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Abstract

A conservative multi-tracer transport algorithm on the cubed-sphere based on the semi-Lagrangian
approach (CSLAM) has been developed. The scheme relies on backward trajectories and the
resulting upstream cells (polygons) are approximated with great-circle arcs. Biquadratic poly-
nomial functions are used for approximating the density distribution in the cubed-sphere grid
cells. The upstream surface integrals associated with the conservative semi-Lagrangian scheme
are computed as line-integrals by employing the Gauss-Green theorem. The line integrals are
evaluated using a combination of exact integrals and high-order Gaussian quadrature. The up-
stream cell (trajectories) information and computation of weights of integrals can be reused for
each additional tracer.

The CSLAM scheme is extensively tested with various standard benchmark test cases of
solid-body rotation and deformational flow in both Cartesian and spherical geometry, and the
results are compared with those of other published schemes. The CSLAM scheme is accurate,
robust, and moreover, the edges and vertices of the cubed-sphere (discontinuities) do not affect
the overall accuracy of the scheme. The CSLAM scheme exhibits excellent convergence prop-
erties and has an option for enforcing monotonicity. The advantages of introducing cross-terms
in the fully two-dimensional biquadratic density distribution functions are also examined in the
context of Cartesian as well as the cubed-sphere grid which has six local sub-domains with dis-
continuous edges and corners.

Key words: Advection, Conservation, Cubed-sphere, Finite-volume, Semi-Lagrangian,
Monotonicity, Remapping, PPM, Multi-tracer transport

1. Introduction

The transport problem in computational fluid dynamics can either be cast in Lagrangian, Eu-
lerian or in Arbitrary Lagrangian-Eulerian (ALE) form [1]. Lagrangian methods let the mesh
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travel and evolve with the fluid throughout the integration whereas Eulerian methods use a fixed
mesh. Both methods have their strengths and weaknesses. The ALE method was developed in
an attempt to combine the advantages of the Eulerian and the Lagrangian approaches by letting
the mesh move in any prescribed manner as an extra independent degree of freedom. A popular
choice of prescribed mesh movement is to run in Lagrangian mode for one time-step and then
regrid (interpolate) back to the static and regular (Eulerian) mesh. In meteorological literature
this approach is known as the semi-Lagrangian method [2]. A comprehensive review of conser-
vative semi-Lagrangian methods are given in [3, 4], and a stability analysis of these schemes is
presented in [5].

At every time-step, the semi-Lagrangian approach involves regridding (interpolating) quan-
tities from a distorted Lagrangian mesh to a regular Eulerian mesh or vice versa, depending
on the trajectories. Hence the transport problem is reduced to a regridding problem if the La-
grangian mesh movement is prescribed. For a variety of reasons it is desirable that the regridding
procedure is conservative and monotonic. Conservative regridding is often referred to as remap-
ping or rezoning. The problem of remapping quantities between arbitrary grids, which involves
integration over overlapping areas between the grids, has received considerable attention in the
literature due to its many applications. In general direct integration over arbitrary overlap areas is
not practical. Through the pioneering work of Dukowicz [6, 7] and Ramshaw [8] the remapping
problem has been made practical by the application of Gauss-Green’s theorem which converts
area-integrals into line-integrals. This approach has been applied for up to second-order static
grid-to-grid remapping in [9] and later the method was extended to third-order and optimized for
the regular latitude-longitude and cubed-sphere grids [10].

In most atmosphere and ocean modeling applications the continuity equation must be solved
multiple times for fluid density as well as dozens of tracers (chemical species). For example, the
chemistry version of NCAR’s Community Atmospheric Model (CAM) model [11] uses on the
order of 100 prognostic tracers [12]. Therefore it is highly desirable that the numerical algorithm
used for tracer transport is efficient and adaptable for a large number of tracers. In [13] an
incremental remapping algorithm based on the semi-Lagrangian technique has been introduced
for multi-tracer transport. Although incremental remapping has a high startup cost associated
with geometry calculations, each additional tracer adds only a relatively small cost. The CSLAM
algorithm considered herein follows this strategy.

Traditionally the regular latitude-longitude grid has been the preferred choice for global at-
mospheric models. However, models based on such grid system may have scalability issues. The
scalability problems are either rooted from the non-scalable global numerical methods or the ap-
plication of non-local polar filters. To address these problems, the atmospheric modeling commu-
nity is developing numerical models based on more isotropic spherical grid systems that are free
from singularities or contain weaker singularities. Also these grid geometries are amenable to
local numerical methods such as the finite-volume method or element-based high-order Galerkin
methods. The cubed-sphere geometry introduced by Sadourny [14] offers many computationally
attractive features. Recently the cubed-sphere (spherical cube or expanded cube) geometry has
been reintroduced in [15, 16] with additional desirable features such as the equiangular grid-
spacing or orthogonality. Here we consider cubed-sphere grids based on the central (gnomonic)
projection.

In this paper we optimize the more general method of Dukowicz [6, 7] for transport on the
cubed-sphere grid in two ways. Firstly, instead of using constant cell densities as in [6, 8] or
linear reconstructions of cell densities as in [7, 9, 17, 18, 19], we use the fully two-dimensional
biquadratic reconstruction functions with a monotone option. Secondly, we exploit that for the
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gnomonic cubed-sphere grid it is possible to evaluate line-integrals along coordinate lines exactly
[10]. Contrary to the incremental remapping algorithm, CSLAM is designed to allow for long
time-steps with Courant numbers exceeding unity.

This paper is organized as follows. In Section 2 we introduce the CSLAM algorithm in
Cartesian geometry. This involves defining the transport problem and introduce the notation re-
quired to mathematically describe the Lagrangian grid, in particular, the overlap regions between
the static mesh and the Lagrangian grid. The conversion of area integrals into line-integrals us-
ing Gauss-Green’s theorem is described with details including the analytic integration of two-
dimensional polynomial reconstruction functions. In Section 3, CSLAM is extended to the
cubed-sphere geometry. Section 4 show results for standard test cases in Cartesian and spherical
geometry. We will summarize the findings in Section 5.

2. Cartesian geometry

The two-dimensional transport equation for a tracer, in the absence of sources or sinks, can

be written as 4
— | wda=o, (1)
dt A(r)

(e.g., [13]) where i is the density (typically the product of the air density and the tracer concen-
tration per unit mass), and the integration is over an arbitrary Lagrangian area A(f) at time ¢, that
is, an area that moves with the flow with no flux through its boundaries. A temporal discretization

of (1) along the characteristics is
f WdA = f W dA, 2)
A(+Ar) A()
where At is the time-step size.

In a semi-Lagrangian method either A(¢+Af) or A() is a static grid cell, or equivalently, either
upstream (backward trajectories) or downstream (forward trajectories) cell tracking is used. Here
we use the upstream approach so that A(r + Ar) is a regular grid cell. Using the two-time level
semi-Lagrangian terminology, A(¢ + At) is referred to as the arrival (or Eulerian) cell and A(z)
the departure (or Lagrangian) cell.

In a two-dimensional Cartesian orthogonal grid system, let A; be the kth (Eulerian) grid cell,
where k = 1,..., N, such that N is the total number of cells in the domain Q. The departure
cell corresponding to the arrival cell A is denoted by a; (see Fig. 1). Note that there exists a

one-to-one correspondence between departure and arrival cells such that the departure cells span
Q without gaps or overlaps between them,

N
Uak =Q, anda,Na,=0,Yk +¢,
k=1
where a; is assumed to be a simply connected region on Q. For a cell-integrated semi-Lagrangian
method, as the one considered here, it is required that the trajectories should not cross during the
time-step Af [20].
For the discretization of (2) we need to define the overlap regions between the departure cell
ai and the Eulerian grid cells A;, £ = 1,..., N. Let a;, be the non-empty overlap region between
departure cell a; and grid cell A, such that

a=arNApy, a#0, €=1,...,L;, and 1 < Ly <N,
3



(a) (b)

Figure 1: A schematic illustration of concepts used in the semi-Lagrangian finite-volume scheme. (a) The deformed
departure cell a; (dark shaded area) ends up, after being transported by the flow for one time-step, at the regular arrival
cell Ay (light shaded area). The trajectories for the cell vertices are shown with arrows, and the departure and arrival cell
vertices are marked with filled and open circles, respectively. (b) illustrates the overlap region between the grid cell Ag
and the departure cell g, referred to as ay, used for the upstream integral computation given in equation (4).

where L; is the number of non-empty overlap regions between departure cell a; and the Eulerian
grid cells. Ly depends on the characteristics of the flow and time-step size.

The semi-Lagrangian finite-volume version of the discretized transport equation (1) for ¢ can
be written as follows: e

U AA = bay 3)

(e.g.,[21]) where EZH is the average tracer density in cell k at time-level n+1 (i.e.,t = (n+1)Ar);
AA; and day is the area of the arrival and departure cell A; and ay, respectively, and z//_;:n is the
average density in the departure cell.

To compute the mass in the departure cell from known cell average values EZ, t=1,...,N,
in a higher-order and conservative manner, one needs to construct a continuous sub-grid-scale
representation of ¢ within each Eulerian cell with mass-conservation as a constraint. The sub-
grid-scale reconstruction in a cell € is denoted fy(x,y). The integral over the departure cell can
be broken up into the sum of integrals of f;(x,y) over non-empty overlap regions ay, as follows,

1
vy = 5—ak; f f Sy da. )

Note that no approximations have been made at this point.
Since the departure cells a; span the integration domain Q without gaps or overlaps global
mass is conserved as long as the reconstructions fr(x, y) satisfy

f fi(x,y)dA =y, AA; for £=1,...,N.
Ac

For general (smooth) flows the boundary of the departure cells are smooth curves rather than

straight line segments, as is the case for the arrival cell walls. Only in simple cases such as for

pure translational (non-divergent) wind fields the analytic departure cell boundaries consist of

straight line segments but in general the departure cell sides must be approximated. To address

this problem several approaches have been taken in the literature (see Fig. 2.10 in [3] and Fig. 2
4



(a) (b) (c) (d)

Figure 2: Schematic illustrations of possible approximations to the analytical departure cell boundary (solid curved line)
using different levels of refinement with piecewise straight lines. (a) The approach used in this paper connects the four
vertices of the departure cell (filled circles) with straight lines. To improve the approximation to the departure cell one
may introduce (b) one, (c) two or (d) three Lagrangian points along the cell sides (unfilled circles) and connect these by
straight line segments to converge towards the exact departure cell boundary.

in [22] for illustrations). Most methods track cell vertices moving with the flow and approximate
the departure cell sides from the location of these vertices. Probably the most straight forward
cell approximation results from connecting the cell vertices with straight lines (Fig. 2a).

To improve the representation of any particular Lagrangian cell edge one may approximate
it with piecewise straight lines, that is, introduce more Lagrangian parcels along the cell sides
and connect them with straight lines. By increasing the number of points tracked along each cell
side one would converge towards the analytic departure cell (see Fig. 2). It is beyond the scope
of this paper to investigate such an approach, that is, we simply approximate the cell sides with
straight lines connecting the vertices of the departure cell. Hence the region a; is a quadrilateral.

2.1. Upstream integrals

The sub-domains a;, over which must be integrated can have many possible shapes (Fig.
3). The practical difficulty in developing analytical integrals that cover all possible cases is,
in general, somewhat complicated but not impossible [23]. Instead the problem can be greatly
simplified by converting the area-integrals into line-integrals by appropriate use of the Gauss-
Green theorem [6].

2.1.1. Lagrangian cell boundary computation (search algorithm)

Suppose the trajectories for the vertices of a; are given. Finding the location of the vertices
of ay, basically reduces to the computation of intersections between coordinate lines (sides of
Ap) and lines of arbitrary orientation (sides of a;¢). Only three intersection scenarios are possible
when marching counter-clockwise along a side of ay,: Intersection with a horizontal coordinate
line (Fig. 4a), intersection with a vertical coordinate line (Fig. 4b) or intersection with a vertex of
A¢ (Fig. 4c). The coordinates of the crossing are simply the location of the intersection between
straight lines. Let N, be the number of vertices of a,. The coordinates of the vertices of the
polygon ay, are denoted (xgz 4, Yken), B = 1, ..., Ny, and are numbered counterclockwise (Fig. 5).
The first subscript k refers to the kth departure cell to which a;, belongs, € refers to the fact that
(Xke.ns Ye,n) 1s a vertex in the grid cell A, and £ is the local index for the numbered vertices of ag,.

The algorithm works as follows:



(a) (b)

Ak

Ay Ay

Figure 3: A schematic illustration of some of the possible shapes the polygons ay, (shaded areas) may take depending on
the location of the departure points (filled circles). The number of vertices can be (a) 3, (b) 4, (c) 5, (d) 6 and even more
depending on the flow and time-step.



(a) (b) ()

Figure 4: A schematic illustration of the three possible intersections between a departure cell side and the coordinate
lines. In (a) and (b) a horizontal and vertical grid line is intersected, respectively, and in (c) a vertex of an Eulerian cell

is intersected. The resulting line segment is one of the sides of the polygon ay, that defines the overlap area between
Eulerian cell Ay and departure cell ay.

(The, Ny Ykt,Ny,)

(Tke,3, Yke,3)

(xk&17yk&1)

(Tke,2, Yre,2)

Figure 5: A schematical illustration of the coordinates and numbering of the boundary of a, with four vertices (N, = 4).



(a) (b) (c)

Figure 6: A schematic illustration of of the search algorithm used to define the overlap regions ax, between the departure
cell (vertices marked with filled circles) and the Eulerian cells A,. (a) First the intersections between Eulerian grid lines
and the sides of the departure cell a; are computed (crossings marked with stars). (b) The line segments along the sides
of the departure cell gy, referred to at outer line segments (indicated with arrows), are stored. (c) Thereafter the inner
line segments along the coordinate lines and enclosed in gy are stored (indicated with arrows).

1.

2.

3.

Compute all intersections between grid lines and the four sides of the departure cell a; by
marching counterclockwise along the sides of the departure cell (Fig. 6a).

All segment coordinates along the sides of the departure cell a; are temporarily stored as
well as the index of the Eulerian cell A, in which the line-segment is located. We refer to
these segments as outer line-segments (Fig. 6b). Note that the computation of the index
of the Eulerian cell A; in which the segment is located does not need an extensive search
algorithm since when marching along the sides of the departure cell we move between
adjacent cells (Fig. 6b).

The coordinate line crossings can also be used to define the line-segments along coor-
dinate lines enclosed by a; (Fig. 6¢) by marching along the coordinate line on which a
crossing occurs until the next crossing is encountered. We refer to these lines as inner line
segments. Note that g, is a quadrilateral so the departure cell sides can only cross a par-
ticular coordinate line once. Marching along all coordinate lines that are intersected by a
side of a; defines all the inner line segments. The line-segment coordinates are registered
counter-clockwise so if a line-segment is oriented from left to right in a particular cell the
line-segment is registered from right to left in the cell above. As for the outer segments
the index of the Eulerian cell in which the segment belongs is temporarily stored.

. The outer and inner line-segments complete the definition of a;,. Special attention must be

given to situations in which the inner and outer line segments coincide. In such a situation
the segment must, of course, only be registered once.

This defines the boundary of all the overlap polygons a;, which will be used for computing the
line integrals.

2.1.2. Converting area integrals into line-integrals: Weights

In order to evaluate the upstream integrals over the Lagrangian cells efficiently we employ
Gauss-Green’s theorem: For the simply connected regions ay, the following integral equation



holds,
ff fz(x,y)dxdy=5§ [Pdx+ Qdy]. 5)

where day, is the boundary of a,. The functions P = P(x,y) and Q = Q(x,y) are chosen such
that they satisfy:

oP 00
-—t+—== ,¥)-
o ox Je(x,y)
In general, a third-order polynomial reconstruction function in Eulerian cell A, can be written as
filey) = DL CE (= Xy =YY, (©6)
i+j<2

where C%) are coefficients of the biquadratic polynomial (6) ensuring conservation (e.g., [23,
24]), and (Xy, Y7) is the centroid of cell £. Henceforth 7, j € {0, 1, 2}. Collecting terms of the same
order x'y/ in (6) yields
filey) = D ey, ()
i+j<2
where ¢/ are derived coefficients. Then the integral of the polynomial reconstruction function
fe(x,y) in (7) can be written as

f f fe(x,y)dxdy = Z Py, )
ake

i+j<2
where w,((’;j) is given by
| &
0,0
Wig b= S Z (Xken + Xken-1) ke = Yeen-1) 9
245
10 1
J 2 2
WZ,; ) = 3 Z (xk(z,h + Xk Xie,p-1 + xkg,h_l) O'ken = Yreqn-1) (10)
=1
1 &
0,1 2 2
Wég b= 3 Z (yk[,h + Vet Yke -1 + yk[,h_l) (Xkeh — Xeep—1) 11
=1
1 &
2,0
Wi = = Z (ke + Xeei-1) (xit’h + X7 h—l) Okt = Yeen-1) (12)
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Wee o T o4 ; {[yk(?,h (3 Xien T 2 Xken Xken-1 + xk[,h_]) +
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Yith-1 (xk[,h + 2 Xen Xiep-1 + 3 xkg,h_l) X
Vkeh = Yien-1 )}, (14)



where (Xgzn-1, Yeen—1) and (Xken, Yken) are contiguous points (defining a line segment) and the
index £ is cyclic so that & = 0 equals 7 = N,. Note that after having computed the weights the
detailed line-segments information (xx¢5, yxc.n) 1S no longer needed.

The weights w( ¥4 given in equations (9-14) have been derived by using (5) with the following
pairs ( PED, Q(i,j))

( pOO —o, Q00 = x),
(P(I,O) = 0, Q(]’O) = %)9

2
(P(O,l) _ _YE’ 00D = 0)’

(2,0) _ 20) — £
(P - 07 Q - 3 )»

pO2) _ R
3 b

(1,1) _ L) _ Xy
(P =0, Q' >_T).

Note that the choice of P and Q is not unique - here we haven chosen P and Q as in [25]. Clearly
the method easily generalizes to high-order given the reconstruction coefficients c( B,

2.2. Final discretized transport equation
Using (3) and (4) the discretization scheme corresponding to conservative semi-Lagrangian
transport can now be written as

Ly
ot AA = Z ff fe(x,y)dxdy = Z { Z ¢ ’)wg/)}. (15)
=1

i+j<2

=1

. —n
The reconstruction coeflicients c(’ " are derived from known cell average values ,. Here we use

the piecewise-parabolic reconstruction method in each coordinate direction as in [21] to obtain
5,0’0) R cg,l’o) R cg,o’l), 5,2 0) ,and c(0 ? and the cross term cg,l’l) is computed as in [26].

It is worth noting the separation of the weights w(' /) from the reconstruction coefficients o
in (15). In practice this separation implies that once the weights have been computed they can be
reused for the integral of each additional tracer distribution at a given time-step. Hence the trans-
port of additional tracers reduces to the multiplication of precomputed weights and reconstruction
coefficients similarly to the incremental remapping algorithm and traditional non-conservative

semi-Lagrangian schemes.

((3)]

3. Extension to the sphere

3.1. Gnomonic cubed-sphere grid
For the present study we consider cubed-sphere grids resulting from equi-angular gnomonic
(central) projection

x=rtana and y=r tang; aﬁe[ T Z] (16)
10



(b)

Figure 7: (a) A schematic illustration of the gnomonic coordinate. For simplicity only the y = r tan 8 and B-coordinate
of the gnomonic projection are shown for one of the Equatorial panels of the cubed-sphere (v = 1,2, 3,4). A point on the
sphere (4, 6) has the gnomonic y coordinate given by the intersection (filled circle) between face v of the inscribed cube
(thick lines) and the straight line (dashed line) connecting the point on the sphere and the center of the sphere (unfilled
circles). The central angle 8 for (4, 6) is given by the angle between the normal vector for the face and the dashed line.
Solid straight lines show coordinates for the center (8 = y = 0) and edges of the panel (y = 1, 8 = +n1/4). (b) shows the
control-volumes on the surface of the sphere for the equi-angular cubed-sphere grid with N, = 5. Equi-angular refers to
the fact that the increment in @ (and §) for adjacent coordinate lines is constant (A = AS).

(b) (©)

Figure 8: (a) The edges of the cubed-sphere grid plotted on the sphere (solid lines). Dashed lines show latitudes and
longitudes. (b) The inscribed cube and (c) the numbering convention for the panels of the cube used in this paper. The
Greenwich meridian line (1 = 0) divides panel v = 1 in two.

11



[15] where @ and B are central angles in each coordinate direction, r = R/ V3 and R is the radius
of the Earth. Without loss of generality we assume r = 1. For a schematic illustration of the
gnomonic projection/coordinates see Fig. 7. A point on the sphere is identified with the three-
element vector (x, y, v) where v is the panel index (Fig. 8). Hence the physical domain S (sphere)
is represented by the gnomonic (central) projection of the cubed-sphere faces, Q" = [-1,1]?,

yv=1,2,...,6,and
6
s={)a,
U

where the panel domains Q® are non-overlapping and the cube edges are discontinuous. Note
that any straight line on the gnomonic projection (x, y, v) corresponds to a great-circle arc on the
sphere. In the discretized scheme we let the number of cells along a coordinate axis be N, so that
the total number of cells in the global domain is 6 x N2. Note that the equi-angular cubed-sphere
grid is orthogonal only at the center of each panel (6 points) elsewhere it is a non-orthogonal
curvilinear coordinate.

3.2. Patch boundaries

One advantage of the cubed-sphere geometry is that the interior of panels can be treated as in
Cartesian geometry. However, it is required to consistently couple the panel discretizations for
the global domain.

In this Section we first discuss how the panel boundaries are treated in CSLAM. The mecha-
nism for mass flux exchange between panels is then presented and finally we derive the spherical
line integral formulae.

3.2.1. Departure cells

All computations are performed on the gnomonic projection in (x, y, v)-coordinates so that
the algorithm for Cartesian geometry described earlier can be employed. As in the Cartesian case
we connect the departure points with straight line segments. As mentioned previously, by doing
so in the gnomonic projection the sides of the departure cells are great-circle arcs on the sphere.
For cells that stay completely on a panel when being transported by the flow (for one time-step)
the overlap areas ay, are defined exactly as in the Cartesian case. The question then becomes
how to deal with the cells that traverse the edges of the cube. Since the CSLAM scheme is fully
two-dimensional it is possible to treat cells that cross panel edges in a rigorous two-dimensional
manner that adds a minor complexity to the algorithm as compared to the Cartesian case.

For a particular panel v we introduce a halo zone around the panel and treat the halo cells on
the same projection as panel v (Fig. 9). An algorithm for identifying indices of neighboring cells
across panel sides is, for example, given in [27]. As an illustrative example consider a 1-cell halo
zone and a resolution of N, = 9. Fig. 9(a) shows the Eulerian cells on the gnomonic projection
for panel v (solid lines) as well as the halo cells (dashed lines). Since the sides of any grid cell
on the cubed-sphere are great-circle arcs also the halo cell sides are straight lines on panel v’s
gnomonic projection. The halo cell sides are, however, not necessarily aligned with panel v grid
lines.

We compute the departure points for the grid cell vertices on panel v as well as for the grid
cell vertices of the halo zone cells. The departure points connected by straight lines are shown
on Fig. 9(b).

12



@ (b) (©

-r r -r r -r r

Figure 9: (a) The grid lines for panel v as projected onto a plane (solid black lines) and the halo zone grid lines from
adjacent faces plotted on panel v’s projection (dashed lines). The boundary of panel v is marked with the thick solid
(red) line. (b) The departure grid corresponding to the arrival grid shown on (a) for the moving vortices test case using a
time-step of 5h. (c) The departure grid ‘clipped’ so it is limited to panel v.

Next we restrict the overlap areas ay, to panel v:

a;{\? = Ay N Qv 17

so that the panel v restricted departure area is given by

Ly
a? = [U ak(;] nav. (18)

t=1

The superscript (v) on the left-hand side of (17) and (18) refers to the fact that a;, and a; have
been restricted to panel v. The ‘clipping’ procedure is graphically shown on Fig. 9(c). Note
that by ‘clipping’ the parts of departure areas that are not located on panel v the departure cell
is no longer guaranteed to be a quadrilateral but can be a simply connected polygon. This does,
however, not add any particular complexity to the algorithm as compared to the Cartesian case.
It is noted that ag') with an appropriate width of the halo zone spans panel v without overlaps.

3.2.2. Panel mass exchanges

The procedure of mass-exchanges between panels is described by example. Consider the
situation when a departure cell is located over the edge of the cube, for example, as shown in
Fig. 10, where the departure cell corresponding to the arrival cell in the upper-right corner of
panel 1 span panels 1, 2 and 6 marked with patterns ‘hatched’, ‘hexagon’ and ‘zig-zagged’,
respectively, on Fig. 10a. The mass in ag) = a; N QW is computed by integration on panel 1
(‘hatched pattern’ on Fig. 10a). The masses in the parts of the departure area that overlap panel
2 and 6 will correspond to masses over areas that ‘entered’ from halo cells of these panels (Fig.
10b,d) and are computed on those panels. When updating the amount of mass ending up in the
arrival cell in question the masses computed on neighboring panels 2 and 6 must be added to the
mass over the ‘hatched pattern’ cell on panel 1. This is done similarly to the index association
used to identify neighbors to Eulerian cells on the panel sides. Note this procedure for handling
the sides of the panels allows for large CFL numbers as long as the halo zone is chosen wide
enough.

13
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Figure 10: A schematical illustration of how mass is exchanged between panels. (a) shows the gnomonic projection on
the inscribed cube of the Eulerian cells (dashed lines) and a departure cell on the edge of the inscribed cube (deformed
cell with vertices marked with filled circles) corresponding to an arrival cell located in the upper-right corner of panel
1 (unfilled circles connected with thick lines). (b-d) illustrate how the mass-exchange between the panels is handled in
logical space for panels 6,1 and 2, respectively. See text for more details.

14



3.3. Line-integrals on the cubed-sphere

Let ¥ be a vector field with contravariant components ¥, and ‘P, in the direction of the unit
basis vectors (e, e,),i.e. ¥ = ¥.e,+¥,e,. Following [10] Gauss-Green’s theorem for the vector
field ¥ in gnomonic coordinates can be written as

j“vnuvz_é (@, dy+ T, da], (19)
ae Oae
where
TR TS
= ————an = —,
o A1+y? ’ o V1 +x?

with p = /1 + x% + y2. Here, the divergence operator is given by

(20)

ox Oy |

V-‘I’:p3[—+

As usual, the contour integral is taken in the counter-clockwise direction around the boundary of
a given overlap area ay,.

Again we consider sub-grid-cell reconstructions of up to third order of the form (6) but now
X, and Y, refer to the x and y components of the Eulerian cell centroids defined by

1 1
Xp= — xdA, Y/=—f dA.
A Ar vy A/y

In practice, these quantities are computed by transforming the area integrals to line integrals via
Gauss-Green’s theorem.
In order to apply the Gauss-Green theorem to compute the integral of f;(x,y) over ay, we
need to determine a W7 so that
V) = ylyl, (21)

By choosing \T'SC’*J') = 0 this reduces to solving the equation

O —pi Xy
5 (1) = p—f, (22)
Note that even with the aforementioned simplification ‘f’y is still not unique as there is a family
of potentials W that satisfy (22), that is, we may freely choose an additive constant that will play
no role in the final calculation. Also, one may solve (22) in terms of either central angle or
gnomonic coordinates, which are connected via the relation (16). In either case one will obtain
identical expressions for the potentials:

— 1 y

P0.0) : = =, 23
©9(x, y) 7 o (23)

= I xy

Lo = = 24
y () T+ p (24)

— 1

PPy = -, (25)
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1 *y

P2O(x,y) = e (26)
PO(xy) = -2 +arcsinh , @7)
’ P 1+ x2

POy = -=, (28)

X

P
(see [10], for the corresponding formulas given in terms of central angle coordinates). Substitut-
ing the expressions (23-28) into (19) and taking the line-integrals yields the area integrals of the
terms xy/. For lines that are parallel to the coordinate axis the line-integrals can be computed
exactly (see [10]), that is, for lines of constant y:

1%, y) = arcsinh( Y ) , (30)
VI + x2
1%D(x,y) = arcsmh( al ] GDh
1 +y?

%9,y = -y arcsmh[ al ] - arccos[ al Y ], (32)
Vi+y? V1+x2 A/1+)?

1°P(x,y) = —x arcsmh( ) - arccos( al J ] (33)
VI+x2 /1 +)?

I(l’l)(x,y) = (34

where
169 (x, y)=— fq’y dx.

Since we have chosen ¥, = 0 lines of constant x give zero contribution which, in general, results
in having to compute half the number of inner line-integrals compared to a non-zero choice of
Y,.

For arbitrarily oriented lines closed form line-integration is not straight forward and it is most
likely computationally cheaper to evaluate the line-integrals with Gaussian quadrature. Herein
we compute lines parallel to the coordinate lines using exact integration (as with all inner inte-
grals) and all other line-integrals are approximated using Gaussian quadrature. As (23-28) are
rather smooth and slowly varying functions over a cell side, relatively low order quadrature is
sufficient (see results in Section 4).

Note that summing all outer line-integrals (except when departure cell sides coincide with
grid lines) yields zero since a line-integral along a particular side of a cell is exactly equal to
the line integral along the same side shared with the adjacent cell but with opposite sign. All
inner line-integrals do, however, not cancel since the sub-grid-cell distribution is discontinuous
across grid cell sides. The inner line-integrals collectively yield the total mass in all grid cells (to
machine precision).

3.4. Sub-grid-cell reconstructions on the sphere
The coeflicients for the mass-conservative reconstruction polynomial c( L) are described in
detail in [10] so only a brief overview will be given here. Basically the coefﬁments are defined
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in terms of a Taylor expansion

i ( o

t ax,‘ayj )( ) (l’ .]) * (0’ O)v (35)

and by choosing the constant term so that mass is conserved

—  1{8
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where m(['] ) are the area-averaged moments defined by

. 1 o
() v dA. 37
m; AA[fA(xy (37)

Obviously the derivatives in (35) must be estimated and several options were explored in [10].
We use a non-equidistant parabolic interpolation procedure in gnomonic (X,y) coordinates to
estimate the gradients (see [10] for details).

In order to compute coefficients near the panel boundaries information from neighboring
panels is needed, however, the average values on neighboring panels are not aligned with the
cells on the panel in question (see Fig. 9). To apply the discretization formulas the values in
the halo cells that would be obtained by extending the panel in question outwards are needed.
Here we use a one-dimensional non-conservative fourth-order non-conservative interpolation to
obtain halo cell values from the neighboring cell average values [10]. Note that this interpolation
procedure does not need to be conservative since any choice of coeflicients cE,”J) will yield mass-
conservation through (36).

3.5. Discretized transport equation on the cubed-sphere

The CSLAM transport scheme on the cubed-sphere in analogous to the Cartesian version

(15):
—n+1 Lk .o .o
U A= [ > c}””w;j;)}, (38)

=1 Livj<2

where the area of the regular (Eulerian) grid cells AA; can be computed using the formulas in
Appendix C of [28] (note that inverse cosine is missing on the right-hand side of equation C3 in
[28]). The sum enclosed in the square brackets on the right-hand side of (38) is the integral over
the overlap area ay,. The coordinates (Xkzn, Yee.n), B = 1, ..., Ny, for the sides of the overlap area
ay are determined using the procedure outlined in Section 2.1.1. The reconstruction coefficients

ci,'”) are given in the previous Section 3.4 and the weights are given by
0, if Xeenet = Xeens
N
(%) N, 7N .
wy = Z -2 [a),] ly;l J)(Xr,,yn)], it Ykent1 # Yiehs (39)
h=1

1S Xp s Yeewr1) = 1D oo s Yeen)s i Yeens1 = Yeens
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where N, is the number of Gaussian quadrature points, (x;,y,) are the quadrature points and w;,,
are the Gaussian weights. The line-integrals along constant x lines give no contribution (first line
in equation 39), the outer segments are computed integrating (23-28) with Gaussian quadrature
(second line in equation 39) and the remaining inner segments are computed exactly (third line
of equation 39) using (29-34). Note that all segments for the overlap area ay, sum up to one
number per reconstruction coefficient c(' D

4. Results

In order to validate new advection schemes it is customary to use two types of tests which
consist of solid-body rotation and deformational flow. For both the Cartesian and spherical ge-
ometry cases of CSLAM, two standard test-cases with known analytic solution are considered.
To compare the performance of CSLAM with other published results the following standard error
measures are used:

RMS = (40)
L, = 41)
L = (42)
leo (43)

where I(-) is the global integral
N
1$) = ) U AA
=1

and i, is the average density over the grid cell with area AA,. Common practice in the literature
is to use the point value at the cell center to represent the cell average although it might be
argued that for finite-volume methods it would be more consistent to integrate the ‘exact’ solution
over each cell. [29] found (for their scheme) that the conclusions drawn from the results are
1ndependent of the choice of w as long as the schemes are compared with the same choice for
w in a consistent manner. As will be shown in the Cartesian test cases this is also the case for
CSLAM so error measures based on both representations of w are used in the Cartesian test
cases. For comparison with published schemes the error measures for the test cases in spherical
geometry use the point value in the center of the cell for Je. We follow the convention that unless
explicitly stated otherwise Je is the point value at the cell center.

4.1. Experiments in Cartesian geometry

Here we consider two standard advection tests which are solid-body rotation and deforma-
tional flow. The results for the experiments in Cartesian geometry are compared to published
18



(b)

Figure 11: Surface plots of the CSLAM solution to the solid body advection of (a) a slotted cylinder and (b) a cosine hill,
respectively, after one revolution.

conservative semi-Lagrangian schemes: SLICE [29], CCS [30] and CISL [21]. The SLICE and
CCS schemes are cascade schemes in which the two-dimensional transport problem is cast into
two one-dimensional sweeps; one in a coordinate direction and the other along the deformed
Lagrangian coordinate that is initially orthogonal with the first sweep. The CISL scheme uses a
fully two-dimensional cell approximation but does not connect the departure vertex points with
straight lines but the cell is approximated with line-segments that are parallel to the coordinate
axis (see Fig. 2 in [22]). For this flow the CSLAM scheme uses an exact approximation to the
departure cells. For each sweep in the cascade schemes and in each coordinate direction of the
CISL and CSLAM schemes, the piecewise parabolic method is used [24]. There are different
versions of the SLICE scheme depending on which sub-grid-scale reconstruction method is used
for the cascade sweeps: The piecewise cubic method, SLICE(PCM), using cubic polynomials,
and SLICE(PPM) and SLICE(PSM) using the piecewise parabolic method and piecewise spline
method [31], respectively. Contrary to CISL the CSLAM scheme also includes a cross term
which is approximated as in [26].

4.1.1. Solid body advection of a slotted cylinder and cosine hill

For the solid-body rotation tests the Zelasak’s slotted cylinder [32] and cosine hill (see, e.g.,
[29]) are used. The flow rotates about the center of the domain with an angular velocity so that
one revolution is completed in 96 and 71 time steps for the slotted-cylinder and cosine-hill test
cases, respectively. A domain of 100x100 grid cells is used with grid spacing Ax = Ay = 1
(AA; = 1) for the slotted cylind test case . For the cosine hill a much coarser resolution of
32x32 grid cells is used. The specific parameters for the analytic solution (including the initial
distribution) are given in [29].

Fig. 11 show surface plots of the CSLAM solution after one revolution for the slotted cylinder
and cosine-hill test cases, respectively. Standard error measures are given in Table 1 and 2 as well
as the performance measures for other published mass-conservative semi-Lagrangian schemes.
All schemes use analytical trajectories.

First of all it is noted that the relative performance of the schemes is similar when comparing
error measures based on the same Ee (either point values or cell averages) and that the error
measures decrease when using the cell average for Je compared to using the point value. So the
conclusions are independent of the choice of Je in the error norms as long as the error norms are
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Solid-body rotation of slotted cylinder in Cartesian geometry

one revolution

¥°= point value at center

Ze = approximate cell average

Scheme RMS l] lz loo RMS ll lz loo
CSLAM 0.0537 0.1955 0.2257 0.6612 0.0426 0.1605 0.1828 0.5492
CSLAM* 0.0555 02070  0.2334  0.6657 0.0468 0.1724 0.1916  0.5566
SLICE(PSM) - 0.1917 0.2142 0.6342 - - - -
SLICE(PPM) - 0.2230 0.2363  0.6547 - - - -
SLICE(PCM) - 02223 02391 0.5843 - - - -
CCS - 0.1869 0.2311 0.6194 - - - -
CISL 0.0559 0.2088 0.2350 0.6669 0.0451 0.1744 0.1936  0.5592
six revolutions

CSLAM 0.0650 0.2723 0.2734  0.7070 0.0552  0.2385 0.2366 0.6656
CSLAM* 0.0681 0.2943 0.2863 0.7171 0.0586 0.2610 0.2512  0.6790
SLICE(PPM)  0.0701 - - - 0.0472 - - -
SLICE(PCM)  0.0673 - - - 0.0440 - - -
CISL 0.0692 0.2988 0.2908  0.7200 0.0598 02655 0.2564  0.6800

Table 1: Error norms for CSLAM and other published mass-conservative semi-Lagrangian schemes for the solid-body
rotation of a slotted cylinder. In columns 2-6 the error norms are based on u being the point value at the cell center
whereas columns 7-10 use four-point Gaussian quadrature for approximating the cell average value of the exact solution.
The error I, [, and I error norms for the SLICE and CCS schemes are from [31] and [33], respectively, and the
error norms for the CISL scheme have been computed by the authors. The acronyms PPM, PCM and PSM for SLICE
refer to the sub-grid-reconstruction method (Piecewise Parabolic Method, Piecewise Cubic Method and Piecewise Spline

Method, respectively).

Solid-body rotation of cosine hill in Cartesian geometry

one revolution

—e .
¢ = point value at center

—_e .
Y = approximate cell average

Scheme RMS A b oo RMS L b oo
CSLAM 12422 0.1950 0.1350 0.1598 11722 0.1798 0.1298 0.1582
CSLAM* 14680 0.2307 0.1596 0.1856 13840 0.2147 0.1533 0.1832
SLICE(PSM) - 0.1510 0.0854 0.0613 - - - -
SLICE(PPM) - 0.2444  0.1345 0.1165 - - - -
SLICE(PCM) - 0.2252 0.1217 0.1034 - - - -
CCS - 02160 0.2107 0.3283 - - - -
CISL 1.5416 02386 0.1676  0.1960 14543 02224 0.1610 0.2224
two revolutions

CSLAM 19639 0.3193 0.2135  0.2404 1.8530 02993  0.2052 0.2363
CSLAM* 22782 03697 0.2477 0.2763 21529 03489 0.2384 0.2714
SLICE(PPM)  1.9475 - - - 1.7456 - - -
SLICE(PCM)  1.5977 - - - 1.4057 - - -
CISL 23911 03816 0.2599 0.2915 22622 03602 02505 0.2826

Table 2: Same as Table 1 but for the solid-body rotation of a cosine hill.
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Figure 12: (a) and (b) show the exact solution and the CSLAM solution, respectively, after 16 time steps for the idealized
cyclogenesis problem.

computed consistently. CSLAM performs better than CISL in all test cases and error measures.
Compared to the cascade schemes CSLAM performs better or worse depending on the test case
and type of reconstruction function used. Note that the cascade schemes may in certain cases
have a more accurate representation of the diagonal variation since the second remapping is
along the Lagrangian coordinate lines and not along coordinate lines [22]. This might give
a better representation of diagonal variation than the cross terms in the fully two-dimensional
reconstruction used in CSLAM.

To assess the importance of the cross-term in CSLAM the test case was also run without it
(CSLAMY). As a results the error measures worsen by a few percent for the slotted-cylinder test
case and by approximately 15-19 percent depending on the error measure for the cosine-hill test
case.

4.1.2. Idealized cyclogenesis

The idealized cyclogenesis problem introduced by [34] is used as a standard scalar advec-
tion test [23]. The flow is highly deformational challenging other aspects of the scheme than
the ability to transport distributions as solid bodies. The test case consists of a circular vortex
that forces the initial condition to curl up into thin filaments with steep gradients (Fig. 12). A
complete test case description is, for example, given in [29]. Standard settings are used: Domain
size is 128x128 cells, Ar = 0.3125, Ax = Ay = 0.078125 and the test is run for 16 time-steps
(corresponding to 5 time units).

Standard error norms are given in Table 3. The fully two-dimensional CSLAM scheme is
slightly superior followed by CISL and SLICE in terms of standard error measures. Excluding
the cross term in CSLAM only has a minor effect on the accuracy.

4.2. Test cases on the sphere

We show results from three test cases in spherical geometry commonly used in the meteo-
rological literature. Unfortunately, various authors choose different parameters for the same test
cases. Therefore we run each case with different parameters to facilitate the comparison with
published schemes. The test cases are defined below.
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Idealized cyclogenesis in Cartesian geometry

U= point value at center ¥ = approximate cell average
Scheme RMS l] lz loc RMS l] lz loo
CSLAM 0.0642 0.0113 0.0646 0.8802 0.0272  0.0059 0.0275 0.3262
CSLAM* 0.0653 0.0116 0.0656 0.8777 0.0285 0.0062 0.0287 0.3363
SLICE(PPM) 0.0701 - - - 0.0317 - - -
SLICE(PCM) 0.0693 - - - 0.0311 - - -
CISL 0.0666 0.0119 0.0670 0.8737 0.0304 0.0065 0.0307 0.3598

Table 3: Same as Table 1 but for the cyclogenesis test case.

4.2.1. Solid-body advection of a cosine hill
The wind field that will transport a distribution along a great circle without distorting it is
given by [35]

u

ug (cos ¢ cos @ + sin ¢ cos A sin6), (44)

v —Uup sin¢ sin 4, 45)

where u and v are the velocity components in the longitudinal (1) and latitudinal (6) directions,
respectively, uy = 2nR/(12 days) and ¢ is the rotation angle (flow orientation parameter), and
R is the radius of the sphere. When ¢ = O the flow is oriented along the equator, and when
¢ = n/2 the flow is along the pole-to-pole direction resulting in cross-polar advection. The
flow field is non-divergent and translates the solid-body along a great-circle without incurring
any deformation so that the final solution after 12 model days should exactly match the initial
condition. The initial condition for the solid-body (or scalar field ) is a ‘cosine hill” defined as
follows [35]:

21 +cos(ZE)]. if Re<Re

A,0) =
W(.6) {0, if Ry >R,

where R, is the radius of the hill and R, is the great-circle distance between (A4, §) and the center
of the distribution (4, 8.),

R, = arccos [sin 8, sin 6 + cos 6. cos §cos(d — A.)],

and (1., 0.) = (37/2,0) so that initially the cosine hill is located at the center of an equatorial
panel (v = 4). When transported with ¢ = /4, the cosine hill passes through the discontinuous
regions containing two edges and four vertices of the cubed-sphere, and this is a more challenging
parameter setting for advection on the cubed-sphere than, for example, ¢ = 0 [36]. Note that the
cosine hill is only C° at the base of the hill.

Note that for the spherical semi-Lagrangian solid-body advection, the analytic trajectory ori-
gins (or departure point positions) (14, 6;) can be determined without the knowledge of wind
fields (u, v) if the angular velocity w, of solid-body rotation is known. In order to compute exact
trajectory origins, however, a flow dependent rotated spherical coordinate system (A’, 6’) with
respect to the regular (4, 6)-sphere is required. The exact trajectory origins are then given by
(A — wsAt, 8') on the rotated sphere which corresponds to the exact upstream position (A4, 67) on
the regular sphere (see [37] for details).
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Several different parameters for this test case are used in the literature. We will use the

following:

1. The cosine hill with dimensions R, = R/3 and ¢y = 1000. The time-step is Az = 1800s
so that one full revolution is completed in 576 time-steps (12 days). This setting is, for
example, used by [38]. The initial condition is shown on Fig. 15(d).

2. In the literature pertaining to semi-Lagrangian schemes (e.g., [21], [39]) the cosine-hill
dimensions are typically R, = R7x/64,and yy = 1 and the time-step is either Az = 4050 s
or Ar = 14400 s so that in 12 days one full revolution is completed in 256 or 72 time-steps.

4.2.2. Deformational flow tests on the sphere

Recently Nair and Jablonowski [37] introduced a new deformational benchmark test for ad-
vection schemes on the sphere. The test consists of two deforming and moving vortices located
at diametrically opposite sides of the sphere such that the flow is time dependent, non-divergent,
and the analytic solution is known at any time. This test combines the solid-body rotation test
[35] and the static deformational test [21]. It is referred to as the moving vortices test case and it
is gaining popularity in the literature [38].

The exact solution at any ¢ is given by [37]

Y(A',8,1) =1 —tanh d sin(A” — w, (@) 1|, (46)
Y

where (', 6') is the is rotated coordinate system with respect to the regular (4, 6) coordinates,
d = dycos# is the radial distance from the vortex center and w, is the angular velocity of the
vortices. For a smooth deformational flow, the parameters v = 5, dy = 3 are used [37]. The
scaled tangential velocity V; of the rotational motion is defined to be

V, = up ¥sech2(d) tanh(d), 47

where the scale factor uy = 27R/(12 days), which indicates 12 model days are required for the
full evolution of the vortices - the same time taken for a complete revolution around the sphere.
The angular velocity w,(6") varies with the vortex radial distance R d, and is defined by

V,J(Rd) if d#0
0

£ d=0. (48)

wr(g,) = {

which has the physical unit radians/seconds. The time dependent wind vector (i, v) for the mov-
ing vortex is given by

u(t) = up(cosf cosg +sinf cos A singp) +
R w, [sin 6.(¢) cos 6 — cos 6.(f) cos(A — A.(1)) sin 6] 49)
v(t) = —ugp sind sing + Rw, [cosO.(1) sin(d — A.(1))], (50)

where ¢ is the flow orientation parameter as in the case of solid-body rotation test and (A.(?), 6.(¢))
is the center of a moving vortex. The initial vortex center is located at (1.(t = 0),6.(t = 0)) =
(Ao, 6p) and the initial conditions for the vortex field is ¥(1’,8’,¢ = 0). Note that the static
vortices [21] are a special case of the moving vortices and can be obtained by ignoring the solid-
body rotation part (equation 49 and 50 with uy = 0). The detailed procedure for finding the
exact departure point positions (4, ) for the moving vortices is described in [37], and will not
be discussed herein. We consider both static and dynamic vortices for evaluating the CSLAM
algorithm.
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Solid-body rotation of cosine hill on the sphere
Scheme N, I I oo
CSLAM*-N 2 0.0949 0.0536 0.0332
CSLAM-N 2 00764 0.0414 0.0254
CSLAM-N 3 0.0765 0.0414 0.0255
4
5

CSLAM-N 0.0765 0.0414 0.0255
CSLAM-N 0.0765 0.0414 0.0255

Table 4: Standard error measures for the solid-body advection of a cosine hill for different orders of Gaussian quadrature
(Ng is the number of Gaussian quadrature points) for the outer line integrals as well as a version of CSLAM not including
the cross term in the reconstruction polynomial (CSLAM*). The trailing N refers to the non-monotone (unlimited)
version of CSLAM. The dimensions and parameters used here are: N, = 32 (2.8125° resolution at equator), ¢ = /4,
At = 4050s, 256 time-steps are used (one revolution), Yo = 1, R, = R7mw/64.

4.3. Results

4.3.1. Solid body advection of a cosine hill

First we investigate the impact on accuracy, in terms of the standard error norms defined in
(41-43), using different orders of Gaussian quadrature for the outer integrals as well as varying
the order of the reconstruction functions. For that we use the solid-body advection of a cosine-
hill test case at resolution N, = 32 and ¢ = /4, At = 4050s and a total of 256 time-steps (one
revolution). If N, is the number of Gaussian quadrature points the integration is exact for poly-
nomials of order 2 N, + 1. Table 4 shows the error norms using 2 to 5 point Gaussian quadrature
and clearly shows that two-point Gaussian quadrature is sufficient in terms of accuracy (similar
results were obtained for the other test cases). Hence we will use two-point Gaussian quadrature
as default. Convergence with increasing order of sub-grid-scale reconstruction function is shown
in Fig. 13. In the remainder of this paper we will use third-order reconstruction functions.

Also illustrated in Table 4 is the importance of the cross-term in the sub-grid-scale recon-
struction. In Cartesian geometry the cross-term only had a minor impact on the accuracy of
the CSLAM scheme for the slotted cylinder (Table 1) and deformational flow test case (Table
3). For the cosine-hill test case the impact was larger (approximately 15-19%). Not including
the cross term (for this particular test setting) in the reconstruction function (CSLAM™) in the
cubed-sphere version of CSLAM increases error measures /;, I, and /., by approximately 20%,
23% and 30%, respectively. This result is due to the fact that even for solid-body rotation the
cells entering from neighboring panels are naturally skewed (Fig. 9) even though the Lagrangian
cells on the sphere are simply translated (and not deformed or rotated).

For the solid-body rotation of a cosine hill negative undershoots appear without the applica-
tion of monotone or positive definite filters as shown in Fig. 14(a). Following [10] we ensure
monotonicity in the reconstruction function by employing the simple monotone filter of [40] that
scales the sub-grid scale reconstruction function so that its minimum and maximum values do not
exceed the cell-averages of the neighboring cells. The unlimited versions for the CSLAM scheme
use appended acronym ‘N’ and monotone versions use ‘M’. When applying the monotone fil-
ter the negative undershoots disappear completely (Fig. 14b) demonstrating that the monotone
limiter is "clipping’ the spurious oscillations. The accuracy is, in general, slightly decreased in
terms of standard error measures (Figl5a-c) with [, being degraded the most.

A concern of every scheme implemented on a spherical grid is if the grids strong or weak
singularities influence the solution adversely. For schemes defined on a regular latitude-longitude
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Figure 13: Standard error norms for the solid-body advection of a cosine hill for different orders of reconstruction
function. Settings are as in Table 4.

grid it is standard practice to let a distribution be advected across the strong singularities (poles)
and look for possible spurious effects introduced by the converging meridians. For the cubed-
sphere there are 8 weak singularities at the vertices of the inscribed cube. Therefore solid-body
advection is performed with ¢ = 7/4 and ¢ = 71/4 +0.05 so that a distribution initially located in
the center of a panel passes over the vertices of the inscribed cube. The latter rotation angles are
to avoid symmetry (Table 5). The time evolution of the standard error norms as the cosine hill
passes over the vertices of the inscribed cube (¢ = 7/4) are shown on Fig. 16 for the unlimited
and monotone scheme. No obvious noise is generated by the weak singularities of the cubed-
sphere grid.

Since the scheme being described herein is in the category of finite-volume semi-Lagrangian
algorithms its performance compared to published schemes in this category is discussed. Here
we compare with CISL of [21], CCS of [30] and [41], and SLICE of [39] which are all im-
plemented on a regular latitude-longitude grid. Table 5 shows that the schemes implemented
on a regular latitude-longitude grid are almost twice as accurate in terms of /;, [, and /., when
performing solid-body advection along the equator compared to advection across the poles. In
other words, there is a large dependence on the rotation angle ¢. For the cubed-sphere scheme
there is little dependence on ¢ and the accuracy when using the same resolution at the equator
is comparable to the CISL, SLICE and CCS schemes. It should be noted, however, that for a
pure zonal flow the CISL, CCS and SLICE schemes defined on a regular latitude-longitude grid
reduce to one dimension and there will be no mass-transport in the 6-direction. For a scheme
defined on the cubed-sphere grid, however, the coordinate lines are not aligned with small circles
and consequently this grid (as well as other non-traditional grids such as icosahedral grids) will
not preserve a zonal flow exactly since there is a spurious transport in the 6-direction (see, e.g.,
[42]).

Also note that the number of degrees of freedom is less for the cubed-sphere scheme com-
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Figure 14: Numerical solution at 1.875° resolution at the equator (N, = 48) for the solid body advection of a cosine hill
with radius R. = R/3 and amplitude ¥ = 1000 after one full revolution completed in 576 time-steps of 1800s each. (a)
and (b) show the solution without and with the application of a monotone limiter, respectively. The flow is oriented with
¢ = m/4 so that the cosine hill passes over the edges of the cubed sphere. These settings are identical to those used in
[38].

pared to the schemes defined on a regular latitude-longitude grid when both grids have the same
resolution at the equator. More precisely, the ratio between the number of grid points on the
regular latitude-longitude grid and the cubed-sphere grid both having the same resolution at the
equator is 4/3.

The standard error measures as a function of resolution are shown on Fig. 15 for the solid-
body rotation using the same settings as [38] (At = 1800s) and [43] (At = 4050s), respectively.
The average convergence rates (e.g., [30]) for the unlimited scheme are better than second-order
(2.85,2.48 and 2.25 for [, I, and [, with Az = 1800s, respectively), but with the application of the
monotone filter the I, convergence rate drops slightly below second-order (1.87) while /; and /,
are not affected and improved slightly (2.85,2.55), respectively. Obviously the accuracy is better
when using a longer time-step since less remappings are needed to complete one revolution.

To demonstrate the schemes ability to transport with large Courant numbers, the solid-body
rotation test case is run with a much larger time-step than used above. Following [21] a time-step
of 14400s is used so that one revolution is completed in 72 time steps. To compare with literature
a rotation angle of ¢ = n/2 is used. The error measures for CISL and CSLAM are comparable
(Table 6).

4.3.2. Deformation flow test cases

The solid-body rotation test case only addresses the ability of a scheme to translate a dis-
tribution along a great circle. The vortices test cases are formulated to address the schemes
performance under strong deformational flow conditions. First the static vortices test case re-
sults are discussed. To compare with CISL and CCS the vortex is centered near the pole (1yp =
m+0.025,6) = m/2.2) and a long time-step of 4.5/ is used at a 2.8125° resolution at the equator
(N. = 32). Again the error measures for all schemes are comparable although the cubed-sphere
scheme uses fewer cells in the polar areas (Table 7).

To challenge the cubed-sphere scheme the center of the vortex is placed near the corner of
the inscribed cube (1y, 8yp)=(r — 0.8, 7/4.8) (Fig. 17). The closest corner of the inscribed cube
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Figure 15: (a-c) Normalized error norms /1, [, and /., respectively, as a function of resolution for the solid body advection
of a cosine hill (R, = R/3, Yo = 1000, ¢ = m/4) after one full revolution completed using the non-monotone scheme
with at time-step of 1800s (triangles) and 4050s (unfilled squares) as well as the monotone scheme with A = 1800s. The
solid line below the other error norm curves is a reference line with slope corresponding to the average convergence rate.
(d) shows the initial condition (cosine hill in center of panel) and the exact solution after 44h (cosine hile over inscribed
cube edge).
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Figure 16: Time evolution of the normalized error norms (/1, [, [« are solid, dashed and dotted lines, respectively) for
solid-body advection of a cosine hill at 1° (N, = 90) resolution at the equator for the (a) unlimited scheme (N) and (b)
scheme with a monotone limiter (M). All settings are as in [38] (see their Fig. 3), that is, the hills radius is R, = R/3, its
amplitude is Yo = 1000, the time-step is Az = 1800s and the rotation angle is ¢ = /4 so that the hill passes over four
corners of the cubed sphere. One full revolution is completed in 576 time-steps.
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Solid-body rotation of cosine hill on the sphere

=0 p=n/4
Scheme N b loo L b loo
SLICE(PSM)-N  0.050 0.034 0.027 0.059 0.033 0.022
SLICE(PSM)-M 0.027 0.019 0.018 0.029 0.020 0.025
SLICE(PPM)-N  0.070 0.045 0.035 0.083 0.046 0.031
SLICE(PPM)-M 0.101 0.095 0.115 0.078 0.086 0.159
SLICE(PCM)-N 0.046 0.029 0.022 0.067 0.035 0.024
SLICE(PCM)-M 0.038 0.024 0.017 - - -

CISL-N 0.051 0.035 0.032 - - -
CISL-M 0.094 0.091 0.108 - - -
CSLAM-N 0.079 0.046 0.034 0.076 0.041 0.025
CSLAM-M 0.075 0.075 0.141 0.048 0.060 0.130
p=mn/2 ¢=n/2-0.05
Scheme l] lz loo l] lz loc

SLICE(PSM)-N  0.079 0.054 0.049 0.077 0.052 0.043
SLICE(PSM)-M  0.057 0.046 0.043 0.056 0.045 0.044
SLICE(PPM)-N  0.103 0.065 0.055 0.111 0.067 0.050
SLICE(PPM)-M  0.109 0.102 0.118 0.109 0.102 0.124
SLICE(PCM)-N  0.079 0.049 0.042 0.079 0.048 0.039
SLICE(PCM)-M 0.058 0.040 0.037 0.056 0.039 0.041

CISL-N 0.063 0.046 0.048 - - -
CISL-M 0.084 0.084 0.109 - - -
CCS-N 0.054 0.042 0.065 - - -
CCS-M 0.076 0.082 0.129 - - -
CSLAM-N 0.079 0.046 0.034 0.079 0.046 0.034
CSLAM-M 0.075 0.075 0.141 0.070 0.069 0.133
¢ =mn/4-0.05 ¢ =n/4+0.05
Scheme l] lz loo l] lz loc
CSLAM-N 0.077 0.041 0.026 0.077 0.041 0.026
CSLAM-M 0.048 0.060 0.131 0.048 0.060 0.131

Parameters: ¥ = 1, N, = 32 (2.8125° at equator), R, = R 7r/64, At = 4050s.

Table 5: Comparison of error measure norms from published conservative semi-Lagrangian schemes (CISL of [21], CCS
of [30] and [41], and SLICE of [39, 44, 31]) for the solid-body rotation of a cosine hill with maximum amplitude ¥ = 1
for different values of rotation angle ¢ after one complete rotation (At = 4050, 256 time steps). The unlimited schemes
use appended acronym ‘N’ and monotone schemes use ‘M’ . All other than the CSLAM scheme use a regular latitude-
longitude grid with a 2.8125° resolution. CSLAM uses N, = 32 corresponding to a 2.8125° resolution at the equator
for the cubed sphere. Obviously the number of degrees of freedom is not identical for the latitude-longitude schemes
compared to the cubed-sphere CSLAM scheme (the ratio between the two is 4/3).
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p=m/2
Scheme L I loo
CISL-N 0.037 0.031 0.033
CISL-M 0.040 0.042 0.068
CSLAM-N 0031 0018 0.012
CSLAM-M 0.029 0.033 0.070

Table 6: Same as Table 5 but with a larger time-step At = 14400s (one revolution in 72 time-steps).

Scheme [ I loo

CISL-N 0.0011 0.0025 0.0144
CISL-M 0.0013 0.0031 0.0211
CCS-M 0.0013 0.0033 0.0220
CSLAM-N 0.0013 0.0026 0.0137
CSLAM-M 0.0013 0.0027 0.0141

Table 7: Error measures for the smooth deformational flow test case with the center of the vortex near the pole for CISL,
CCS and CSLAM. Parameters used are: t = 3, 32 time steps (At = 4.5h), 4o = 7 +0.025,6y = n/2.2), N, = 32.

is located at 1 = 37/4 and 0 = atan(V2/2) ~ 0.615 so the center of the vortex is offset by
approximately 0.8° in longitude and 2.2° in latitude. Again, we look for any noise introduced
by the weaker singularities of the cubed-sphere grid. To compare with literature, the solution
and differences between the analytic and numeric solution at day 6 are shown on Fig. 17(c-f) at
resolutions N, = 80 (as used in [38]) and N, = 32 (as used in [43]). No visible noise is generated
by the scheme as the error is clearly related to gradient errors in the sub-grid-scale reconstruction
function rather than the patch boundaries. The convergence rates as computed in [38] are shown
on Fig. 18. The CSLAM scheme achieved better than second-order convergence with respect to
all error measures.

Combining solid-body advection and the deformational flow field defines the moving vortex
test case considered last. With a rotation angle of ¢ = 7/4 the vortex passes over the corners of
the cubed-sphere. Again we show convergence plots (Fig. 19), difference plots (Fig. 20) and the
time evolution of the error measures (Fig. 21). We find better than second-order convergence for
CSLAM-N (2.51,2.59 and 2.53 , respectively) and a degradation in accuracy when applying the
monotone filter (Fig. 19). To compare with [38] and investigate the impact of the monotone filter
on accuracy we show difference plots (Fig. 20) and time evolution of error measures (Fig. 19) at
resolution N, = 80. Errors are mainly associated with the sub-grid-cell reconstructions and the
edges/corners of the cubed-sphere are not visible in the plots.

5. Summary and Conclusions

In this paper we have developed a conservative semi-Lagrangian finite-volume multi-tracer
transport scheme on the cubed-sphere grid. It is based on semi-Lagrangian upstream tracking of
grid cells; more precisely, we compute upstream trajectories for cell vertices and the upstream
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Figure 17: Results for static vortices test case. (a) shows the initial condition and (b) the analytic solution at day 6. (c)
and (e) are the numerical solutions at resolutions 1.125° (N, = 80) and 2.8125° (N, = 32) at the equator, respectively.
(d) and (f) are the corresponding plots with differences between the exact and numerical solutions.
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Figure 18: Normalized error norms (a) /;, (b) /2 and (c) I as a function of resolution for the static vortices test case at
day 6 (completed in 144 time-steps of 3600s each) and (d) the exact solution at day 6. The vortices are situated near
two edges of the cubed-sphere (offset by approximately 2°), that is, the origin of the rotated coordinate is located at
(Ao, 60)=(r — 0.8,7/4.8). These settings are identical to those used in [38]. The solid line with filled circles along it on
plot (a-c) is the error norm for the unlimited scheme whereas the dashed line with unfilled triangles is for the monotone
version of the scheme. The solid line below the other curves is a reference line with slope corresponding to the average
convergence rate of the unlimited scheme which is (a) 2.04, (b) 2.07 and (c) 2.08, respectively.
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Figure 19: Same as Fig. 19 but for the moving vortices test case. Settings are as in [38] and the traditional semi-
Lagrangian tests in [37], that is, Az = 1800s and Az = 3600s (one revolution completed in 576 and 288 time steps),
respectively, and ¢ = /4. (d) shows the analytical solution after a quarter revolution.
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Figure 20: (a) and (b) show the CSLAM-N and CSLAM-M solutions for the moving vortices test case after one rev-
olution, respectively, with settings as in [38] (¢ = m/4, equatorial resolution 1.125° (N, = 80), At = 1800s and 576
time-steps for one revolution). (c) and (d) are as (a) and (b) but for the difference between the numerical and exact
solutions.
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Figure 21: Time evolution of the normalized error norms (/1, /2, I are solid, dashed and dotted lines, respectively) for
the moving vortices test case with N, = 80 (a) unlimited scheme (CSLAM-N) and (b) scheme with a monotone limiter
(CSLAM-M). All settings are as in Fig. 20 and [38] (see their Fig. 12).
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Lagrangian cells are defined by connecting the vertex points with great-circle arcs. Having de-
fined the upstream Lagrangian cells the transport problem is effectively reduced to a remapping
problem, that is, to compute the mass enclosed in the deformed Lagrangian cells given the cell
average values in the regular Eulerian cells. The remapping problem is solved by converting
the area integrals into line-integrals through the application of Gauss-Green’s theorem. Line-
integrals along grid lines are computed exactly while integrals along arbitrary lines are com-
puted using Gaussian quadrature. Two quadrature points were found to be sufficient when using
biquadratic polynomial reconstruction functions.

The fully two-dimensional nature of this scheme permits a rigorous treatment of the cubed-
sphere edges and corners. An upstream cell located over an edge of the cubed sphere is parti-
tioned into parts overlapping just one face of the cube and mass enclosed in these sub-cells are
computed separately on each panel.

The new scheme has been extensively tested in both Cartesian and spherical geometry us-
ing standard test cases. It has been demonstrated that the scheme allows for long time steps
and is competitive with other published schemes in terms of standard error norms. For example,
CSLAM was found to be competitive with the recently developed cubed-sphere transport scheme
presented in [38]. The importance of the cross term in the third-order reconstruction polynomials
was also investigated. Even for solid-body advection on the sphere, where the Lagrangian cells
are simply translated (and not deformed or rotated), the CSLAM scheme error measures could be
improved by up to approximately 30% when including the cross term in the reconstruction func-
tion. The convergence rates for the scheme was shown to be better than second order with respect
to all error norms and test cases. A monotone option is also available for the CSLAM scheme,
and a flux-form version of CSLAM and improved limiters will be presented in a forthcoming
paper.

For one tracer, the computational cost per degree of freedom is higher for CSLAM than for
the schemes based on a regular latitude-longitude grid discussed herein due to the geometric
complexity of CSLAM (computation of weights). However, the weights can be reused for each
additional tracer and hence it is expected that for a certain number of tracers CSLAM will become
computationally competitive. The virtue of CSLAM is its flexibility and generality at affordable
cost (given the number of prognostic variables to be transported is large enough) rather than
efficiency per degree of freedom.
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