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Three-dimensional advection tests are required to assess the ability of the
transport schemes of dynamical cores to accurately model tracer transport
on the sphere. A set of three tracer transport test cases for three-dimensional
flow is presented. The tests focus on the physical and numerical issues that are
relevant to three-dimensional tracer transport; positivity preservation, inter-
tracer correlations, horizontal-vertical coupling, order of accuracy, and the
choice of vertical coordinate. The first test is a three-dimensional deformational
flow. The second test is a Hadley-like global circulation. The final test is
a solid body rotation test in the presence of rapidly varyingorography. A
variety of assessment metrics, such as error norms, convergence rates and
mixing diagnostics are used. The tests are designed for easyimplementation
within existing and developing dynamical cores and have been a cornerstone of
the 2012 Dynamical Core Model Intercomparison Project (DCMIP). Example
results are shown using the transport schemes in two dynamical cores; the
Community Atmosphere Model finite-volume dynamical core (CAM-FV) and
the cubed-sphere finite-volume MCore dynamical core.
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1. Introduction

Significant research has gone into the development of state-of-the-art transport schemes on the sphere, for use in weather
and climate models. Tracer transport is performed by the dynamical core, the fluid dynamics component of a general
circulation model (GCM), and is very important in atmospheric models. The transport scheme is used to advect the
many tracer species that are used in climate models and climate prediction studies (Lamarqueet al. 2008). It is strongly
linked to the chemistry module, with errors due to the numerical transport scheme having a large impact on errors in
chemistry models and certain physical parameterizations (Pratheret al.2008; Ovtchinnikov and Easter 2009; Plumbet al.
2000). There are many different numerical methods for tracer transport (for example, finite-volume (Lin and Rood 1996),
discontinuous Galerkin (Nairet al.2005), semi-Lagrangian (Zerroukatet al.2002) - see Rood (1987) for a review), used
on different spherical grids (Staniforth and Thuburn 2012), that are employed by dynamical cores. Consequently, it is
essential to be able to assess and evaluate these numerical methods.

To assess the characteristics of the numerical transport scheme, testing is performed on idealized test cases. This requires
a prescribed velocity component, and preferably a known solution. Although there are many two-dimensional horizontal
tracer test cases on the sphere, including simple solid bodyrotation tests (Williamsonet al. 1992), static and moving
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2 J. Kent et al.

vortices (Nair and Machenhauer 2002; Nair and Jablonowski 2008), and deformational flows (Nair and Lauritzen 2010;
Kent et al. 2012b), very few fully three-dimensional tracer transporttests have been offered. Examples include solid
body rotation with a sinusoidal vertical velocity (Hubbard2002) and the three-dimensional advection tests of Zubovet
al. (1999). Other test scenarios assess tracers in either idealized adiabatic flows (Whiteheadet al. (2013) and Kentet al.
(2012a)) or a full model simulation (Raschet al.2006). This paper aims to suggest a set of three complex three-dimensional
transport test cases with prescribed velocities on the sphere. These test cases are specifically designed to test the properties
that are relevant to the design of physically realistic transport schemes; namely positivity and monotonicity, preservation of
existing tracers correlations (see Thuburn and McIntyre (1997)), horizontal-vertical coupling, and the transport oftracers
over orography.

The advection process can be represented in many forms. For agiven tracer mixing ratioq, the advection equation can
be expressed as

Dq

Dt
= 0, (1)

∂q

∂t
+ ~v · ∇q = 0, (2)

in a Lagrangian and Eulerian framework, respectively. Here, ~v symbolizes the three-dimensional wind vector,∇ is the
three-dimensional gradient operator andD/Dt stands for the material time derivative.

If an advection scheme utilizes the conservation form

∂

∂t

(

ρ q
)

+∇ · (~v ρ q) = 0, (3)

the air densityρ needs to be present so that the equation represents a tracer mass density. The mass continuity equation
that is solved forρ is given as

∂ρ

∂t
+∇ · (~v ρ) = 0. (4)

However, the tests in this paper are designed so that(~v ρ) is a divergence-free field, i.e. the continuity equation is
analytically satisfied, even without the constraint of constant density, with

∂ρ

∂t
= 0. (5)

This paper describes the initial state, velocity fields, anddiagnostics of three new three-dimensional tracer transport
test cases. These tests are designed to return the tracers totheir initial poisition at the end of the simulation, thus
providing a final reference solution. This analytic reference solution is a key advantage of this test suite and allows the
straightforward calculation of error norms. These tracer transport tests have been developed for the 2012 Dynamical Core
Model Intercomparison Project (DCMIP)†. We provide example results from the transport schemes of two dynamical cores
that participated in DCMIP: the Community Atmosphere Modelfinite-volume dynamical core (CAM-FV, Lin 2004) and
the cubed-sphere finite-volume MCore dynamical core (Ullrich and Jablonowski 2012a). Section 2 provides an overview
of the general setup of the test cases and a description of thetwo dynamical cores. The three test case descriptions and
example results are in sections 3, 4 and 5. We also provide Fortran initialization routines in the supplementary information
so as to ease practical implementation.

2. Overview of The DCMIP Tracer Transport Test Cases Setup

This section describes the general setup for the three-dimensional passive advection tests. Each test makes use of
prescribed wind fields. We apply time reversal (overlaid with a solid-body rotation) to return the tracer to its original
position in two of the suggested tests, while the third test utilizes a two-dimensional solid-body rotation and returnsthe
tracer to its initial position after one revolution around the sphere. This ensures that an analytical solution is knownat the
end of the simulation for each test.

The tracer transport tests are designed to be implemented directly into the dynamical cores of GCMs. The first test, 1-1,
is a three-dimensional flow which extends the two-dimensional deformation test proposed by Nair and Lauritzen (2010).
The second test, 1-2, focuses on the horizontal-vertical coupling of the advection scheme, which is an important issue in
atmospheric modeling as many dynamical cores are horizontally-vertically dimension split. The final test, 1-3, uses three-
dimensional flow in the presence of orography, and is used to test models that utilize terrain-following vertical coordinates.
The numbering convention of the test cases (1-1, 1-2 and 1-3)is based on the numbering of the tests used at DCMIP in
2012. As mentioned before, the tests make use of prescribed three-dimensional velocities and an isothermal temperature
field. Consequently, dynamic updates of the velocity, temperature and pressure fields need to be disabled, and prescribed
(analytic) updates of the time-dependent velocity fields need to be included into the model code for test 1-1 and 1-2. Test
1-3 utilizes time-independent velocities that can be provided via the initial data set. A list of physical constants which are
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DCMIP Tracer Tests 3

Table 1. A list of physical constants used herein.

Constant Description Value
a Radius of the Earth 6.37122× 106 m
g Gravity 9.80616 m s−2

p0 Reference pressure 1000 hPa
cp Specific heat capacity of dry air 1004.5 J kg−1 K−1

Rd Gas constant for dry air 287.0 J kg−1 K−1

κ Ratio ofRd to cp Rd/cp = 2/7
ztop Height position of the model top 12000 m
ptop Pressure at the model top ≈ 254.944 hPa
T0 Isothermal atmospheric temperature 300 K

used throughout this paper is given in Table 1. Constants which are specific to each test case are similarly tabulated at the
beginning of each section.

The analytic initial conditions are described in terms of latitudeϕ, longitudeλ, and either heightz or pressurep. The
pressure field is prescribed and needs to remain constant forthe duration of the simulation except if floating Lagrangian
pressure-based coordinates are used in the vertical direction (Lin 2004) as explained in Appendix A. Advection schemes
in the latter framework may require prescribed variations of the pressure thicknesses∆p between two model interface
levels to account for deforming layers. Such a deformation for floating Lagrangian coordinates will only be valid for one
time step before a vertical remapping algorithm restores the initial pressure values at the model levels.

The pressure field is given by

p(λ, ϕ, z, t) = p0 exp

(

−gz

RdT0

)

, (6)

whereT0 ≡ 300 K is the isothermal atmospheric temperature which yieldsT (λ, ϕ, z, t) = T0 for all three test variants,
Rd is the gas constant for dry air, andg symbolizes the gravity. The reference pressure atz = 0 m is set top0 = 1000 hPa.
The surface pressureps, which may be needed for initializing hydrostatic models, can be computed when evaluating (6)
at the surface elevationzs which is specified later. Note that (6) can also be expressed as

z(λ, ϕ, p) = H ln
(p0
p

)

(7)

which utilizes the scale height

H ≡
RdT0
g

. (8)

Equation (7) transforms the pressure into the heightz in an isothermal atmosphere.
For models that solve the advective form of the transport equation (2) the density does not require consideration, but for

models that solve the conservative form (3) air density is required. In order to avoid solving a second transport equation
for ρ and to simplify the test setup, the stratified density is defined as

ρ(λ, ϕ, p) =
p

Rd T0
, (9)

ρ(λ, ϕ, z) =
p0

RdT0
exp

(

−z

H

)

, (10)

for models with pressure-based or height-based coordinates respectively. For all tests the density should be held constant
(∂ρ/∂t = 0) for the duration of the experiment. The velocity field for each test is chosen to satisfy the non-divergent
condition exactly, i.e. in vertical pressure-coordinatesit yields

1

a cosϕ

[

∂u

∂λ
+

∂

∂ϕ
(v cosϕ)

]

+
∂ω

∂p
= 0, (11)

whereu is the zonal velocity,v the meridional velocity,ω the vertical pressure velocity, anda is the radius of the Earth.
In height coordinates the relationship is given by

1

a cosϕ

[

∂(ρu)

∂λ
+

∂

∂ϕ
(ρv cosϕ)

]

+
∂(ρw)

∂z
= 0, (12)

wherew is the vertical velocity. This will ensure that models with pressure-based and height-based vertical coordinates
will resemble each other since isothermal conditions are used to determine the placement of the initial pressure levels. For

†For more information about DCMIP and its associated two-week workshop in the summer of 2012 go to http://earthsystemcog.org/projects/dcmip-2012/
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4 J. Kent et al.

models that utilize the conservation form of the advection equation, it may be beneficial to run each of the tests with the
optional tracer field

q0(λ, ϕ, z) = 1, (13)

which tests how well the model is able to satisfy the three-dimensional continuity equation (4) and (10).
Normalized error norms are used in all three sets of tests. They are defined by

ℓ1(q) =
I [|q − qT |]

I [|qT |]
, (14)

ℓ2(q) =

√

I [(q − qT )2]

I [q2T ]
, (15)

ℓ∞(q) =
max |q − qT |

max |qT |
, (16)

whereqT is the tracer field at the initial time (due to periodicity of the test cases, this is also the exact solution). HereI
denotes an approximation to the global integral, given by

I[X ] =
∑

all elementsj

XjVj , (17)

whereVj denotes the volume of elementj.

2.1. Brief Description of the Dynamical Cores

CAM-FV

The Community Atmosphere Model finite-volume dynamical core is an operational dynamical core in the National Center
for Atmospheric Research’s Community Earth System Model (Nealeet al.2010), and is described in detail in Lin (2004).
The horizontal tracer transport component is based upon theflux-form semi-Lagrangian method as described in Lin and
Rood (1996). A floating Lagrangian coordinate is used in the vertical, which is periodically remapped to a fixed grid.
This means that CAM-FV solves the transport equation as given by (52) in Appendix A. In the presence of orography,
terrain following hybrid coordinates are used (Simmons andBurridge 1981). Variations of the PPM algorithm (Colella and
Woodward 1984) are used both to calculate the numerical fluxes in the Lin-Rood scheme, and in the vertical remapping. A
filling algorithm is also present, to prevent any negative tracer values. CAM-FV makes use of the latitude-longitude grid.

MCore

MCore, described by Ullrich and Jablonowski (2012a), uses high-order upwind finite-volume methods (Ullrichet al.
2010; Ullrich and Jablonowski 2012b) on the cubed sphere grid (Rancicet al. 1996). A fourth-order three-dimensional
discretization which captures the horizontal cross-termsis used. Note that this differs from the second-order vertical
discretization described in Ullrich and Jablonowski (2012a). The finite-volume method provides implicit diffusion through
a modified version of the low-speed AUSM+up Riemann solver. A filter is used to ensure positivity (notethat a monotonic
filter is optional, but not used in the tests in this document). Panel edges of the cubed-sphere grid are treated using a
fourth-order remapping scheme. The vertical coordinate uses the Gal-Chen (Gal-Chen and Somerville 1975) formulation.
As MCore solves the flux-form of the equation (3) for tracer density, division byρ must take place to output the mixing
ratio q. Unless stated otherwise, for MCore the tracer density is divided by the analytical density (10) (which remains
constant with time), not the numerical density that can be calculated by usingq0 (which will not remain constant with
time due to numerical error). The solution from MCore is analyzed on the native cubed sphere grid, but interpolated to the
same latitude-longitude grid as CAM-FV for visualization.

3. Test 1-1: Three-Dimensional Deformational Flow

The three-dimensional deformational flow test is an extension of the two-dimensional approach of test case 4 by Nair
and Lauritzen (2010), with an additional prescribed vertical wind velocity and corresponding horizontally divergentwind
field. The test also provides a measure of the transport scheme’s ability to maintain non-linear tracer correlations, using the
mixing diagnostics developed by Lauritzen and Thuburn (2012). These mixing diagnostics are a method for determining
the nature of numerical mixing errors which are introduced by an advection scheme. These errors are of particular
importance in atmospheric chemistry modeling, since they represent important functional relationships between tracer
species (Plumb and Ko 1992; Thuburn and McIntyre 1997). The list of constants used in test 1-1 is given in table 2.

The test utilizes a translational longitude, defined by

λ′ = λ− 2πt/τ, (18)
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DCMIP Tracer Tests 5

Table 2. List of constants used for the three-dimensional deformational flow test case (Test 1-1)

Constant Value Description
τ 1036800 s Period of motion (here 12 days)
ω0 23000 π/ τ Maximum of the vertical pressure velocity in units Pa/s
b 0.2 Normalized pressure depth of the divergent layer
λc1 5π/6 Initial longitude of first tracer
λc2 7π/6 Initial longitude of second tracer
ϕc 0 Initial latitude of tracers
zc 5000 m Initial altitude of tracers
Rt a/2 Horizontal half-width of tracers
Zt 1000 m Vertical half-width of tracers

wheret denotes the elapsed time since the start of the simulation and τ denotes the period for the simulation to return to
its initial state. The vertical pressure velocity is specified as

ω(λ, ϕ, p, t) = ω0 sinλ
′ cosϕ cos

(

2πt

τ

)

s(p), (19)

where

s(p) = 1 + exp

(

ptop− p0

b ptop

)

− exp

(

p− p0
b ptop

)

− exp

(

ptop− p

b ptop

)

(20)

is a smooth tapering function that tapers the vertical velocity to zero at the top and bottom of the domain. Since pressure
and height surfaces are aligned, the pressure position of the model top,ptop, is

ptop = p(ztop), (21)

where pressure is determined by (6). In terms of the translational longitude, the horizontal zonal and meridional velocities
~u = (u, v) are given as the sum of a horizontal deformational component~ua = (ua, va) and a horizontally divergent
component~ud = (ud, vd),

~u = ~ua + ~ud. (22)

The deformational zonal and meridional wind components follow from Nair and Lauritzen (2010),

ua(λ, ϕ, p, t) =
10a

τ
sin2(λ′) sin(2ϕ) cos(πt/τ) +

2πa

τ
cosϕ, (23)

va(λ, ϕ, p, t) =
10a

τ
sin(2λ′) cos(ϕ) cos(πt/τ). (24)

The two-dimensional divergent wind component is given by

ud(λ, ϕ, p, t) =
ω0a

b ptop
cos(λ′) cos2(φ) cos

(

2πt

τ

)

[

− exp

(

p− p0
b ptop

)

+ exp

(

ptop− p

b ptop

)]

, (25)

vd(λ, ϕ, p, t) =0. (26)

The total velocity field is chosen to satisfy∇ · (~v ρ) = 0 exactly. The surface is flat withzs = 0 m, or equivalently surface
geopotentialΦs = 0 m2 s−2. The surface pressure is constant withps(λ, ϕ) = p0. Therefore, the vertical velocity for
models with verticalσ (Phillips 1957) or hybridσ-pressure (η) coordinates (Simmons and Burridge 1981) is

η̇(λ, ϕ, η, t) = σ̇(λ, ϕ, σ, t) =
ω

p0
, (27)

whereη andσ are given byη = σ = p/p0. Note that this formulation assumes that the reference pressure for the hybrid
η coordinate is set to 1000 hPa. Since there are neither time variations nor horizontal variations of the pressure field the
vertical velocity in height coordinates takes the simple form

w(λ, ϕ, z, t) = −
ω(λ, ϕ, p(z), t)

g ρ(z)
, (28)

with ρ given by the density equation (10).
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6 J. Kent et al.

Figure 1. Test 1-1 initial conditions: latitude-longitude plots of velocitiesua, ud, v andw at 4900 m.

The initial velocitiesua, ud, v andw are shown in Figure 1 at the 4900 m height level. Note that at this heightud is
two orders of magnitude smaller thanua, meaning that the horizontal velocities act almost identically to those in Nair and
Lauritzen (2010).

Four tracer mixing ratios are specified for this test. The first tracer field represents two cosine bells, and is specified as

q1(λ, ϕ, z) =
1

2
(1 + cos(πd1)) +

1

2
(1 + cos(πd2)) , (29)

wheredi (i = 1, 2) denotes the scaled distance functions,

di(λ, ϕ, z) = min

[

1,

{

(

ri(λ, ϕ)

Rt

)2

+

(

z − zc
Zt

)2
}]

, (30)

andri(λ, ϕ) (i = 1, 2) denotes the great circle distance,

ri(λ, ϕ) = a arccos (sinϕc sinϕ+ cosϕc cosϕ cos(λ− λci)) . (31)

The second tracer is chosen to assess the ability of the transport scheme to maintain a non-linear correlation with the first
tracer. By defining nonlinearly correlated tracer fields(q1, q2) = (χ, ψ(χ)), one can determine how well the numerical
scheme preserves these correlations over the duration of the simulation. The second tracer is thus initialized as

q2(λ, ϕ, z) = 0.9− 0.8q1(λ, ϕ, z)
2. (32)

The third tracer is used to assess the capability of a transport scheme to achieve monotonicity, and is set up as two slotted
ellipses

q3(λ, ϕ, z) =







1 if d1 < 1/2,
1 if d2 < 1/2,
0.1 otherwise,

(33)

with the additional condition:

q3(λ, ϕ, z) = 0.1 if z > zc andϕc − 1/8 < ϕ < ϕc + 1/8. (34)

The final tracer is chosen to investigate whether the linear sum of multiple tracers can be maintained by the transport
scheme (Lauritzen and Thuburn 2012). It is set up so that, in combination with the other tracer fields with weight (3/10),
the sum is equal to one

q4(λ, ϕ, z) = 1−
3

10
[q1(λ, ϕ, z) + q2(λ, ϕ, z) + q3(λ, ϕ, z)] . (35)

The top and middle plots of Figure 2 show the initial tracersq1, q2, q3 andq4 at the height level 4900 m. The bottom
plots of Figure 2 show latitude-height cross sections ofq1 andq3 at the longitudeλ = λc1. The plots are generated on a
1◦ × 1◦ resolution grid with60 vertical levels.
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DCMIP Tracer Tests 7

Figure 2. Test 1-1 initial conditions: latitude-longitude plots of tracersq1, q2, q3 andq4 at 4900 m, and latitude-height cross sections ofq1 andq3 at
the longitudeλ = λc1.

3.1. Grid Spacings and Diagnostics

For purposes of model intercomparison this test should be run at1◦ × 1◦ resolution (∼ 110 km equatorial grid spacing)
with 60 uniformly spaced vertical levels (in height coordinates) for12 days. For models using height levels a model top of
ztop = 12000 m is suggested, which leads to a vertical grid spacing of∆z = 200 m. This means that the model interfaces
are positioned at0 m, 200 m, 400 m, etc. and that the full model levels are placed at100 m, 300 m, 500 m, etc. From (6)
the height position of the model top corresponds toptop ≈ 254.944 hPa. Information on the placement of vertical levels
when hybrid-coefficients are used is discussed in Appendix B.

Normalizedℓ1, ℓ2 andℓ∞ error norms (equation (14)-(16)) should be computed for alltracers att = 12 days against
the initial conditions. For test 1-1, we have specified a tracer fieldq1(λ, ϕ, z) and a correlated fieldq2(λ, ϕ, z). We define
thecorrelation plotof q1 andq2 as the scatter plot obtained from plotting the mixing ratios(q1)k against(q2)k for each
cell k. For the given distribution, one will initially obtain the quadratic curve given by (32). As the simulation progresses,
the nonlinear correlation between these tracers will be lost due to numerical errors and so the scatter plot will drift from its
initial distribution. The correlation plot att = 6 days, the point of maximum deformation, reveals important information
on how well the scheme preserves these correlations. Lauritzen and Thuburn (2012) define three categories of numerical
mixing: Real mixing, ℓr, where the numerical mixing resembles physical mixing;Range-preserving unmixing, ℓu, where
the numerical unmixing is withing the initial data range; and Overshooting, ℓo, numerical unmixing which falls outside
the initial data range. These mixing diagnostics,ℓr, ℓu andℓo, given in Appendix C, should be computed forq1 andq2 at
t = 6 days. These mixing diagnostics should only be calculated for the 5 levels surrounding (and including) the4900 m
vertical level; this is to improve computational efficiency. The mixing diagnostics are described in detail by Lauritzen and
Thuburn (2012).

The final diagnostic concerns the ability of the transport scheme to maintain the sum of tracers. The tracerq4 is designed
such that the sum ofq4 and the other tracer fields with weight (3/10) is equal to one.Normalizedℓ1, ℓ2 andℓ∞ error norms
should be computed for this sum against the constant1. These error norms can be calculated at any time of the simulation,
as the sum should equal1 for all time.

3.2. Example Results

We present example results for test 1-1 using two dynamical cores; CAM-FV and MCore (see section 2.1). These results
are used to illustrate the characteristics of the test case and not for the purpose of model intercomparison. Figure 3 shows
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8 J. Kent et al.

Figure 3. Test 1-1: Latitude-longitude plots of tracerq3 at height 4900 m and timet = 6 days (top) andt = 12 days (bottom) for CAM-FV (left) and
MCore (right). The resolution is1◦ × 1◦ with 60 vertical levels.

the tracerq3 at timet = 6 and12 days for both CAM-FV and MCore for test 1-1. The plots are taken at the 4900 m height
level and the resolution is1◦ × 1◦ with 60 vertical levels. The plot att = 6 days shows the extent of the flow deformation.
Note that the results for MCore have been interpolated from its native cubed sphere grid to the latitude-longitude grid.
MCore makes use of a positivity filter, but does not use a monotonic filter, and so over- and undershoots are observed in the
tracer field (which has a global background value of0.1). The tracer transport algorithm in CAM-FV is almost monotonic,
as the dimensional-splitting of the limiter allows the violation of monotonicity, and therefore any over- or undershoots are
smaller in magnitude than in MCore. At the 4900 m height levelthere is no over- or undershooting for CAM-FV.

Table 3. Test 1-1: Normalized error norms for the tracers, and for the sum(3/10)(q1 + q2 + q3) + q4 at t = 12 days.

q1 q2 q3 q4
3
10 (q1 + q2 + q3) + q4

ℓ1 0.1210 0.0005 0.0236 0.0011 0.0001
CAM-FV ℓ2 0.0998 0.0056 0.2519 0.0130 0.0010

ℓ∞ 0.1923 0.1967 0.8589 0.3990 0.0403
ℓ1 0.1774 0.0009 0.0251 0.0014 0.0003

MCore ℓ2 0.1552 0.0071 0.2354 0.0125 0.0014
ℓ∞ 0.3384 0.2629 0.8444 0.3906 0.0349

The tracers at the final time,t = 12 days, can be compared with the initial conditions shown in Figure 2. The normalized
error norms for test 1-1 are given in Table 3. These error norms allow us to assess how well a transport scheme can advect
smooth data, tracerq1, and how well the transport scheme can maintain the steep gradients of the discontinuous tracer,
q3. The final column of Table 3 provides the normalized error norms for the sum(3/10)(q1 + q2 + q3) + q4 against
the constant1 at time t = 12 days. Although the values are orders of magnitude smaller than the error norms for the
individual tracers, these error norms show that both modelsare unable to properly maintain the linear sum of four tracers
for the duration of the simulation.

The left plot of Figure 4 shows a schematic taken from Lauritzen and Thuburn (2012) to demonstrate wherereal mixing,
range-preserving unmixingandovershootingoccurs on the correlation plots. For CAM-FV and MCore, the correlation
plots are shown in the center and right plots of Figure 4 and the mixing diagnostics are shown in Table 4. The horizontal
lines on the correlation plots show the initial maximum and minimum values of the tracerq2, the quadratic curve shows the
initial correlation betweenq1 andq2, and the diagonal line boxes in thereal mixingconvex hull. The mixing diagnostics
and correlation plots show that there is overshooting with MCore, yet no overshooting with CAM-FV (note that although
there is no overshooting for this test, overshooting does occur for CAM-FV with tracerq3). The mixing diagnostics show
that MCore produces morereal mixingand moreunmixingthan CAM-FV.
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DCMIP Tracer Tests 9

Figure 4. The left plot shows a schematic of the classification of numerical mixing (reproduced from Lauritzen and Thuburn (2012),with permission
of the Royal Meteorological Society). The center and right plots are the correlation plots ofq1 againstq2 for the5 levels surrounding4900 m at time
t = 6 days for CAM-FV (center) and MCore (right) for test 1-1.

Table 4. Test 1-1: Mixing diagnostics:Real mixing, ℓr ; Range-preserving unmixing, ℓu; andOvershooting, ℓo.

ℓr ℓu ℓo
CAM-FV 1.04× 10−3 2.86× 10−4 0.0
MCore 2.53× 10−3 5.60× 10−4 1.08× 10−3

Comparison with Two-Dimensional Tests

To highlight the importance of three-dimensional testing,we compare the example results with those from the two-
dimensional test, test case 4, of Nair and Lauritzen (2010).To ensure a fair comparison, we use the three-dimensional
tracers defined in our paper for test 1-1, and the velocitiesu = ua, v = va andw = 0.

The three-dimensional test provides a challenging assessment of three-dimensional transport, in which it assesses both
the horizontal and vertical components and also the coupling of the horizontal and vertical in the model framework. For
example, for CAM-FV there are larger over- and undershoots for the two-dimensional version of the test than for the full
three-dimensional test. This shows the effects of the diffusion from the vertical remapping in CAM-FV coupled with the
diffusion from the flux-limiters in the horizontal discretization.

Error norm analysis shows that the full three-dimensional test is more challenging than the two-dimensional version.
The normalized error norms for each tracer after12 days are larger with the three-dimensional version of the test. For
example, forq1 the normalizedℓ1, ℓ2 and ℓ∞ error norms for CAM-FV are0.0849, 0.0728 and 0.1379 respectively
for the two-dimensional flow, compared to0.1210, 0.0998 and0.1923 for the full three-dimensional flow. Similarly, for
MCore the normalizedℓ1, ℓ2 andℓ∞ error norms are0.0909, 0.0798 and0.1517 respectively for the two-dimensional
flow, compared to0.1774, 0.1552 and0.3384 for the full three-dimensional flow.

The three-dimensional test also has an effect on the mixing diagnostics. For CAM-FV thereal mixing is comparable,
yet there is morerange-preserving unmixingfor the three-dimensional test than the two-dimensional test. This implies
that the impact of the vertical Lagrangian coordinate coupled with the horizontal discretization in CAM-FV is to produce
un-physical mixing. For MCore the mixing diagnostics for the two-dimensional flow are all less than the corresponding
diagnostic for the three-dimensional test, indicating that the addition of the vertical discretization introduces both real and
un-physical mixing, and is a cause of overshooting. For bothdynamical cores the two-dimensional test preserves the sum
of the tracers better than the three-dimensional test.

4. Test 1-2: Hadley-like Meridional Circulation

Table 5. List of constants used for the three-dimensional Hadley-like meridional circulation test case (Test 1-2).

Constant Value Description
τ 86400 s Period of motion (here 1 day)
K 5 Number of overturning cells
u0 40 m s−1 Reference zonal velocity
w0 0.15 m s−1 Reference vertical velocity
z1 2000 m Lower boundary of tracer layer
z2 5000 m Upper boundary of tracer layer

The emphasis of the second test is on horizontal-vertical coupling. Many transport algorithms in dynamical cores are
horizontally-vertically split and it is important to understand how much effect this splitting has on the accuracy of the
scheme. The prescribed flow is designed to contain a number ofcirculations, similar to the test given in Zerroukat and
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10 J. Kent et al.

Allen (2012); an important difference here is that we reverse the flow to give an analytical solution. The list of constants
used in test 1-2 is given in table 5.

The zonal, meridional and vertical velocity field for this test is specified as

u(λ, ϕ, z, t) =u0 cos(ϕ), (36)

v(λ, ϕ, z, t) =−
aw0 π ρ0
Kztopρ

cos(ϕ) sin(Kϕ) cos

(

πz

ztop

)

cos

(

πt

τ

)

, (37)

w(λ, ϕ, z, t) =
w0 ρ0
K ρ

(−2 sin(Kϕ) sin(ϕ) +K cos(ϕ) cos(Kϕ)) sin

(

πz

ztop

)

cos

(

πt

τ

)

, (38)

where the density equation (10) is used in the formulation ofthe meridional velocityv and the vertical velocityw (for
height-based coordinates). The symbolρ0 denotes the density at the surface withρ0 = p0/(RdT0). The surface pressure
is constant withps(λ, ϕ) = p0. Since the pressure fieldp neither varies in time nor in the horizontal directions the vertical
pressure velocityω for pressure-based coordinates is easily obtained from (6), (28) and (38),

ω(λ, ϕ, p, t) = −g ρw(λ, ϕ, z(p), t). (39)

The densityρ vanishes in this equation when plugging in (38). The densityρ is time independent and needs to be kept
constant for advection schemes in conservation form. This design guarantees that this test is equivalent for tracer advection
schemes written in both the advective or conservation form.

The vertical velocities for models with verticalσ or hybridσ-pressure (η) coordinates are given by

η̇(λ, ϕ, η, t) = σ̇(λ, ϕ, σ, t) = −
g ρ

p0
w(λ, ϕ, z(p), t), (40)

whereη andσ are given byη = σ = p/p0 due to the choice of the constant surface pressureps = p0. As in test 1-1 note
that this formulation assumes that the reference pressure for the hybridη coordinate is set top0 = 1000 hPa. If a floating
Lagrangian coordinate is used on the basis of varying pressure thicknesses we recommend a mechanism that utilizes (39)
in combination with the discrete approach described in Appendix A.

The surface is flat withzs = 0 m, or equivalently surface geopotentialΦs = 0 m2 s−2. The tracer field consists of a
vertical layer which is deformed over the duration of the simulation. It is given by

q1(λ, ϕ, z) =







1

2

[

1 + cos

(

2π(z − z0)

z2 − z1

)]

if z1 < z < z2,

0 otherwise,
(41)

wherez0 = 1
2 (z1 + z2). For models with pressure-based coordinates (6) and (7) need to be used to convert between height

and pressure positions. Figure 5 shows latitude-height cross sections of the initial velocitiesv andw, and the initial tracer
q1.

Figure 5. Test 1-2 initial conditions: latitude-height cross section atλ = 180◦ of tracerq1 and of velocitiesv andw.

4.1. Grid Spacings and Diagnostics

This test should be run at2◦ × 2◦ resolution with 30 uniformly spaced vertical levels,1◦ × 1◦ resolution with 60 uniformly
spaced vertical levels and0.5◦ × 0.5◦ resolution with 120 uniformly spaced vertical levels. For models using height levels
a maximum altitude ofztop = 12000 m is suggested. These resolutions correspond to an approximate horizontal grid
spacing of about220 km, 110 km and55 km with a vertical grid spacing of∆z = 400 m,∆z = 200 m and∆z = 100 m,
respectively. From (6) the position of the model top yields the pressureptop ≈ 254.944 hPa. For 60 vertical levels the
model interfaces are positioned at 0 m, 200 m, 400 m etc. and the full model levels are placed at 100 m, 300 m, 500 m,
etc. as with test 1-1.
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DCMIP Tracer Tests 11

The simulation is run fort = 1 day, until the tracer field returns to its original configuration. For each resolution
normalized error normsℓ1, ℓ2 and ℓ∞ should be computed by comparing the results att = 1 day against the initial
configuration. This will allow convergence rates to be calculated to assess the numerical order of accuracy of the tracer
transport algorithm.

4.2. Example Results

Figure 6 shows the tracerq1 at timet = 12 hours andt = 24 hours for test 1-2 when using1◦ × 1◦ resolution with60
vertical levels. Again, the results from MCore are interpolated from its native cubed sphere grid to the latitude-longitude
grid. The results for both CAM-FV and MCore are shown as latitude-height cross sections at the longitudeλ = 180◦. The
plot demonstrates how the tracer is deformed by the flow field,and how it returns to its initial state after24 hours. Both
models have produced ‘gaps’ in the final tracer at approximately 30 N and30 S. This is due to the extreme stretching that
takes place in this area of the tracer, and it can be seen in thetracer plots at12 hours. Overshoots are evident for MCore at
both12 and24 hours.

Figure 6. Test 1-2: Latitude-height plots atλ = 180◦ of tracerq1 at timet = 12 hours (top) andt = 24 hours (bottom) for CAM-FV (left) and MCore
(right). The resolution is1◦ × 1◦ with 60 vertical levels.

Example normalized error norms for CAM-FV and MCore are given in Table 6 for test 1-2. Also shown are the average
convergence rates for each error norm.

Table 6. Test 1-2: Normalized error norms at different resolutions, and the average convergence rate for each error norm.

2◦L30 1◦L60 1/2◦L120 Convergence
ℓ1 0.1810 0.0411 0.0124 1.93

CAM-FV ℓ2 0.2047 0.0536 0.0159 1.84
ℓ∞ 0.4705 0.1575 0.0473 1.66
ℓ1 0.1368 0.0286 0.0063 2.22

MCore ℓ2 0.1659 0.0462 0.0113 1.94
ℓ∞ 0.4214 0.1586 0.0435 1.64

5. Test 1-3: Horizontal advection of thin cloud-like tracers in the presence of orography

The third test case investigates the ability of the tracer transport algorithm to accurately advect tracers over orography.
For models that utilize terrain-following coordinates, the orography ensures that the tracer is transported between model
levels. The list of constants used in test 1-3 is given in table 7.

For this test the zonal, meridional and vertical velocity fields along surfaces of constant height (above the mean sea
level) are specified as

u(λ, ϕ, z, t) = u0 (cosϕ cosα+ sinϕ cosλ sinα) , (42)

v(λ, ϕ, z, t) = −u0 sinλ sinα, (43)

w(λ, ϕ, z, t) = 0, (44)
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12 J. Kent et al.

Table 7. List of constants used for the Horizontal advectionof thin cloud-like tracers in the presence of orography testcase (Test 1-3).

Constant Value Description
u0 2πa/τ Maximum wind speed
τ 1036800 s Period of motion (here 12 days)
α π/6 Rotation angle (radians, 30◦)
λm 3π/2 Mountain longitude center point
ϕm 0 Mountain latitude center point
h0 2000 m Maximum mountain height
Rm 3π/4 Mountain radius (radians)
ζm π/16 Mountain oscillation half-width (radians)
λp π/2 Cloud-like tracer longitude center point
ϕp 0 Cloud-like tracer latitude center point
zp,1 3050 m First cloud-like tracer altitude
zp,2 5050 m Second cloud-like tracer altitude
zp,3 8200 m Third cloud-like tracer altitude
∆zp,1 1000 m First cloud-like tracer thickness
∆zp,2 1000 m Second cloud-like tracer thickness
∆zp,3 400 m Third cloud-like tracer thickness
Rp π/4 Cloud-like deck radius (radians)

whereα is a rotation angle. The velocity field transports the tracers horizontally (at a constant height) once around the
sphere over a duration of 12 days. Note that some models will requireu = v = 0 for z < h0 to prevent problems occurring
due to flow below the maximum height of the orography. This is avalid modification of the initial condition that will not
impact the characteristics of the tracer transport test. The surface elevation is a three-dimensional variant of a Sch¨ar-like
(Schäret al.2002) mountain with compact support, centered around the center point(λm, ϕm). The great circle distance
from the mountain center point (in radians) is defined as

rm(λ, ϕ) = arccos [sinϕm sinϕ+ cosϕm cosϕ cos(λ− λm)]. (45)

The surface elevation is then given by

zs(λ, ϕ) =







h0
2

[

1 + cos

(

πrm
Rm

)]

cos2
(

πrm
ζm

)

, if rm < Rm,

0, otherwise.
(46)

This choice ensures that the topography is flat away from the mountain, but strongly oscillates over the mountain range
itself. The surface geopotential is then given byΦs(λ, ϕ) = gzs(λ, ϕ). The surface pressure is obtained by substituting
z = zs(λ, ϕ) into (6). The surface height, surface geopotential and the horizontal velocities are shown in Figure 7.

Three thin cloud-like passive tracers are defined to represent lower-level, medium-level and upper-level cloud decks.
These three cloud-like layers are initially placed away from the mountain in a region of flat topography so as to more
easily evaluate error norms after one revolution around thesphere. The lateral great circle distance from the cloud center
point (in radians) is defined as

rp(λ, ϕ) = arccos [sinϕp sinϕ+ cosϕp cosϕ cos(λ− λp)]. (47)

Similarly we define a vertical distance from the center of each cloud level,

rz,i(z) = |z − zp,i|, (48)

wherei ∈ {1, 2, 3}. If pressure-based vertical coordinates are used the height z(p) needs to be computed according to (7)
first before applying (48). The lower-level and medium-level cloud-like tracers are disk-shaped, with the three-dimensional
mixing ratio

qi(λ, ϕ, z) =







1

4

[

1 + cos

(

2πrz,i(z)

∆zp,i

)][

1 + cos

(

πrp(λ, ϕ)

Rp

)]

, if rz,i(z) < 1
2∆zp,i andrp(λ, ϕ) < Rp,

0, otherwise,
(49)

for i ∈ {1, 2}. The upper-level cloud-like tracer is box-shaped with mixing ratio

q3(λ, ϕ, z) =

{

1, if rz,3(z) < 1
2∆zp,3 andrp(λ, ϕ) < Rp,

0, otherwise.
(50)

The total tracer field,q4, is the sum of these three cloud-like tracers

q4(λ, ϕ, z) = q1(λ, ϕ, z) + q2(λ, ϕ, z) + q3(λ, ϕ, z). (51)

Selected cross sections of the four tracers are shown in Figure 8.
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DCMIP Tracer Tests 13

Figure 7. Test 1-3 initial conditions: latitude-longitude plots of the surface heightzs (top left), the surface pressureps (top right), the zonal velocityu
(bottom left) and the meridional velocityv (bottom right).

Figure 8. Test 1-3 initial conditions: latitude-longitude plots of tracerq1 at 3100 m (top left),q2 at 5100 m (top right),q3 at 8100 m (bottom left), and a
longitude-height cross section along the equator of tracerq4.

5.1. “Perceived Vertical Velocity”

If terrain-following coordinates are utilized, then the tracers should pass between vertical model levels to ensure that the
physical vertical velocityw is zero. However, due to the design of some models, it may not be possible to enforce no
vertical velocity (w = 0) unless there is an explicitly prescribed “perceived vertical velocity” - that is, a mechanism for
enforcing exchange between vertically stacked model levels. Without this the tracer would be advected along a sloping
model level which is different from a purely horizontal transport at constant height. To run test 1-3 correctly this means that
a non-zero imposed “vertical velocity” must be applied in the presence of topography for these models. This perceived
vertical velocity reflects that the terrain-following coordinate surfaces slope up- and downwards. The vertical motion
thereby ensures that there is an exchange of the tracers between the sloping model levels in case of purely horizontal
advection. The perceived vertical velocity is derived in Appendix D.
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14 J. Kent et al.

5.2. Grid Spacings and Diagnostics

This test should be run at1◦ × 1◦ resolution (∼ 110 km equatorial grid spacing) with 30, 60, and 120 vertical levels for
12 days. For models using height levels a model top ofztop = 12000 m is suggested with a uniformly-spaced vertical grid
spacing of∆z in the flat regions away from the mountain range. For the 60 vertical level setup this means that the model
interfaces are positioned at0 m, 200 m, 400 m, etc. and that the full model levels are placed at100 m, 300 m, 500 m,
etc. in the flat regions. If the model utilizes orography-following vertical coordinates the grid spacing will be non-uniform
over the mountain range. From (6) the height position of the model top corresponds toptop ≈ 254.944 hPa.

Normalizedℓ1, ℓ2 and ℓ∞ error norms should be computed forq1, q2, q3 and q4 at t = 12 days against the initial
conditions, for each of the vertical resolutions.

5.3. Example Results

Figure 9. Test 1-3: Longitude-height cross-section of tracerq4 at the equator, on model levels (top) and interpolated to constant height levels (middle)
at timet = 6 days for CAM-FV (left) and MCore (right). The black shading indicates the mountain. The results at timet = 12 days on model levels
(bottom) are also shown. The resolution is1◦ × 1◦ with 60 vertical levels.

Cross sections showing both longitude-model level and longitude-height levels are taken at the equator for tracerq4
on day 6, and are shown in the top and center plots of Figure 9 for test 1-3. The top plots show the tracer on models
levels, while the middle plots show the tracer interpolatedto constant height levels. Both CAM-FV and MCore use terrain
following vertical coordinates, and therefore the tracer passes between model levels. Both models smooth out the tracer as
it is passed between the model levels, and this reduces the tracer maximum.

The bottom plot of Figure 9 shows the longitude-model level cross section of tracerq4 at time t = 12 days. In the
presence of strong diffusion the two lower tracers can be merged into one (for example, with CAM-FV). The normalized
error norms for test 1-3 are given in Tables 8 and 9. Note that the error norms are calculated at timet = 12 days, and
are only calculated in the Western Hemisphere; this is away from the mountain, where the vertical levels are equidistant
in height. Both CAM-FV and MCore produce the smallest error norms for tracerq2. This is because the vertical levels
of the hybrid terrain-following coordinates become smoother and flatter with height, and therefore there is less transfer
between model levels forq2 than q1. There is even less transfer between model levels forq3 than q2, however,q3 is
discontinuous whereasq2 is smooth. Table 9 shows that an increase in vertical resolution, while keeping the horizontal
resolution constant, provides only a small improvement in the error norms.This result is due to the design of the test, as
increasing the number of vertical levels leads to more interfaces that the tracer must pass through.
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Table 8. Test 1-3: Normalized error norms for tracersq1, q2 andq3. The resolution is1◦ × 1◦ L60

q1 q2 q3
ℓ1 1.56 1.14 1.31

CAM-FV ℓ2 0.84 0.75 1.86
ℓ∞ 0.78 0.74 0.88
ℓ1 1.07 0.82 0.85

MCore ℓ2 0.69 0.57 1.32
ℓ∞ 0.70 0.57 0.71

Table 9. Test 1-3: Tracerq4 normalized error norms at different vertical resolutions (the horizontal resolution is1◦ × 1◦)

L30 L60 L120
ℓ1 1.35 1.33 1.31

CAM-FV ℓ2 0.81 0.77 0.78
ℓ∞ 0.88 0.85 0.91
ℓ1 1.08 0.89 0.83

MCore ℓ2 0.70 0.57 0.55
ℓ∞ 0.81 0.71 0.73

6. Conclusions

This paper has presented three tracer transport test cases that can be easily incorporated into dynamical cores. The tests
use prescribed non-divergent velocities, and are designedso that the tracer returns to its initial position for straightforward
comparison with an analytical solution. These tests help assess the ability of transport schemes to model three-dimensional
tracer transport. The focus of the tests is on the propertiesthat are relevant to tracer transport. These include physical
properties, such as positivity and preservation of non-linear tracer correlations, and numerical issues, such as horizontal-
vertical coupling and the use of terrain-following vertical coordinates. We have provided recommended setups and
diagnostics that aim to establish a standard for three-dimensional tracer transport test cases on the sphere. Fortran
initialization routines are provided in the supplementaryinformation.

We have demonstrated the test cases and produced example results using two dynamical cores; CAM-FV and MCore.
Error norms and mixing diagnostics have been provided to allow easy comparison with future dynamical cores. The results
highlight the extent of the deformation in test 1-1 and test 1-2, and how the simple horizontal advection of tracers over
orography becomes a challenging test when hybrid terrain-following coordinates are used.

Appendix A - Vertical Lagrangian Pressure-Based Coordinates

If an advection scheme utilizes a floating Lagrangian coordinate without explicit vertical transport, as in Lin (2004),the
conservation law for the advection takes the form

∂

∂t

(

∆p q
)

+∇ · (~u∆p q) = 0, (52)

where~u denotes the horizontal wind vector, and∆p the pressure thickness of the layers. The vertical transport then needs
to be mimicked by a vertical remapping algorithm after the horizontal advection step. The following discrete algorithm
is suggested to prescribe the time-dependent deforming pressure surfaces. First, we recommend calculating the pressure
valuesp(t2) at the future timet2 = t1 +∆t where∆t symbolizes the time step length andt1 is the current time counted
in seconds since the start of the advection test. The new pressure values are then discretely given by

p(t2) = p(t1) + ∆t ω

(

λ, ϕ, p, t1 +
∆t

2

)

, (53)

where a time-centered evaluation of the time-dependent expressions is selected. The time dependent∆p variation can then
be computed as the difference of the pressures at model interfaces at timet2, and set back to its initial value as part of a
remapping algorithm.

For example, using (19) the pressure for test 1-1 is updated as:

p(t2) = p(t1) + ∆t ω0 sin

[

λ−
2π

τ

(

t1 +
∆t

2

)

]

cos(ϕ) cos

[

2π

τ

(

t1 +
∆t

2

)

]

s(p(t1)). (54)

Appendix B - Placement of Vertical Levels Using Hybrid Coefficients

The hybrid orography-followingη-coordinate (Simmons and Burridge 1981) comprises a pressure coordinate with a
σ = p/ps component. The pressure at vertical levelη is given by

p(λ, ϕ, η, t) = a(η)p0 + b(η)ps(λ, ϕ, t), (55)
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16 J. Kent et al.

wherea(η) andb(η) are the hybrid coefficients, andη = p(z)/ps under the special condition thatps = p0. Note that we
also use this setup for test 1-3, as away from the mountain thereference surface pressure is equal top0. For isothermal
conditions the vertical pressure profiles are given by (6), and this can be used to relateη to z. The hybrid coefficients at
interface levels are then calculated as in Laprise and Girard (1990)

a(η) =η − b(η), (56)

b(η) =
η − ηtop
1 − ηtop

, (57)

whereηtop = p(ztop)/ps. The hybrid coefficients at full model levels, with indexk, are computed by the linear average
of the interface levels

ak =
1

2

(

ak+ 1

2

+ ak− 1

2

)

, (58)

bk =
1

2

(

bk+ 1

2

+ bk− 1

2

)

. (59)

Note that in the discrete system equations (55) and (6) are only equal for the interface levels and not the full model levels.
This is due to the linear average used to calculate (58) and (59). However, this discrepancy is small and does not affect the
setup of the tracer tests in this document. Therefore, for the purpose of the tracers tests in this document, it can be assumed
that (55) and (6) are equal on both interface and model levels.

Appendix C - Mixing Diagnostics

A measure of the types of numerical mixing which occur duringthe simulation can be quantitatively obtained using mixing
diagnostics. Following Lauritzen and Thuburn (2012) and Lauritzenet al. (2012) there are three categories of numerical
mixing:Real mixing, where scatter points move to the concave side ofψ; Range-preserving unmixing, where scatter points
move to the convex side ofψ, or below the convex hull, but not outside the initial data range;Overshooting, where scatter
points fall outside the initial data range.

We first define∆Ak as the area of grid cellk andA as the total area of the domain. Further, we definedk as
the normalized shortest distance between the point(χk, ξk) and the initial(χ, ψ(χ)) correlation curve. For the initial
distribution given in (32),dk is defined as

dk = L(χ
(ψ)
k , χk, ξk), (60)

where

C(χk, ξk) =
1

12

[

432χk + 6
√

750(2ξk − 1)3 + 5184χ2
k

]1/3

, (61)

χ
(root)
k (χk, ξk) = C(χk, ξk) +

1

C(χk, ξk)

(

5

24
−

5

12
ξk

)

, (62)

χ
(ψ)
k (χk, ξk) = min

[

max
(

χ(min), χ
(root)
k (χk, ξk)

)

, χ(max)
]

, (63)

and

L(χ, χk, ξk) =

√

(

χk − χ

χ(max) − χ(min)

)2

+

(

ξk − ψ(χ)

ξ(max) − ξ(min)

)2

. (64)

The constant mixing ratios which bound the initial profile are

χ(min) = 0, χ(max) = 1.0, (65)

ξ(min) = 0.1, ξ(max) = 0.9.

The mixing diagnostics work based on the classification of each element pair(χk, ξk) into regionA, B or (A ∪ B)′. The
mathematical descriptions ofA andB are

A =
{

(χ, ξ)|χk ∈ [χ(min), χ(max)] and F(χk) ≤ ξk ≤ ψ(χk)
}

,

B =
{

(χ, ξ)|(χk, ξk) ∈ [χ(min), χ(max)]× [ξ(min), ξ(max)] and (χk, ξk) 6∈ A
}

,

Copyright c© 0000 Royal Meteorological Society

Q. J. R. Meteorol. Soc.00: 1–20 (0000)

Prepared usingqjrms4.cls



DCMIP Tracer Tests 17

whereF is the straight line which connects(χ(min), ξ(max)) and(χ(max), ξ(min)).
The diagnostic for mixing that resembles ‘real’ mixing is defined as

ℓr ≡
1

A

∑

k

{

dk∆Ak, if (χk, ξk) ∈ A,
0 otherwise. (66)

The diagnostic for mixing that is range-preserving is

ℓu ≡
1

A

∑

k

{

dk∆Ak, if (χk, ξk) ∈ B,
0 otherwise. (67)

Finally the diagnostic for overshooting is

ℓo ≡
1

A

∑

k

{

dk∆Ak, if (χk, ξk) 6∈ A ∪ B,
0 otherwise. (68)

In all cases the summation is taken over all cellsk.
For simplicity, and to prevent these calculations using very large file sizes, we chose to constrict our analysis to the five

equidistantly-spaced model levels at 4500, 4700, 4900, 5100 and 5300 m when calculating the mixing diagnostics and
correlation plots for test 1-1.

Appendix D - Perceived Vertical Velocity for Test 1-3

We are interested in writing a purely horizontal velocity field u in both a coordinate-following and a Cartesian basis. This
procedure allows us to identify the source of the “perceived” vertical velocities which may be caused by an underlying
terrain-following vertical coordinate system with sloping coordinate surfaces. The basis vector following coordinate lines
can be decomposed into a purely horizontal velocity and a purely vertical velocity. Mathematically, this takes the form

~gs =

(

∂z

∂x

)

s

~gz + ~gx, (69)

wherex is an arbitrary horizontal coordinate (such asλ or ϕ), z is the height coordinate,s denotes the quantity which is
constant along coordinate lines and~gs, ~gz and~gx denote basis vectors along surfaces of constants, z andx, respectively.

Given a velocity field in coordinate-following spherical coordinates (with basis vectors~gλ̂ and~gϕ̂) we have

~gλ̂ =
1

a cosϕ

(

∂z

∂λ

)

s

~gz + ~gλ, (70)

~gϕ̂ =
1

a

(

∂z

∂ϕ

)

s

~gz + ~gϕ. (71)

For test 1-3, we impose a purely horizontal velocity field~u = uλ~gλ + uϕ~gϕ on the sphere (horizontal with respect to the
“main sea level”). Consequently, in coordinate-followingspherical coordinates we have

~u =uλ

(

~gλ̂ −
1

a cosϕ

(

∂z

∂λ

)

s

~gz

)

+ uϕ

(

~gϕ̂ −
1

a

(

∂z

∂ϕ

)

s

~gz

)

, (72)

=uλ~gλ̂ + uϕ~gϕ̂ +

[

−
uλ

a cosϕ

(

∂z

∂λ

)

s

−
uϕ
a

(

∂z

∂ϕ

)

s

]

~gz. (73)

The basis vector for the last term in (73) is~gz. Therefore, we observe that in coordinate-following form we have introduced
the additional “perceived” vertical velocity

w = −
uλ

a cosϕ

(

∂z

∂λ

)

s

−
uϕ
a

(

∂z

∂ϕ

)

s

, (74)

whereuλ anduϕ are the zonal and meridional velocities with respect to the mean sea level. Here, they coincide withu
andv shown in (42) and (43). The “perceived” vertical velocity depends on how coordinate surfaces vary with height. The
derivatives in (74) are taken along the sloping coordinate surfaces (surfaces of the constant generalized vertical coordinate
s). Oncew is computed the corresponding perceived vertical pressurevelocityω is given by (39).

To demonstrate how the perceived vertical velocity is computed, we present it in the height-based orography-following
coordinate of Gal-Chen and Somerville (1975) (here denotedGC). The formulation for the perceived vertical velocity for
the hybrid pressure-basedη coordinate (Simmons and Burridge 1981), which is often usedin hydrostatic dynamical cores,
is also shown. If other vertical coordinates are used the formulation for the vertical velocity needs to be newly derived
according to the algorithm given here.
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Gal-Chen Vertical Coordinate

The GC vertical coordinatez ∈ [0, ztop] maps to the rangez ∈ [zs(λ, ϕ), ztop]. It is defined as

z = ztop

(

z − zs(λ, ϕ)

ztop− zs(λ, ϕ)

)

, (75)

wherezs(λ, ϕ) is the surface elevation, for instance defined by (46), andztop is the height position of the model top.
Coordinate surfaces in Cartesian space are defined via the inverse of (75),

z = zs(λ, ϕ) +
z

ztop
(ztop− zs(λ, ϕ)). (76)

To compute the perceived vertical velocity we differentiate (76) along surfaces of constantz, obtaining

∂z

∂λ
=
∂zs
∂λ

(

1−
z

ztop

)

, (77)

∂z

∂ϕ
=
∂zs
∂ϕ

(

1−
z

ztop

)

. (78)

The final step in this procedure requires one to compute the horizontal derivatives ofzs with respect toλ andϕ. Using the
Schär mountain profile (46) the derivatives of the surface elevation are given as follows:

∂zs
∂x

=























{

−
h0π

2Rm
sin

(

πrm
Rm

)

cos2
(

πrm
ζm

)

−

h0π

ζm

[

1 + cos

(

πrm
Rm

)]

cos

(

πrm
ζm

)

sin

(

πrm
ζm

)}(

∂rm
∂x

)

, if rm < Rm,

0, otherwise.

(79)

wherex ∈ {λ, ϕ} and

∂rm
∂λ

=
cosϕm cosϕ sin(λ− λm)
√

1− cos2(rm(λ, ϕ))
, (80)

∂rm
∂ϕ

=
− sinϕm cosϕ+ cosϕm sinϕ cos(λ− λm)

√

1− cos2(rm(λ, ϕ))
. (81)

Note that whenrm(λ, ϕ) = 0 or ±π, which will occur at(λ, ϕ) = (λm, ϕm) or (λm ± π,−ϕm), we enforce∂rm∂λ = 0

and∂rm∂ϕ = 0. At each coordinate(λ, ϕ) the set of equations (74)-(81) then leads to a unique perceived velocity associated
with the terrain-following coordinate transform.

Hybrid-η Vertical Coordinate

Calculation of the perceived vertical velocity under hybrid-η coordinates requires the computation of the horizontal
derivatives ofz with respect toλ andϕ. Under hybrid-η coordinates we use the fact thatp = a(η)p0 + b(η)ps(λ, ϕ)
(Simmons and Burridge 1981). Combining this with the pressure equation for isothermal conditions with temperatureT0
and the reference surface pressurep0 we obtain

z = −
RdT0
g

ln

[

a(η) + b(η)
ps(λ, ϕ)

p0

]

. (82)

Consequently,

(

∂z

∂λ

)

η

=−
RdT0
g

[

a(η) + b(η)
ps(λ, ϕ)

p0

]−1
b(η)

p0

∂ps
∂λ

, (83)

(

∂z

∂ϕ

)

η

=−
RdT0
g

[

a(η) + b(η)
ps(λ, ϕ)

p0

]−1
b(η)

p0

∂ps
∂ϕ

. (84)

Equivalently,
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(

∂z

∂λ

)

η

=−
RdT0
gp

b(η)
∂ps
∂λ

, (85)

(

∂z

∂ϕ

)

η

=−
RdT0
gp

b(η)
∂ps
∂ϕ

. (86)

Since the surface profile is given in terms of heightz, we need to use

∂ps
∂x

= −
gp0
RdT0

exp

(

−gzs
RdT0

)

∂zs
∂x

, (87)

wherex denotes a place holder (x ∈ {λ, ϕ}) and∂zs∂x is again given by (79)-(81). Since pressure is constant withtime, we
also have that the pressure velocity is related to the vertical velocity via equation (39).

In practice the following steps can be used to apply the perceived vertical velocity under a hybrid-η vertical coordinate:

1. Compute the surface height derivatives from (79)-(81).
2. Compute the surface pressure derivatives from (87).
3. For each coordinate line (vertical edge) compute (85)-(86).
4. Compute the perceived vertical velocityw from (74).
5. Compute the perceived pressure velocityω from (39).
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