfers via meltwater300

movement in the snowpack (Yang et al. 2011).301

Statistical Methods302

The DJF climatological mean state and seasonal variability in snow products found within the303

Sierra Nevada were analyzed. The assessment aimed to understand the efficacy of the new VR-304

CESM approach in representing snowpack trends against observation, reanalysis and other widely305

used GCMs and RCMs. In order to do this, the datasets were remapped to similar map projections306

and resolutions using both the Earth System Modeling Framework (ESMF) capabilities in the307

NCAR Command Language (NCL) and TempestRemap (Ullrich and Taylor 2015) software suites.308

The observational and reanalysis datasets were further remapped to all possible resolutions used309

in the models (i.e., 0.125◦, 0.25◦, and 1◦). The climate averages and seasonal averages were310
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computed using a mask of the Sierra Nevada (see Figure 3). This mask was developed by the311

EPA’s Ecoregions classification system (Ecoregion Level III - 6.2.12). Summary statistics of the312

Sierra Nevada were calculated for each of the datasets for SWE and SNOWC including mean,313

standard deviation, lower quartile, median, upper quartile, and maximum.314

For most of the datasets assessed, 25 seasons of average DJF values were used. WRF-9 had 22315

DJF seasons. Additionally, MODIS had 12 DJF seasons, many of which fall outside the historical316

period (1980-2005 vs 2000-2012), but due to the scope of this paper in analyzing the climatological317

and seasonal mean trends (rather than precise seasonal forecasting) this was assumed to be largely318

irrelevant.319

4. Seasonal and Multidecadal Snow Trends in the Sierra Nevada320

Snow Water Equivalent Summary Statistics321

A panel plot of the DJF average SWE is shown across datasets for California (Figure 4). Clear322

resolution dependence is apparent across all modeling platforms. Each of the datasets highlighted323

an overall increasing trend in SWE with an increase in model resolution, likely correlated with324

topographical representation (see Figure 2) and resultant orographic forcing on weather fronts325

as well as sustained below-freezing temperatures. Of note, the NCEP dataset didn’t characterize326

enough SWE for the Sierra Nevada region to be further assessed in greater statistical detail. Each of327

the model datasets are compared to the average of the reanalysis datasets at their closest respective328

resolution of 0.125◦, 0.25◦, or 1◦. Within the Sierra Nevada masked region, VR-CESM 0.125◦ and329

VR-CESM 0.25◦ (rough) demonstrated the closest statistical match across all observational and330

reanalysis datasets with mean DJF SWE absolute bias values of 6.4 and 2.7 mm, respectively (the331

reanalysis dataset average SWE value was 97.4 mm), and median values within 8 to 13 mm (Table332
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2). Maximum DJF SWE values were most closely represented by CESM-FV 0.25◦ and VR-CESM333

0.25◦ (rough), both within 68 mm. It should be noted that an artificial cap on maximum SWE at334

1,000 mm is imposed in CLM4.0 which impacted maximum SWE values for all VR-CESM and335

UNIFORM CESM simulations. CESM-FV 0.25◦ and WRF-9 both showed a positive bias in DJF336

SWE values for mean and median compared to the reanalysis dataset average. CESM-FV 0.25◦337

had a positive bias of 1.8 times the mean DJF SWE and 2.4 times the median value for the Sierra338

Nevada mask. WRF-9 exhibited a similar response with a positive bias of 2.4 times the mean and339

1.4 times the median DJF SWE. The coarser resolution version of VR-CESM and WRF had a340

negative bias with VR-CESM 0.25◦ (smooth) at half the mean for DJF SWE in the Sierra Nevada341

and WRF-27 at 74%. CESM-SE 1◦, the model resolution used in most IPCC simulations, was342

unable to represent both climatological and seasonal DJF SWE trends in the Sierra Nevada with a343

maximum DJF SWE value of 41.7 mm (<5% of the reanalysis dataset average maximum value),344

with similar tendencies seen in the mean and median values as well.345

Seasonal Variability in Snow Water Equivalent346

SWE DJF mean seasonal variability is represented via a plot of standard deviation at each grid347

point across all datasets (Figure 5). Characterization of interseasonal variability, in comparison to348

the reanalysis datasets, was shown to be more difficult for most of the modeling platforms. VR-349

CESM simulations were best represented by VR-CESM 0.25◦ (rough) which exhibited a slight350

positive bias of 1% to the reanalysis dataset average (Table 2). VR-CESM 0.125◦ and VR-CESM351

0.25◦ (smooth) were at 87% and 36% of the standard deviation, respectively. CESM-FV 0.25◦ had352

a large discepency in standard deviation tendency with a positive bias of two times the reanalysis353

dataset average of the reanalysis datasets. WRF-9 showed an exceedingly high variability with354

6.8 times the standard deviation of the reanalysis dataset average, although this could be partially355
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amplified by the fact that DAYMET and CESM SWE values were capped at 1,000 mm. Although356

the standard deviation values were highly variable across modeling platforms in comparison to357

the reanalysis dataset average, the average seasonal interquartile ranges (IQR) were more closely358

aligned (Figure 6). The IQR for VR-CESM 0.125◦ and VR-CESM 0.25◦ (rough) were closest to359

the reanalysis dataset average with a slightly negative bias of 11 mm and 7.8 mm, respectively.360

WRF-9 and CESM-FV 0.25◦ had a positive bias in IQR, with exceedingly high 75th percentiles,361

whereas VR-CESM 0.25◦ (smooth) and WRF-27 were conservative in their higher quartile marks.362

Pattern Correlation and Bias in Snow Water Equivalent363

The average DJF centered Pearson product-moment coefficients, or the average statistical sim-364

ilarity between two datasets at identical locations for SWE across the 25 seasons (with removal365

of the mean), for all of the simulations were computed against each of the remapped reference366

datasets for the Sierra Nevada masked region (Table 3). The Pearson product-moment coefficients367

are calculated by computing the covariance of the two datasets and dividing by the product of368

their standard deviations. Averaging all of the Pearson product-moment coefficients across all369

grid-points within the mask is useful in showing the seasonal similarity in SWE trend across the370

entire Sierra Nevada. Interestingly, the VR-CESM simulations were almost identical in average371

seasonal correlation compared to the reanalysis datasets (at around 0.67 to 0.71) for the Sierra372

Nevada. WRF-9, remapped to 0.125◦ (14km) resolution, showed the highest seasonal correlation373

at 0.83. However, this was not unexpected considering the WRF simulations were forced by ERA-374

interim data. Both CESM-FV 0.25◦ and CESM-SE 1◦ had the lowest correlation with 0.28 and375

0.19, respectively.376

Additionally, seasonal average bias was computed across model simulations for the Sierra377

Nevada (Table 3). VR-CESM 0.25◦ (rough) had the smallest average seasonal bias to the re-378
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analysis dataset average with a slight negative bias of -2.7 mm, with VR-CESM 0.125◦ the next379

closest at -6.4 mm. Although WRF-9 showed best agreement with the NLDAS reanalysis datasets.380

The WRF and UNIFORM CESM simulations had similar tendencies to one another with a positive381

seasonal bias occurring in the higher resolution simulations and a negative trend in the coarser res-382

olution simulations, much the same as Caldwell (2010) indicated for winter precipitation tenden-383

cies in California. Figure 7 shows the average climatological difference in snow water equivalent384

between model and reanalysis datasets. Bluer (redder) colors represent a more positive (negative)385

model bias over the simulation period. In general, higher resolution models tend to overproduce386

SWE whereas lower resolution models tend to underproduce SWE. This is likely due to the un-387

derrepresentation of topography within the model simulations. Interestingly, in several of the388

simulations a positive bias appears on the western slopes of the Sierra Nevada and a negative bias389

occurs on the eastern slopes. This may be caused by an oversensitivity to orographically forced390

upslope winds that push the model to overproduce snowfall as the storms move from the wind-391

ward to leeward side of the Sierra Nevada. In addition, increased topographic height that does not392

preserve the fractal peaks and valleys in more detailed representations (see ETOPO2v2 in Figure393

2) could artificially enhance orographic uplift. For example, in Figure 7 the orographic uplift bias394

was shown in the northern Sierra Nevada for VR-CESM 0.125◦ and less so in VR-CESM 0.25◦395

(rough), a potential reason why nominal improvement was seen in snowpack characteristics for396

the Sierra Nevada when VR-CESM model resolution was increased.397

Climatology of Total Snowpack over the Water Year398

The mean daily climatological total SWE (in kg) within the Sierra Nevada was calculated in399

order to characterize the total water content of the region provided by snowpack (Figure 8). By400

averaging the total SWE each day over all years (1980-2005) and then multiplying by the area of401
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the mask (53,102,699,313 m2), the average snowpack mass is shown for the Sierra Nevada across402

model and reference datasets. Each of the datasets were grouped according to their comparable403

resolution counterparts (i.e., a) 0.125◦ (14km), b) 0.25◦ (28km), and c) 1◦ (111km)) to better404

showcase relative magnitudes of Sierra Nevada SWE found within a given climatological day. It405

should be noted that DAYMET has biases introduced during the dataset formulation that impacts406

its overall ability to characterize mid-season snowpack and thus alters the SCD and timing of407

snowmelt. Further, the CAL-ADAPT datasets were not used because daily resolution outputs408

were not available (only monthly and annual) and the first hour (00 or 12:00 am) of each day409

within the NLDAS datasets were used within the analysis. In general, VR-CESM 0.125◦ and410

VR-CESM 0.25◦ (rough) appear to most closely match all of the reanalysis datasets in relative411

magnitude (Figure 8). A bimodal profile in VR-CESM 0.125◦ is likely indicative of the artificial412

1,000 mm cap in SWE imposed within CLM4.0 to prevent excessive snow accumulation over413

Antarctica - future simulations will attempt to alleviate this by removing the cap away from the414

polar regions. WRF-9, remapped to 14km, had a high bias associated with total SWE in the Sierra415

Nevada, with a SCD value of around 21.4 x 1012 kg (more than twice the value shown in most of416

the reanalysis datasets as well as VR-CESM 0.125◦). In the 28km datasets, the magnitude of total417

SWE is consistent with the 14km results. VR-CESM 0.25◦ (rough) matched most closely to the418

NLDAS VIC 0.25◦ reanalysis dataset at 8.0 x 1012 kg, with all other datasets falling under that419

mark (<6.0 x 1012 kg). The 111km resolution datasets differed greatly from one another, with420

the peak accumulation of CESM-SE 1◦ values falling much further below the remapped reanalysis421

datasets. This further highlights the inability of standard-practice 1◦ GCM simulations to capture422

Sierra Nevada snowpack characteristics, especially with respect to total water content.423
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Snowpack Timing and Melting Patterns424

Peak timing of western USA snowpack accumulation (or SCD) is traditionally thought to occur425

around April 1st (water day 182), although this has shifted due to regional warming trends in the426

western USA (Kapnick and Hall 2012; Montoya et al. 2014). Since most of the reanalysis datasets427

had discrepancies in representing the total water content and SCD within the Sierra Nevada, nor-428

malized values of average climate day SWE are shown in Figure 9 for all datasets in comparison429

to 19 SNOTEL stations (Figure 3). These stations were chosen based on daily observation avail-430

ability spanning the years 1980-2005. Further, the SNOTEL locations are representative of several431

elevations found within the Sierra Nevada, spanning from 1864 m (Spratt Creek) to 2879 m (Vir-432

ginia Lakes Ridge). Of note, the SNOTEL stations are clustered in the northern to central Sierra433

Nevada, with no stations present in the south. As such, a subregion of the Sierra Nevada was434

made to compare model results with observations from SNOTEL stations (see solid black sub-435

region in Figure 3). This subregion was created using 12 of the USGS Hydrologic Units in the436

Sierra Nevada (Seaber et al. 1987). If a SNOTEL station was located within or near an adjoining437

hydrologic unit then the entire unit was kept (within the boundary of the Sierra Nevada Ecore-438

gion). Further, since the lowest elevation SNOTEL station was located at 1864 m (Spratt Creek), a439

topographical threshold of 1824 m was imposed to create the subregion (this altitude was chosen440

to provide a buffer around Spratt Creek). The normalizations were computed by removing the441

relative mean from all climatological days within a given dataset and then dividing the resultant442

values by the standard deviation. Like the plots for the mean daily climatological sums of SWE,443

all datasets are grouped according to resolution, with added comparison to SNOTEL in each plot444

(Figure 9). Among models, VR-CESM 0.125◦ and WRF-9 matched most closely to SNOTEL.445

However, both had an early SCD bias. The SCD in VR-CESM 0.125◦ falls around water year446
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day 170 (March 21st), the closest match to SNOTEL across all model datasets. SCD for WRF-9447

falls around water year day 160 (March 11th), around two weeks before the expected date. Melt448

rate and the date at which the complete melt of SWE occurs differentiated VR-CESM 0.125◦449

and WRF-9, with WRF-9 more closely matching SNOTEL. The melt rate in VR-CESM 0.125◦450

was too rapid resulting in a complete melt occuring around 30 days sooner than in the SNOTEL451

dataset. DAYMET had a late SCD around day 191 (April 10th), 10 days after SNOTEL. The melt452

rate in the DAYMET dataset was much slower than all other datasets. Further, since DAYMET453

analyzed each year in isolation, the snowpack was discontinuous at water year day 91 (Thornton454

et al. 2014). Snowpack accumulation onset matched fairly well across all datasets, with the onset455

date around water year day 36 (November 5th). Within the 28km simulations, most model datasets456

seem to match in terms of having an earlier expected SCD clustered on water year day 151 (March457

1st), around 30 days sooner than SNOTEL. The remapped version of DAYMET at 0.25◦ showed458

a similar late SCD bias (water year day 191) and showed a more drastic slow down in melt rate.459

All 0.25◦ datasets matched fairly well in snowmelt rate and accumulation onset, matching well460

with SNOTEL. Full melt generally occured earlier (water year day 240) across models compared461

to SNOTEL (water year day 270). In the 1◦ datasets, CESM-SE 1◦ had a physically unreasonable462

SCD (water year day 90), snowmelt rate, and accumulation onset date. Interestingly, at the 1◦463

resolution, the biases in DAYMET are minimized and the SCD, snowmelt rate, date of complete464

melt, and accumulation onset date all are well within the range of SNOTEL.465

Linear Trends in DJF Seasonal Snowpack466

Figure 10 highlights the linear trend in DJF seasonal mean SWE values for the historical period467

in the Sierra Nevada SNOTEL subregion. For comparison, the 19 SNOTEL station datasets are468

plotted in the upper left panel. The gray lines indicate individual SNOTEL stations with the469
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mean SNOTEL station seasonal trend shown in black and the linear trend line in red. Each of470

the model and reanalysis datasets are plotted using similar axis bounds, except for WRF-9 which471

exhibited larger values of SWE. SNOTEL stations are plotted with a larger axis, representative of472

these observations being pointwise measurements in regions of greater snow accumulation. The473

general trend across VR-CESM simulations is a slight decrease in DJF seasonal mean SWE. VR-474

CESM 0.125◦ had the largest negative trend at -0.198 mm/year, with VR-CESM 0.25◦ (smooth) at475

-0.093 mm/year and VR-CESM 0.25◦ (rough) at -0.029 mm/year. Except when compared to CAL-476

ADAPT which shows a dramatic increase in SWE and DAYMET which shows a faster decrease477

in SWE, the general trend for VR-CESM datasets are slightly more negative than the SNOTEL478

and NLDAS reanalysis datasets. This result is corroborated by Mote et al. (2005) who found a479

2.2% decline in mean April 1st SWE across the in situ snowpack observational stations within the480

Sierra Nevada over the historical record (i.e., 1990-1997 (final period) minus 1945-1950 (initial481

period)), with inclusion of snow course data too. Interestingly, the 19 sampled SNOTEL stations482

showed a nearly flat trend (0.016 mm/year) in DJF mean seasonal SWE over the study period.483

WRF simulations showed differing results, with WRF-9 showing an exceedingly strong positive484

trend (0.410 mm/year) in mean seasonal SWE and WRF-27 having a stagnant to slightly positive485

trend (0.011 mm/year) matching most closely with SNOTEL. CESM-SE 1◦ and CESM-FV 0.25◦486

both had a negative trend in mean seasonal SWE, with magnitudes of -0.259 mm/year and -0.200487

mm/year.488

Snow Cover (SNOWC) Summary Statistics489

Figure 11 represents average climatological DJF SNOWC plotted for all datasets over Califor-490

nia. Similar to SWE, an increase in resolution results in a much more heterogeneous representa-491

tion of SNOWC properties that is more closely matched to observations, indicated by 12 seasons492
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of MODIS (MODIS-5) data. A topographic influence is clearly seen as resolution is increased,493

with higher resolution models capturing lower elevation basins that are otherwise smoothed out.494

This resolution dependence manifests itself in statistical calculations of average DJF SNOWC495

within the Sierra Nevada (Table 4). WRF-9 showed the closest match to mean seasonal SNOWC496

with a value only 1.5% lower than the MODIS dataset. VR-CESM 0.25◦ (rough) and VR-CESM497

0.125◦ were the next closest with a slightly more conservative estimate (7% below MODIS) of498

SNOWC. All other datasets, except CESM-FV 0.25◦ which had a positive bias of around 8%,499

had much smaller estimates of mean seasonal SNOWC. CESM-SE 1◦ provided the largest un-500

derestimate among the model datasets with mean seasonal values at a quarter of the comparable501

remapped version of MODIS. Interestingly, two of the best available high resolution reanalysis502

datasets (NCEP and NARR) seem unable to properly capture the Sierra Nevada SNOWC charac-503

teristics in the MODIS dataset, with most of the reanalysis datasets showing a negative bias for504

SNOWC. NARR-32 and NCEP-35 had mean SNOWC values at half to two-thirds of the value505

indicated by MODIS and NLDAS VIC, NOAH, and MOSAIC were at 84%, 74%, and 47% of506

MODIS, respectively. The median values for DJF SNOWC for VR-CESM 0.125◦ and VR-CESM507

0.25◦ showed a close approximation to those seen in NLDAS VIC. As expected, since SNOWC is508

capped at 100%, maximum DJF SNOWC was reached by most modeling platforms.509

Seasonal Variability in Snow Cover510

Mean seasonal variability (interannual standard deviation of the seasonal mean) in SNOWC is511

shown over California (Figure 12). Standard deviation values for each of the simulations are given512

in Table 4. As with the mean seasonal SNOWC values, WRF-9 had the best representation of sea-513

sonal variability within the Sierra Nevada, with a close approximation to standard deviation values514

in the remapped MODIS dataset (although it underestimates standard deviation in the lee of the515
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Sierra Nevada). VR-CESM 0.25◦ (rough) also was able to characterize seasonal variability at a re-516

alistic level, with a standard deviation only 14% below MODIS. All other modeling platforms had517

a conservative estimate of variability ranging from half to three-fourths of the observed standard518

deviation, when comparing to common remapped resolutions. This result is apparent in Figure 13519

for each dataset and analyzing the IQRs. All datasets, save for WRF-9 and CESM-FV 0.25◦, had a520

conservative estimate of SNOWC summary statistics when compared to MODIS. Median values,521

along with IQRs, are too low with a noticeable bias in the 75th percentiles.522

Pattern Correlation and Bias in Snow Cover523

The average seasonal centered Pearson product-moment coefficients and mean climatological524

bias for SNOWC are exhibited in Table 5. MODIS was not used in the centered Pearson cal-525

culations as it only spanned five years of the historical period (2000-2005). A close match was526

seen across both VR-CESM and WRF modeling platforms when compared to the three NLDAS527

datasets. Most values fell around 0.74 for the VR-CESM simulations and 0.84 for the WRF simu-528

lations. The CESM-FV and CESM-SE had the lowest correlations at 0.53 and 0.15, respectively.529

The smallest mean climatological bias in DJF SNOWC between MODIS and the model datasets530

was VR-CESM 0.125◦, VR-CESM 0.25◦ (rough) and WRF-27, with negative baises of approxi-531

mately 6-7%. CESM-SE 1◦ produced the worst match across model datasets with a -28.5% bias.532

Of note, the NLDAS reanalysis datasets also widely varied in their ability to characterize mean533

climatological SNOWC bias when compared to MODIS with consistent negative biases ranging534

between -9.2% (NLDAS VIC) to -29.4% (NLDAS MOSAIC).535
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5. Discussion and Conclusion536

The primary goal of this paper has been to assess the efficacy of VR-CESM in simulating the537

mean climatological state and seasonal variability within Sierra Nevada snowpack metrics (i.e.,538

SWE, SCD, and SNOWC). It was determined that the efficacy of the VR-CESM framework in539

simulating climatological mean and seasonal variability in both SWE and SNOWC was compet-540

itive with traditional dynamical downscaling. Overall, considering California’s complex terrain541

and intermittent climate, a 0.68 centered correlation (less correlated, yet similar to values seen in542

WRF), negative mean SWE bias of <7 mm, and an IQR well within the range of values exhibited543

in the best available spatially continuous datasets for SWE, the ability of both VR-CESM 0.25◦544

(rough) and VR-CESM 0.125◦ to simulate SWE on both climatological and seasonal scales was545

confirmed. Of note, both of the VR-CESM simulations were solely constrained by prescribed546

SST and sea ice data, whereas WRF simulations were further constrained at lateral boundaries by547

ERA-interim data (in addition to SST and sea ice), yet both showed comparable statistical prop-548

erties. This was similarly confirmed for the climatological mean for DJF SNOWC where both549

the VR-CESM 0.125◦ and VR-CESM 0.25◦ (rough) simulations were within 7% of the expected550

mean MODIS value. VR-CESM 0.25◦ (rough) was able to characterize MODIS’ standard de-551

viation well (86% match). WRF-9 had the best representation of SNOWC with a near identical552

representation in mean, standard deviation, and IQR, compared to MODIS, but at the cost of un-553

reasonably high SWE values. This is likely indicative of the over-exaggeration of topography at554

higher resolutions in the model, where the fractal nature of peaks and, importantly, valleys are555

misrepresented (compare ETOPO2v2 to model topography in Figure 2) leading to a bias in overall556

snowpack characterizations. VR-CESM, as well as WRF, conveyed mixed results in representing557

seasonal variability in SWE (average standard deviation value at each grid point), with generally558
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conservative estimates across all assessed modeling platforms except WRF-9 and CESM-FV 0.25◦559

which had much higher estimates. The total water content of snowpack within the Sierra Nevada560

was best represented in both VR-CESM 0.125◦ and VR-CESM 0.25◦ (rough) when compared to561

the remapped NLDAS VIC reference dataset at their respective resolutions. VR-CESM 0.125◦562

and WRF-9 showcased the best representation, across datasets, of SCD timing, snowmelt rate, and563

snowpack accumulation onset, in comparison to SNOTEL. The two datasets differed in the date564

at which complete melting of SWE occured with VR-CESM 0.125◦ occuring too early, whereas565

WRF-9 had a slightly late onset. Interestingly, both SWE and SNOWC didn’t show a significant566

enhancement in snowpack properties when VR-CESM resolution was moved from 0.25◦ to 0.125◦;567

in fact the 0.25◦ simulation (VR-CESM 0.25◦ (rough)) was slightly more skillful when considering568

all metrics. Topographical roughness was found to play a much more significant role in represent-569

ing snowpack properties with VR-CESM 0.25◦ (rough) seeing a sixteen-fold decrease in average570

seasonal SWE bias, threefold increase in SWE seasonal variability, an IQR increase from 48.9 to571

64.1, and a considerable increase in the SCD total water content for the Sierra Nevada. This is an572

improvement when compared to the average of all of the reanalysis datasets. Furthermore, DJF573

temperature characteristics may have played a role in modulating which of the simulations per-574

formed most optimally. Figure 14 highlights average climatological DJF 2m surface temperatures575

for only the model simulations. Below freezing (< 273 K) temperatures are shown to be main-576

tained over greater areas for the climatic period across all higher resolution (≤ 0.25◦) simulations,577

likely because of increased topographic elevations in those areas. This temperature maintenance578

likely drives winter season snowpack accumulation and sustainment.579

The VR-CESM framework provides greatly enhanced representation of snowpack properties580

compared to widely used GCMs (i.e., CESM-FV 1◦ and CESM-FV 0.25◦). Simulation of Sierra581

Nevada snowpack in the VR-CESM framework is competitive with traditional dynamical down-582
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scaling techniques, but has the additional means of providing dynamic interaction with large-scale583

atmosphere-ocean drivers and teleconnections that might not otherwise manifest in an RCM con-584

strained by boundary conditions. These two points lend them themselves well to using certain585

versions of VR-CESMs (namely VR-CESM 0.25◦ (rough) and VR-CESM 0.125◦) in projecting586

future climate change scenarios and their resultant impacts on water resources over the western587

USA.588

The topographical smoothing between the two VR-CESM 0.25◦ simulations had the most dra-589

matic influence on snowpack product tendencies found within the VR-CESM framework, even590

when compared to changes resulting from a doubling of model resolution from 0.25◦ to 0.125◦.591

As shown in Table 2, mean seasonal SWE for the Sierra Nevada nearly doubled from 50.4 mm592

to 95.2 mm between VR-CESM 0.25◦ (smooth) and VR-CESM 0.25◦ (rough), with a decrease in593

average DJF climate bias in SWE from -52% to -2.3% when compared to the reanalysis dataset594

average. This tendency was similar for the lower quartile, median, and higher quartile values. Sim-595

ilarily, the seasonal variability, indicated by the standard deviation plots (Figure 5) and standard596

deviation values in Table 2, nearly tripled, making the VR-CESM 0.25◦ (rough) simulation the597

closest match to the reanalysis dataset average within all model simulations. Changes in SNOWC598

trends were also apparent, although less dramatic than SWE (Table 4). Average seasonal SNOWC599

increased by 9% and the IQR increased from 48.9 to 64.1, matching more closely to the MODIS600

dataset value of 74.5, with the higher quartile less conservatively biased.601

Improved topographical resolution also resulted in better representation of the snow character-602

istics of the maritime mountain ranges (e.g., the Cascades and the Coastal Range) (Figure 4).603

Maritime mountain ranges have shown some of the greatest snowpack decreases over the histor-604

ical record (Serreze et al. (1999); Mote (2003); Mote et al. (2005)) and are in need of the best605

available climate change impact analysis due to a greater susceptibility to climate change trends606
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(i.e., warmer and potentially more precipitous weather fronts originating from relatively warmer607

ocean waters). This is important because conventional GCM simulations are generally performed608

at resolutions too coarse to properly resolve the aforementioned topographical forcings and, thus,609

may bias evaluations used to guide climate impact studies and climate policy formulation. This610

isn’t to say that the VR-CESM framework provides perfect representation of these ranges, but that611

it provides a more realistic and computationally effective means to characterize these ranges in a612

changing climate. This subject will be the target of further research.613

A higher resolution surface dataset for PFT type would have been beneficial for this study, to614

capitalize on the higher resolution (<0.5◦) VR-CESM grids implemented into CLM, however none615

were available at the time of writing. An extensive review of the North American and European616

snowpack-canopy interaction literature by Varhola et al. (2010) argued that snowpack accumula-617

tion and melting patterns can be significantly altered by changes in forest cover, accounting for618

relative variance changes of 57% in snow accumulation and 72% in snow ablation. After dis-619

cussion with the CLM development team at NCAR, a two minute PFT dataset for the year 2000620

was identified. This dataset will be used in future simulations to assess the effects of canopy621

interactions on snowpack metrics within a VR-CESM framework.622

Added benefits of the VR-CESM framework, not discussed previously, include the large en-623

hancement in computational efficiency. For example, the 0.25◦(0.125◦) VR-CESM grid had ap-624

proximately 8,400 (11,300) elements. When compared to conventional uniform resolution grids at625

1.00◦, 0.25◦ or 0.125◦, which have 5,400, 86,400, and 345,600 elements respectively, a theoretical626

speedup in computation time of 10 to 30 times is expected for the VR-CESM framework, with the627

assumption of linear computational scalability highlighted in Dennis et al. (2011) and Zarzycki628

et al. (2014a). Therefore, for a relatively similar computational cost of a uniform 1.00◦ grid, one629

can get vastly improved snowpack product characteristics over a limited region of interest, espe-630
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cially within the California Sierra Nevada. This is a function of not only resolving smaller scale631

meteorological features, but also due to better representations of topography and, in some cases,632

land surface properties. Therefore, for only a fraction of the cost of a high resolution uniform633

GCM run, the VR-CESM approach can be performed on a local server (<1000 processors), with634

20-40 day turnarounds on 25 year simulation periods, and provide model resolutions of 0.25◦ (28635

km) to 0.125◦ (14 km), which decision makers (especially in the western USA water sector), may636

find more useful in regional planning endeavors. The enhanced representation of snowpack and637

relative computational efficiency of VR-CESM lends itself well to future investigations of other638

SWE dependent regions of the western USA, as well as ensemble-based climate change scenario639

analysis.640
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FIG. 1. The two variable-resolution global climate model grids (0.25◦ (28km), left and 0.125◦ (14km), right)

used for this study. Both grids are developed on a cubed-sphere with a 1.00◦ quasi-uniform resolution (111km).

The dashed lines highlight the model transition region and the solid lines indicate the higher resolution regions.
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FIG. 2. Topographical representation of the Sierra Nevada mountain range and surrounding regions across

model datasets. Topography from variable-resolution CESM is displayed in order of increasing grid resolution

from (a) to (c). The standard CESM and WRF simulations are displayed in order of increasing resolution from

(d) to (g). The ETOPO2V2 dataset, representing 2-minute (2 km) gridded topographic relief is depicted in (h).
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FIG. 3. The EPA’s Ecoregion Level III (6.2.12) shapefile mask used for summary statistic calculations of the

Sierra Nevada mountain range (dashed black outline). SNOTEL station locations (blue triangles) are overlaid

onto the ETOPO2v2 topography. The solid black outline is used to indicate the subregion used to compare

model and reanalysis data to SNOTEL stations.
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FIG. 4. Average climatological DJF snow water equivalent (SWE) across model and observational datasets

over California.

918

919

51



FIG. 5. Average DJF variability (interannual standard deviation of the seasonal mean) of snow water equiva-

lent (SWE) across model and observational datasets over California.
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FIG. 6. Boxplots of seasonal (DJF) Sierra Nevada snow water equivalent (SWE) across modeling platforms

and observational datasets. The boxes represent the 25th and 75th percentile values within the Sierra Nevada

masked region, with the median value indicated in between. The minimum and maximum range is depicted by

vertically dashed lines. Regridding of reanalysis datasets to 0.25◦ (or 0.125◦ for DAYMET) had no noticeable

effect on the statistics and so are not shown.

922

923

924

925

926

53



FIG. 7. Average difference in DJF SWE between model and reanalysis datasets over California. Rows indi-

cate model output and columns represent gridded or reanalysis datasets. Blue (red) indicates a model positive

(negative) difference in SWE compared to the given reanalysis dataset.
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FIG. 8. Average water year day totals for SWE within the Sierra Nevada SNOTEL subregion. Plots are sorted

according to the resolution of the models - namely, (a) 0.125◦ (14km), (b) 0.25◦ (28km), and (c) 1◦ (111km).

The Sierra Nevada SNOTEL station datast (19 locations) is plotted in black within each diagram. The horizontal

axis represents Water Year Day (beginning October 1st through September 31st).
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FIG. 9. Normalized average SWE within the Sierra Nevada SNOTEL subregion. Plots are sorted according

to the resolution of the models - namely, (a) 0.125◦ (14km), (b) 0.25◦ (28km), and (c) 1◦ (111km). The Sierra

Nevada SNOTEL station dataset (19 locations) is plotted in black within each diagram. The horizontal axis

represents Water Year Day (beginning October 1st through September 31st).
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FIG. 10. Linear trend in average seasonal DJF SWE within the Sierra Nevada SNOTEL comparison subregion

across model, observational, and reanalysis datasets over the historical period (DJF season 1980 to 2005). The

SNOTEL dataset, plot (a), incorporates 19 SNOTEL stations spread throughout the Sierra Nevada that contained

25 DJF seasons of observations. Gray lines indicate individual SNOTEL station with the average seasonal DJF

SWE value represented by the black line. Standardized regression coefficient is shown in the upper left corner

of each plot.
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FIG. 11. Average climatological DJF snow cover (SNOWC) across model, observational, and reanalysis

datasets over California. The MODIS dataset spans the years 2000-2012.
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FIG. 12. Average DJF variability (interannual standard deviation of the seasonal mean) of snow cover

(SNOWC) across model, observational, and reanalysis datasets over California. The MODIS dataset spans

the years 2000-2012.
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FIG. 13. Boxplots of seasonal (DJF) Sierra Nevada snow cover (SNOWC) across modeling platforms and

observational datasets. The boxes represent the 25th and 75th percentile values within the Sierra Nevada masked

region, with the median value indicated in between. The minimum and maximum range is depicted by vertically

dashed lines. Regridding of reanalysis datasets to 0.25◦ (or 0.125◦ for MODIS) had no noticeable effect on the

statistics and so are not shown. The MODIS dataset spans the years 2000-2012.
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FIG. 14. Average climatological DJF 2m surface temperature across model datasets over California.
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