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Three-dimensional advection tests are required to asseséid ability of the

transport schemes of dynamical cores to accurately model &cer transport
on the sphere. A set of three tracer transport test cases fohtee-dimensional
flow is presented. The tests focus on the physical and numeakissues that are
relevant to three-dimensional tracer transport; positivity preservation, inter-

tracer correlations, horizontal-vertical coupling, order of accuracy, and the
choice of vertical coordinate. The first test is a three-dimesional deformational
flow. The second test is a Hadley-like global circulation. Tk final test is
a solid body rotation test in the presence of rapidly varyingorography. A
variety of assessment metrics, such as error norms, convezgce rates and
mixing diagnostics are used. The tests are designed for easyplementation
within existing and developing dynamical cores and have b&ea cornerstone of
the 2012 Dynamical Core Model Intercomparison Project (DCMP). Example
results are shown using the transport schemes in two dynamét cores; the
Community Atmosphere Model finite-volume dynamical core (AAM-FV) and

the cubed-sphere finite-volume MCore dynamical core.
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1. Introduction

Significant research has gone into the development of efatee-art transport schemes on the sphere, for use in eeath
and climate models. Tracer transport is performed by theadycal core, the fluid dynamics component of a general
circulation model (GCM), and is very important in atmospbenodels. The transport scheme is used to advect the
many tracer species that are used in climate models andtelipnadiction studies (Lamarqee al. 2008). It is strongly
linked to the chemistry module, with errors due to the nuoariransport scheme having a large impact on errors in
chemistry models and certain physical parameterizatiereglieret al. 2008; Ovtchinnikov and Easter 2009; Plueital.
2000). There are many different numerical methods for trae@sport (for example, finite-volume (Lin and Rood 1996),
discontinuous Galerkin (Nagt al. 2005), semi-Lagrangian (Zerroukettal. 2002) - see Rood (1987) for a review), used
on different spherical grids (Staniforth and Thuburn 2018t are employed by dynamical cores. Consequently, it is
essential to be able to assess and evaluate these numesttalds.

To assess the characteristics of the numerical transgoetse, testing is performed on idealized test cases. Thisresq
a prescribed velocity component, and preferably a knowatissl. Although there are many two-dimensional horizontal
tracer test cases on the sphere, including simple solid boi@dyion tests (Williamsoret al. 1992), static and moving
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2 J. Kent et al.

vortices (Nair and Machenhauer 2002; Nair and Jablonowd88), and deformational flows (Nair and Lauritzen 2010;
Kent et al. 2012b), very few fully three-dimensional tracer transpgests have been offered. Examples include solid
body rotation with a sinusoidal vertical velocity (Hubb&@®@02) and the three-dimensional advection tests of Zgtov
al. (1999). Other test scenarios assess tracers in eitherze@adiabatic flows (Whiteheaat al. (2013) and Kengt al.
(2012a)) or a full model simulation (Rasehal.2006). This paper aims to suggest a set of three complexthneensional
transport test cases with prescribed velocities on therspiibese test cases are specifically designed to test thenties
that are relevant to the design of physically realistic$port schemes; namely positivity and monotonicity, prestion of
existing tracers correlations (see Thuburn and McInty®97)), horizontal-vertical coupling, and the transportraters
over orography.

The advection process can be represented in many forms.dreemmtracer mixing ratig, the advection equation can
be expressed as

Dq
- 1
Dt 0, (1)
dq
7. — 2
5 TV Vqg=0, (2)

in a Lagrangian and Eulerian framework, respectively. H&rgymbolizes the three-dimensional wind vectdrjs the
three-dimensional gradient operator abdDt stands for the material time derivative.
If an advection scheme utilizes the conservation form

0 S
5 (P0) +V - (Tpa) =0, (3)
the air densityp needs to be present so that the equation represents a traserdensity. The mass continuity equation
that is solved fop is given as

Idp

il (T p) =0. 4

5 TV (@p)=0 (4)
However, the tests in this paper are designed so (g} is a divergence-free field, i.e. the continuity equation is
analytically satisfied, even without the constraint of dcansdensity, with

Idp
ot
This paper describes the initial state, velocity fields, diatjnostics of three new three-dimensional tracer tratispo

test cases. These tests are designed to return the tractsirtanitial poisition at the end of the simulation, thus
providing a final reference solution. This analytic refaeisolution is a key advantage of this test suite and allows th
straightforward calculation of error norms. These tracangport tests have been developed for the 2012 Dynamical Co
Model Intercomparison Project (DCMIP)We provide example results from the transport schemesm@itwamical cores
that participated in DCMIP: the Community Atmosphere Mdiitgte-volume dynamical core (CAM-FV, Lin 2004) and
the cubed-sphere finite-volume MCore dynamical core (€Hland Jablonowski 2012a). Section 2 provides an overview
of the general setup of the test cases and a description d¢vthdynamical cores. The three test case descriptions and
example results are in sections 3, 4 and 5. We also providedRanitialization routines in the supplementary infotioa
S0 as to ease practical implementation.

—0. (5)

2. Overview of The DCMIP Tracer Transport Test Cases Setup

This section describes the general setup for the threerdiimeal passive advection tests. Each test makes use of
prescribed wind fields. We apply time reversal (overlaidhvat solid-body rotation) to return the tracer to its original
position in two of the suggested tests, while the third té¢iizas a two-dimensional solid-body rotation and retutims
tracer to its initial position after one revolution arouhe tsphere. This ensures that an analytical solution is kraivime
end of the simulation for each test.

The tracer transport tests are designed to be implementeatiiginto the dynamical cores of GCMs. The first test, 1-1,
is a three-dimensional flow which extends the two-dimeralideformation test proposed by Nair and Lauritzen (2010).
The second test, 1-2, focuses on the horizontal-vertiagblaog of the advection scheme, which is an important issue i
atmospheric modeling as many dynamical cores are horithpiviertically dimension split. The final test, 1-3, useseé-
dimensional flow in the presence of orography, and is usesktortodels that utilize terrain-following vertical coardies.
The numbering convention of the test cases (1-1, 1-2 andid{8sed on the numbering of the tests used at DCMIP in
2012. As mentioned before, the tests make use of presctibed-tlimensional velocities and an isothermal tempegatur
field. Consequently, dynamic updates of the velocity, terapee and pressure fields need to be disabled, and pregcribe
(analytic) updates of the time-dependent velocity fieldsdh® be included into the model code for test 1-1 and 1-2. Test
1-3 utilizes time-independent velocities that can be gtedivia the initial data set. A list of physical constantsahhare
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DCMIP Tracer Tests 3

Table 1. A list of physical constants used herein.

Constant Description Value

a Radius of the Earth 6.37122 x 10° m
g Gravity 9.80616 m s~2

Do Reference pressure 1000 hPa

Cp Specific heat capacity of dry air 1004.5J kg ' K1
Ry Gas constant for dry air 287.0Jkg ' Kt
K Ratio of R, to ¢, Ri/c, =2/7

top Height position of the model top 12000 m

Ptop Pressure at the model top ~ 254.944 hPa

To Isothermal atmospheric temperature 300 K

used throughout this paper is given in Table 1. Constantsiwduie specific to each test case are similarly tabulateeat th
beginning of each section.

The analytic initial conditions are described in terms d¢itl@e o, longitude), and either height or pressure. The
pressure field is prescribed and needs to remain constatitf@turation of the simulation except if floating Lagrangian
pressure-based coordinates are used in the verticalidingttin 2004) as explained in Appendix A. Advection schemes
in the latter framework may require prescribed variatiohthe pressure thicknességy between two model interface
levels to account for deforming layers. Such a deformatiorilbating Lagrangian coordinates will only be valid for one
time step before a vertical remapping algorithm restoredrtitial pressure values at the model levels.

The pressure field is given by

—gz
A t) = 6
(A ¢, 2,) poeXp(RdTo), (6)
whereT; = 300 K is the isothermal atmospheric temperature which yidlds, ¢, z, t) = T}, for all three test variants,
R4 is the gas constant for dry air, apgymbolizes the gravity. The reference pressure-at0 mis set topp = 1000 hPa.
The surface pressuge, which may be needed for initializing hydrostatic modets e computed when evaluating (6)
at the surface elevation which is specified later. Note that (6) can also be expressed a

_ Po
2p.p) = Hin (1) (7)
which utilizes the scale height
i = fdo, )
g

Equation (7) transforms the pressure into the heightan isothermal atmosphere.

For models that solve the advective form of the transporagqu (2) the density does not require consideration, but fo
models that solve the conservative form (3) air density gaiired. In order to avoid solving a second transport eqoatio
for p and to simplify the test setup, the stratified density is aefias

p
A = 9
P p) = s )
__m =z
pr.2) = e () (10

for models with pressure-based or height-based coordimespectively. For all tests the density should be heldteobs
(9p/0t = 0) for the duration of the experiment. The velocity field fockaest is chosen to satisfy the non-divergent
condition exactly, i.e. in vertical pressure-coordinatggelds

1 [ ou Ow

0
4 — = 11
acosp | ON * 8<p(v COS@)] * dp 0 (1)

whereuw is the zonal velocityy the meridional velocityw the vertical pressure velocity, anads the radius of the Earth.
In height coordinates the relationship is given by

1 [olpu) O I(pw)
acosgo{ oA +8(p(pvcos<p)] + 0z

wherew is the vertical velocity. This will ensure that models wittepsure-based and height-based vertical coordinates
will resemble each other since isothermal conditions aeel ts determine the placement of the initial pressure le¥els

=0, (12)

TFor more information about DCMIP and its associated twokweerkshop in the summer of 2012 go to http://earthsystentegéprojects/dcmip-2012/
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4 J. Kent et al.

models that utilize the conservation form of the advectignation, it may be beneficial to run each of the tests with the
optional tracer field
QO()‘a 2 Z) = 1) (13)

which tests how well the model is able to satisfy the thremetisional continuity equation (4) and (10).
Normalized error norms are used in all three sets of tesisy ahe defined by

T llg — qrl]
ti(q) = Tl (14)
fala) = [, (15)
_ max|g — qr]
l(q) = “max|gr| (16)

wheregqr is the tracer field at the initial time (due to periodicity bEttest cases, this is also the exact solution). Here
denotes an approximation to the global integral, given by

IxXj= Y XV (17)
all elementg

whereV; denotes the volume of element

2.1. Brief Description of the Dynamical Cores
CAM-FV

The Community Atmosphere Model finite-volume dynamicakdsran operational dynamical core in the National Center
for Atmospheric Research’s Community Earth System ModeB(Bet al. 2010), and is described in detail in Lin (2004).
The horizontal tracer transport component is based upofiukdorm semi-Lagrangian method as described in Lin and
Rood (1996). A floating Lagrangian coordinate is used in thetical, which is periodically remapped to a fixed grid.
This means that CAM-FV solves the transport equation asngiye(52) in Appendix A. In the presence of orography,
terrain following hybrid coordinates are used (SimmonsBundidge 1981). Variations of the PPM algorithm (Colellalan
Woodward 1984) are used both to calculate the numericaldluxéine Lin-Rood scheme, and in the vertical remapping. A
filling algorithm is also present, to prevent any negatieedr values. CAM-FV makes use of the latitude-longitudé.qgri

MCore

MCore, described by Ullrich and Jablonowski (2012a), usgh-brder upwind finite-volume methods (Ullrickt al.
2010; Ullrich and Jablonowski 2012b) on the cubed sphe (@ancicet al. 1996). A fourth-order three-dimensional
discretization which captures the horizontal cross-teisnssed. Note that this differs from the second-order veltic
discretization described in Ullrich and Jablonowski (28)L T he finite-volume method provides implicit diffusiomaligh

a modified version of the low-speed AUSMp Riemann solver. A filter is used to ensure positivity (rtb& a monotonic
filter is optional, but not used in the tests in this documeRgnel edges of the cubed-sphere grid are treated using a
fourth-order remapping scheme. The vertical coordinags tise Gal-Chen (Gal-Chen and Somerville 1975) formulation
As MCore solves the flux-form of the equation (3) for tracenslty, division byp must take place to output the mixing
ratio ¢. Unless stated otherwise, for MCore the tracer densityvigldd by the analytical density (10) (which remains
constant with time), not the numerical density that can Beutated by usingy, (which will not remain constant with
time due to numerical error). The solution from MCore is gmad on the native cubed sphere grid, but interpolated to the
same latitude-longitude grid as CAM-FV for visualization.

3. Test 1-1: Three-Dimensional Deformational Flow

The three-dimensional deformational flow test is an extensif the two-dimensional approach of test case 4 by Nair
and Lauritzen (2010), with an additional prescribed veftwind velocity and corresponding horizontally divergesrd
field. The test also provides a measure of the transport sekebility to maintain non-linear tracer correlationsngshe
mixing diagnostics developed by Lauritzen and Thuburn 220These mixing diagnostics are a method for determining
the nature of numerical mixing errors which are introducgdab advection scheme. These errors are of particular
importance in atmospheric chemistry modeling, since tlegyesent important functional relationships betweeretrac
species (Plumb and Ko 1992; Thuburn and Mclintyre 1997). iBtef constants used in test 1-1 is given in table 2.

The test utilizes a translational longitude, defined by

N = \—2nt/T, (18)
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DCMIP Tracer Tests 5

Table 2. List of constants used for the three-dimension@rdetional flow test case (Test 1-1)

Constant Value Description

T 1036800 s Period of motion (here 12 days)

wo 230007/ T Maximum of the vertical pressure velocity in units Pa/s
b 0.2 Normalized pressure depth of the divergent layer

Al 5m/6 Initial longitude of first tracer

Ae2 /6 Initial longitude of second tracer

e 0 Initial latitude of tracers

Ze 5000 m Initial altitude of tracers

Ry a/2 Horizontal half-width of tracers

Zy 1000 m Vertical half-width of tracers

wheret denotes the elapsed time since the start of the simulatidm alenotes the period for the simulation to return to
its initial state. The vertical pressure velocity is spedifas

27t
w(\, @, p, t) = wosin X cos g cos (%) s(p), (19)

where

s(p) =1+ exp Ptop — Po —exp [ 22P0) _exp Pop— P (20)
bptop bptop bptop
is a smooth tapering function that tapers the vertical uldo zero at the top and bottom of the domain. Since pressure
and height surfaces are aligned, the pressure positioreahtidel topptop: is

ptop = P(2top): (21)

where pressure is determined by (6). In terms of the trapskaltlongitude, the horizontal zonal and meridional véles
4 = (u,v) are given as the sum of a horizontal deformational compofignt (u.,v,) and a horizontally divergent
componentiy = (ug,vq),

U =1, + Ug. (22)
The deformational zonal and meridional wind components¥ofrom Nair and Lauritzen (2010),
1 2
ua(N, @, 1) _10a sin?(\') sin(2¢) cos(mt/7) + T cos ®, (23)
T T
1
Va0, 1) =22 in (2') cos() cos(t /7). (24)
T

The two-dimensional divergent wind component is given by
a

0 cos(\') cos?(¢) cos <@) —exp PPoy) exp Pop— P , (25)
bptop T bptop bptop

va(A; ¢, p,t) =0. (26)

Ud()\, #sPs t) =

The total velocity field is chosen to satisty- (¢ p) = 0 exactly. The surface is flat with, = 0 m, or equivalently surface
geopotentiakb, = 0 m? s=2. The surface pressure is constant withi\, ) = po. Therefore, the vertical velocity for
models with verticab (Phillips 1957) or hybridr-pressures{) coordinates (Simmons and Burridge 1981) is

. . w
77()‘7 ®5 1, ﬁ) = U()‘a ¥, 0, ﬁ) = p_07 (27)

wheren ando are given byy = o = p/po. Note that this formulation assumes that the referencespregor the hybrid
71 coordinate is set to 1000 hPa. Since there are neither tim&tioas nor horizontal variations of the pressure field the
vertical velocity in height coordinates takes the simplarfo

win 7, = - LALPED, (28)
gp(2)
with p given by the density equation (10).
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Figure 1. Test 1-1 initial conditions: latitude-longitude plots algcitiesu,, ug, v andw at 4900 m.

The initial velocitiesu,, uq, v andw are shown in Figure 1 at the 4900 m height level. Note thatiathtbightu, is
two orders of magnitude smaller thap, meaning that the horizontal velocities act almost idetiiido those in Nair and
Lauritzen (2010).
Four tracer mixing ratios are specified for this test. The fiexcer field represents two cosine bells, and is specified as
1 1
g\ e, z) = 3 (14 cos(mdy)) + 3 (14 cos(mda)), (29)

whered; (i = 1, 2) denotes the scaled distance functions,

di(\, ¢, ) = min [1, { <”(;’t‘/’)>2 + <Z Z)QH , (30)

andr;(\, ¢) (i = 1,2) denotes the great circle distance,

ri (A, ) = aarccos (sin . sin ¢ + cos Y. cos @ cos(A — A¢;)) . (31)

The second tracer is chosen to assess the ability of thepwetrssheme to maintain a non-linear correlation with thet fir
tracer. By defining nonlinearly correlated tracer fields, ¢2) = (x, % (x)), one can determine how well the numerical
scheme preserves these correlations over the duratioe sfrtiulation. The second tracer is thus initialized as

g2 (N, 0, 2) = 0.9 — 0.8q1 (A, @, 2)2. (32)

The third tracer is used to assess the capability of a trahspleeme to achieve monotonicity, and is set up as two dlotte
ellipses

1 if dy <1/2,
s\ p,z)=¢ 1 ifdy<1/2, (33)
0.1 otherwise,

with the additional condition:

g3(A\,0,2) =0.1 if 2> zcandp, — 1/8 < v < . + 1/8. (34)
The final tracer is chosen to investigate whether the linaar of multiple tracers can be maintained by the transport

scheme (Lauritzen and Thuburn 2012). It is set up so thaiimbination with the other tracer fields with weight (3/10),
the sum is equal to one

3
@\ p,2) =1~ 0 [N, 0, 2) + q2(N, 0, 2) + q3(X, 0, 2)] . (35)

The top and middle plots of Figure 2 show the initial tracgrsys, g3 andg, at the height level 4900 m. The bottom
plots of Figure 2 show latitude-height cross sectiong,odindgs at the longitude\ = \.;. The plots are generated on a
1° x 1° resolution grid with60 vertical levels.
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Figure 2. Test 1-1 initial conditions: latitude-longitude plots oftersq, g2, g3 andgs at 4900 m, and latitude-height cross sectiongondgs at
the longitudex = A.1.

3.1. Grid Spacings and Diagnostics

For purposes of model intercomparison this test should bett® x 1° resolution ¢ 110 km equatorial grid spacing)
with 60 uniformly spaced vertical levels (in height coomalies) forl2 days. For models using height levels a model top of
ztop = 12000 m is suggested, which leads to a vertical grid spacing.of= 200 m. This means that the model interfaces
are positioned a m, 200 m, 400 m, etc. and that the full model levels are placedt m, 300 m, 500 m, etc. From (6)
the height position of the model top correspondsiigy ~ 254.944 hPa. Information on the placement of vertical levels
when hybrid-coefficients are used is discussed in Appendix B

Normalized/y, ¢ and/., error norms (equation (14)-(16)) should be computed fotratiers at = 12 days against
the initial conditions. For test 1-1, we have specified adrdield ¢, (\, ¢, z) and a correlated fielgh (A, ¢, z). We define
the correlation plotof ¢; andg. as the scatter plot obtained from plotting the mixing rati@s, against(¢2); for each
cell k. For the given distribution, one will initially obtain theaigdratic curve given by (32). As the simulation progresses,
the nonlinear correlation between these tracers will biedos to numerical errors and so the scatter plot will drdtfirits
initial distribution. The correlation plot @ = 6 days, the point of maximum deformation, reveals importafgrination
on how well the scheme preserves these correlations. zaarénd Thuburn (2012) define three categories of numerical
mixing: Real mixing ¢,., where the numerical mixing resembles physical mixiRgnge-preserving unmixing,, where
the numerical unmixing is withing the initial data rangedadvershooting/,, numerical unmixing which falls outside
the initial data range. These mixing diagnostits,/,, and/,, given in Appendix C, should be computed fgrandq, at
t = 6 days. These mixing diagnostics should only be calculatethi®5 levels surrounding (and including) th@00 m
vertical level; this is to improve computational efficiengje mixing diagnostics are described in detail by Lauritaed
Thuburn (2012).

The final diagnostic concerns the ability of the transpdresee to maintain the sum of tracers. The trages designed
such that the sum af, and the other tracer fields with weight (3/10) is equal to dwmalized/,, /> and/, error norms
should be computed for this sum against the condtahhese error norms can be calculated at any time of the siionja
as the sum should equafor all time.

3.2. Example Results

We present example results for test 1-1 using two dynamarals; CAM-FV and MCore (see section 2.1). These results
are used to illustrate the characteristics of the test cag@at for the purpose of model intercomparison. Figure 3vsho
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Figure 3. Test 1-1: Latitude-longitude plots of tracgs at height 4900 m and time= 6 days (top) and = 12 days (bottom) for CAM-FV (left) and
MCore (right). The resolution i$° x 1° with 60 vertical levels.

the traceis at timet = 6 and12 days for both CAM-FV and MCore for test 1-1. The plots are ta&tethe 4900 m height
level and the resolution i5> x 1° with 60 vertical levels. The plot at= 6 days shows the extent of the flow deformation.
Note that the results for MCore have been interpolated fitsnmative cubed sphere grid to the latitude-longitude grid.
MCore makes use of a positivity filter, but does not use a mamiofilter, and so over- and undershoots are observed in the
tracer field (which has a global background valué.dj. The tracer transport algorithm in CAM-FV is almost monuty

as the dimensional-splitting of the limiter allows the wtbn of monotonicity, and therefore any over- or undersbaoe
smaller in magnitude than in MCore. At the 4900 m height Iéirefe is no over- or undershooting for CAM-FV.

Table 3. Test 1-1: Normalized error norms for the tracerd,fanthe sum(3/10)(q1 + g2 + ¢3) + g4 at¢t = 12 days.

a1 q qs3 44 %(fh +q+q3)+q
1A 0.1210 0.0005 0.0236 0.0011 0.0001
CAM-FV £l 0.0998 0.0056 0.2519 0.0130 0.0010
U 0.1923 0.1967 0.8589 0.3990 0.0403
0y 0.1774 0.0009 0.0251 0.0014 0.0003
MCore U 0.1552 0.0071 0.2354 0.0125 0.0014
loo 0.3384 0.2629 0.8444 0.3906 0.0349

The tracers at the final time~= 12 days, can be compared with the initial conditions shown guFeé 2. The normalized
error norms for test 1-1 are given in Table 3. These error s@ihow us to assess how well a transport scheme can advect
smooth data, tracen, and how well the transport scheme can maintain the steetiegita of the discontinuous tracer,
gs. The final column of Table 3 provides the normalized erromm®ffor the sum(3/10)(q1 + ¢2 + ¢3) + g4 against
the constant at timet = 12 days. Although the values are orders of magnitude smalkar the error norms for the
individual tracers, these error norms show that both maalelsinable to properly maintain the linear sum of four tracer
for the duration of the simulation.

The left plot of Figure 4 shows a schematic taken from Laaritand Thuburn (2012) to demonstrate wiregd mixing
range-preserving unmixingnd overshootingoccurs on the correlation plots. For CAM-FV and MCore, thereation
plots are shown in the center and right plots of Figure 4 ardmixing diagnostics are shown in Table 4. The horizontal
lines on the correlation plots show the initial maximum arnidimum values of the traceg, the quadratic curve shows the
initial correlation between; andgs, and the diagonal line boxes in theal mixingconvex hull. The mixing diagnostics
and correlation plots show that there is overshooting witbdve, yet no overshooting with CAM-FV (note that although
there is no overshooting for this test, overshooting doesioior CAM-FV with tracergs). The mixing diagnostics show
that MCore produces moreal mixingand moreunmixingthan CAM-FV.
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Figure 4. The left plot shows a schematic of the classification of nucaémixing (reproduced from Lauritzen and Thuburn (2032th permission
of the Royal Meteorological Society). The center and rightgare the correlation plots qfi againstgs for the 5 levels surroundingt900 m at time
t = 6 days for CAM-FV (center) and MCore (right) for test 1-1.

Table 4. Test 1-1: Mixing diagnosticBeal mixing ¢,.; Range-preserving unmixing,,; andOvershooting,.

0, 0, ’,
CAM-FV 1.04 x 1073 2.86 x 104 0.0
MCore 2.53 x 103 5.60 x 10~ 1.08 x 103

Comparison with Two-Dimensional Tests

To highlight the importance of three-dimensional testing, compare the example results with those from the two-
dimensional test, test case 4, of Nair and Lauritzen (20I@ensure a fair comparison, we use the three-dimensional
tracers defined in our paper for test 1-1, and the velocitiesu,,, v = v, andw = 0.

The three-dimensional test provides a challenging asssdswh three-dimensional transport, in which it assessés bo
the horizontal and vertical components and also the cogplirthe horizontal and vertical in the model framework. For
example, for CAM-FV there are larger over- and undershamtthie two-dimensional version of the test than for the full
three-dimensional test. This shows the effects of the siifiu from the vertical remapping in CAM-FV coupled with the
diffusion from the flux-limiters in the horizontal discretition.

Error norm analysis shows that the full three-dimensioest ts more challenging than the two-dimensional version.
The normalized error norms for each tracer afterdays are larger with the three-dimensional version of tlse teor
example, forq; the normalized/y, /5 and /., error norms for CAM-FV are).0849, 0.0728 and 0.1379 respectively
for the two-dimensional flow, compared @1210, 0.0998 and0.1923 for the full three-dimensional flow. Similarly, for
MCore the normalized,, ¢» and /., error norms aré).0909, 0.0798 and0.1517 respectively for the two-dimensional
flow, compared t@.1774, 0.1552 and0.3384 for the full three-dimensional flow.

The three-dimensional test also has an effect on the mixegnastics. For CAM-FV theeal mixingis comparable,
yet there is moreange-preserving unmixinfpr the three-dimensional test than the two-dimensiorgtl fEhis implies
that the impact of the vertical Lagrangian coordinate cedplith the horizontal discretization in CAM-FV is to produc
un-physical mixing. For MCore the mixing diagnostics foe tfvo-dimensional flow are all less than the corresponding
diagnostic for the three-dimensional test, indicating tha addition of the vertical discretization introducegtbieal and
un-physical mixing, and is a cause of overshooting. For dgttamical cores the two-dimensional test preserves the sum
of the tracers better than the three-dimensional test.

4. Test 1-2: Hadley-like Meridional Circulation

Table 5. List of constants used for the three-dimensionaléjalike meridional circulation test case (Test 1-2).

Constant Value Description

T 86400 s Period of motion (here 1 day)
K 5 Number of overturning cells

U 40mst Reference zonal velocity

wo 0.15ms! Reference vertical velocity

z1 2000 m Lower boundary of tracer layer
22 5000 m Upper boundary of tracer layer

The emphasis of the second test is on horizontal-vertiagblony. Many transport algorithms in dynamical cores are
horizontally-vertically split and it is important to undgand how much effect this splitting has on the accuracy ef th
scheme. The prescribed flow is designed to contain a numberanilations, similar to the test given in Zerroukat and
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10 J. Kent et al.

Allen (2012); an important difference here is that we regehe flow to give an analytical solution. The list of consgant
used in test 1-2 is given in table 5.
The zonal, meridional and vertical velocity field for thisttés specified as

U()\, 22 t) =Uuo COS(@)’ (36)
v(A p,2,t) = — G% 7o cos () sin(K ) cos 2 ) cos (W—t) , (37)
Kztopp Ztop T
w(\, @, z,t) —Yoro (—2sin(K ) sin(p) + K cos(p) cos(Kp)) sin <K> cos (ﬂ-—t) , (38)
Kp Ztop T

where the density equation (10) is used in the formulatiothefmeridional velocity and the vertical velocityw (for
height-based coordinates). The sympgldenotes the density at the surface with= po/(R41,). The surface pressure
is constant wittp, (A, ¢) = po. Since the pressure fieldneither varies in time nor in the horizontal directions tleetical
pressure velocity for pressure-based coordinates is easily obtained fron{48) and (38),

w()‘a @,p,t) = _gpw()"(paz(p)at)' (39)

The densityp vanishes in this equation when plugging in (38). The densitytime independent and needs to be kept
constant for advection schemes in conservation form. Téggeh guarantees that this test is equivalent for traceraibn
schemes written in both the advective or conservation form.

The vertical velocities for models with verticalor hybrido-pressuresf) coordinates are given by

A @, t) = 6(\ p,0,1) = —i—f w(X, @, 2(p), 1), (40)

wheren ando are given byy = o = p/po due to the choice of the constant surface presguee py. As in test 1-1 note
that this formulation assumes that the reference preseutkéd hybridn coordinate is set tp, = 1000 hPa. If a floating
Lagrangian coordinate is used on the basis of varying preskicknesses we recommend a mechanism that utilizes (39)
in combination with the discrete approach described in AgpeA.

The surface is flat withr, = 0 m, or equivalently surface geopotential = 0 m? s=2. The tracer field consists of a
vertical layer which is deformed over the duration of thewdetion. It is given by

1 {1+cos <M>} if 21 <2< 29,

q1 ()‘a ®, Z) = 2 Z2 — 21 (41)
0

otherwise,

wherezy = %(zl + z9). For models with pressure-based coordinates (6) and (d)tod#e used to convert between height
and pressure positions. Figure 5 shows latitude-heiglssections of the initial velocitiesandw, and the initial tracer

q1-
1

I L ql L | w m/s
—~
E 10000 n 10000 10000
S~ 8000 - 8000 8000
—
_g) 8000 - 6000 8000
=" 4000 4000 4000
() T ——
T 2000 ] F =000 2000

) 1 1 Ll )

908 80S 308 o 30N 60N 90N 608 308 0 30N 80N 90N
T T [T 11T R T T T 1 o
0 02 04 06 08 1 —120-60 0 60 120 -0.3 -0.15 0 0.15 0.3

Latitude

Figure 5. Test 1-2 initial conditions: latitude-height cross sectai A = 180° of tracerg; and of velocitiesy andw.

4.1. Grid Spacings and Diagnostics

This test should be run @t x 2° resolution with 30 uniformly spaced vertical levels,x 1° resolution with 60 uniformly
spaced vertical levels arid>° x 0.5° resolution with 120 uniformly spaced vertical levels. Fardarls using height levels
a maximum altitude ottop = 12000 m is suggested. These resolutions correspond to an appatexinorizontal grid
spacing of abou220 km, 110 km and55 km with a vertical grid spacing ahz = 400 m, Az = 200 m andAz = 100 m,
respectively. From (6) the position of the model top yields pressurgtop ~ 254.944 hPa. For 60 vertical levels the
model interfaces are positioned at 0 m, 200 m, 400 m etc. am€uthmodel levels are placed at 100 m, 300 m, 500 m,
etc. as with test 1-1.
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The simulation is run fot = 1 day, until the tracer field returns to its original configimat For each resolution
normalized error normg;, ¢» and /., should be computed by comparing the result$ at1 day against the initial
configuration. This will allow convergence rates to be cltad to assess the numerical order of accuracy of the tracer
transport algorithm.

4.2. Example Results

Figure 6 shows the tracei at timet = 12 hours and = 24 hours for test 1-2 when using’ x 1° resolution with60
vertical levels. Again, the results from MCore are integtetl from its native cubed sphere grid to the latitude-lrttg
grid. The results for both CAM-FV and MCore are shown asudgtheight cross sections at the longitude 180°. The
plot demonstrates how the tracer is deformed by the flow faeid, how it returns to its initial state afted hours. Both
models have produced ‘gaps’ in the final tracer at approx@mad N and30 S. This is due to the extreme stretching that
takes place in this area of the tracer, and it can be seen tretter plots ai 2 hours. Overshoots are evident for MCore at
both12 and24 hours.

CAM-FV t=12h MCore t=12h

10000 10000

8000 8000
6000 6000

4000 4000

2000

2000

9208 60S 308 0 30N 60N 90N 60S 308 0 30N 60N

MCore t=24h

10000
8000
6000
4000
2000

90s 608 308 0 30N 60N 90N 60S 308 0 30N 60N

Latitude
C TN T [ .

[ 0.2 0.4 0.6 0.8 1

Figure 6. Test 1-2: Latitude-height plots at= 180° of tracerq; at timet = 12 hours (top) and = 24 hours (bottom) for CAM-FV (left) and MCore
(right). The resolution ig€° x 1° with 60 vertical levels.

Example normalized error norms for CAM-FV and MCore are giweTable 6 for test 1-2. Also shown are the average
convergence rates for each error norm.

Table 6. Test 1-2: Normalized error norms at different nesohs, and the average convergence rate for each error. norm

2°L30 1°L60 1/2°L120 Convergence
0 0.1810 0.0411 0.0124 1.93
CAM-FV ly 0.2047 0.0536 0.0159 1.84
loo 0.4705 0.1575 0.0473 1.66
2 0.1368 0.0286 0.0063 2.22
MCore ly 0.1659 0.0462 0.0113 1.94
loo 0.4214 0.1586 0.0435 1.64

5. Test 1-3: Horizontal advection of thin cloud-like tracers in the presence of orography

The third test case investigates the ability of the tracamdport algorithm to accurately advect tracers over opigra
For models that utilize terrain-following coordinatesg thrography ensures that the tracer is transported betwedalm
levels. The list of constants used in test 1-3 is given ingahl

For this test the zonal, meridional and vertical velocitydisealong surfaces of constant height (above the mean sea
level) are specified as

u(A, @, z,t) = ug (cos p cos a + sin  cos Asin av) (42)
’U()\, @,Z,t) = —Uup Sin)\sina, (43)
w(/\a ®, 2, t) = 07 (44)
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12 J. Kent et al.

Table 7. List of constants used for the Horizontal adveatibthin cloud-like tracers in the presence of orography ¢ase (Test 1-3).

Constant Value Description

Up 2ra/T Maximum wind speed

T 1036800 s Period of motion (here 12 days)

@ /6 Rotation angle (radians, 3D

Am 3m/2 Mountain longitude center point

Om 0 Mountain latitude center point

ho 2000 m Maximum mountain height

R 3m/4 Mountain radius (radians)

Cm /16 Mountain oscillation half-width (radians)
Ap /2 Cloud-like tracer longitude center point
©p 0 Cloud-like tracer latitude center point
Zp1 3050 m First cloud-like tracer altitude

2p,2 5050 m Second cloud-like tracer altitude

Zp3 8200 m Third cloud-like tracer altitude

Azpa 1000 m First cloud-like tracer thickness

Azpo 1000 m Second cloud-like tracer thickness
Azp 3 400 m Third cloud-like tracer thickness

R, /4 Cloud-like deck radius (radians)

whereq is a rotation angle. The velocity field transports the traderizontally (at a constant height) once around the
sphere over a duration of 12 days. Note that some modelsagillireu. = v = 0 for z < hq to prevent problems occurring
due to flow below the maximum height of the orography. Thisvsléd modification of the initial condition that will not
impact the characteristics of the tracer transport test. Sthiface elevation is a three-dimensional variant of aBtké
(Scharet al. 2002) mountain with compact support, centered around theecgoint(\,,, ¢.,). The great circle distance
from the mountain center point (in radians) is defined as

Tm (A, @) = arccos [sin @y, sin ¢ + cos @, cos Y cos(A — Ay, )] (45)
The surface elevation is then given by
o 14 1 cos (T 2(Im) i, <R
— cos | — || cos” | — T'm, .
zs(A, ‘P) = 2 Ry, Cm )’ (46)
0, otherwise.

This choice ensures that the topography is flat away from thentain, but strongly oscillates over the mountain range
itself. The surface geopotential is then givendy(\, ¢) = gzs(\, ¢). The surface pressure is obtained by substituting
z = zs(A, p) into (6). The surface height, surface geopotential and thizbntal velocities are shown in Figure 7.

Three thin cloud-like passive tracers are defined to reptdewer-level, medium-level and upper-level cloud decks.
These three cloud-like layers are initially placed awayrfrihe mountain in a region of flat topography so as to more
easily evaluate error norms after one revolution aroundfirere. The lateral great circle distance from the cloutkecen
point (in radians) is defined as

p(A, ) = arccos [sin ¢, sin ¢ + cos ¢, cos @ cos(A — Ap)]. (47)
Similarly we define a vertical distance from the center othecloud level,

Tz,i(z) = |z — Zp7i|a (48)

wherei € {1, 2, 3}. If pressure-based vertical coordinates are used the thgighneeds to be computed according to (7)
first before applying (48). The lower-level and medium-leleud-like tracers are disk-shaped, with the three-disiamel
mixing ratio

1 27r,,i(2) (A, ©) : 1
11 20z A 1 i for . LA, .
e = | g (FE2)] [ (2] wrste) < damsanan 00 < R
0, otherwise,

fori € {1,2}. The upper-level cloud-like tracer is box-shaped with mgxratio

1, ifras(z) < 2Az, 3 andr, (N, ) < R,
a3(A, p,2) { 0. otherwise. (50)

The total tracer fieldg,, is the sum of these three cloud-like tracers

q4()‘7 2 Z) = q1()‘7 P Z) + qQ()‘a 2 Z) + Q3()‘a 2 Z) (51)
Selected cross sections of the four tracers are shown imd-&yu
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Figure 7. Test 1-3 initial conditions: latitude-longitude plots tietsurface heights (top left), the surface pressupg (top right), the zonal velocity.
(bottom left) and the meridional velocity (bottom right).
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Figure 8. Test 1-3 initial conditions: latitude-longitude plots cdterg; at 3100 m (top left)gs at 5100 m (top right)gs at 8100 m (bottom left), and a
longitude-height cross section along the equator of trager

5.1. *“Perceived Vertical Velocity”

If terrain-following coordinates are utilized, then thaders should pass between vertical model levels to ensairéhi
physical vertical velocityw is zero. However, due to the design of some models, it may aqidssible to enforce no
vertical velocity (v = 0) unless there is an explicitly prescribed “perceived wattvelocity” - that is, a mechanism for
enforcing exchange between vertically stacked model $eW¥lthout this the tracer would be advected along a sloping
model level which is different from a purely horizontal tsport at constant height. To run test 1-3 correctly this radlaat

a non-zero imposed “vertical velocity” must be applied ie firesence of topography for these models. This perceived
vertical velocity reflects that the terrain-following cdarate surfaces slope up- and downwards. The vertical motio
thereby ensures that there is an exchange of the tracergdmetive sloping model levels in case of purely horizontal
advection. The perceived vertical velocity is derived inp&pdix D.
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14 J. Kent et al.

5.2. Grid Spacings and Diagnostics

This test should be run af x 1° resolution ¢ 110 km equatorial grid spacing) with 30, 60, and 120 verticaglevor
12 days. For models using height levels a model top[@f) = 12000 m is suggested with a uniformly-spaced vertical grid
spacing ofAz in the flat regions away from the mountain range. For the 68catievel setup this means that the model
interfaces are positioned atm, 200 m, 400 m, etc. and that the full model levels are placed @i m, 300 m, 500 m,
etc. in the flat regions. If the model utilizes orographyldaling vertical coordinates the grid spacing will be norifanm
over the mountain range. From (6) the height position of te@htop corresponds i@op ~ 254.944 hPa.

Normalized/y, /> and /., error norms should be computed for, ¢, g3 and ¢, att = 12 days against the initial
conditions, for each of the vertical resolutions.

5.3. Example Results

MCore Model Levels
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CAM-FV Height Levels (m) MCore Height Levels (m)
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Figure 9. Test 1-3: Longitude-height cross-section of tragemat the equator, on model levels (top) and interpolated tstemt height levels (middle)
at timet = 6 days for CAM-FV (left) and MCore (right). The black shadinglicates the mountain. The results at time 12 days on model levels
(bottom) are also shown. The resolution i x 1° with 60 vertical levels.

Cross sections showing both longitude-model level anditadg-height levels are taken at the equator for trager
on day 6, and are shown in the top and center plots of Figure &$b 1-3. The top plots show the tracer on models
levels, while the middle plots show the tracer interpoldtecdonstant height levels. Both CAM-FV and MCore use terrain
following vertical coordinates, and therefore the tracesges between model levels. Both models smooth out the &sice
it is passed between the model levels, and this reducesaber tmaximum.

The bottom plot of Figure 9 shows the longitude-model leveks section of tracey, at timet¢ = 12 days. In the
presence of strong diffusion the two lower tracers can begateinto one (for example, with CAM-FV). The normalized
error norms for test 1-3 are given in Tables 8 and 9. Note thaetror norms are calculated at time- 12 days, and
are only calculated in the Western Hemisphere; this is aw@y the mountain, where the vertical levels are equidistant
in height. Both CAM-FV and MCore produce the smallest erromms for tracer,. This is because the vertical levels
of the hybrid terrain-following coordinates become smeotand flatter with height, and therefore there is less teansf
between model levels fay, thang;. There is even less transfer between model levelg;fahan ¢, however,gs is
discontinuous whereag is smooth. Table 9 shows that an increase in vertical rasoluivhile keeping the horizontal
resolution constant, provides only a small improvemenh&érror norms.This result is due to the design of the test, as
increasing the number of vertical levels leads to more fates that the tracer must pass through.
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Table 8. Test 1-3: Normalized error norms for tracg@rsge andgs. The resolution igd° x 1° L60

q1 q2 q3
2 1.56 1.14 1.31
CAM-FV ly 0.84 0.75 1.86
lo 0.78 0.74 0.88
2 1.07 0.82 0.85
MCore lo 0.69 0.57 1.32
8 0.70 0.57 0.71

Table 9. Test 1-3: Tracer normalized error norms at different vertical resolutiotie (horizontal resolution is° x 1°)

L30 L60 L120

0y 1.35 1.33 1.31

CAM-FV 0y 0.81 0.77 0.78
lo 0.88 0.85 0.91

A 1.08 0.89 0.83

MCore 2 0.70 0.57 0.55
l 0.81 0.71 0.73

6. Conclusions

This paper has presented three tracer transport test ¢egesan be easily incorporated into dynamical cores. The tes
use prescribed non-divergent velocities, and are desigm#that the tracer returns to its initial position for sttefgrward
comparison with an analytical solution. These tests hedpsssthe ability of transport schemes to model three-diimeals
tracer transport. The focus of the tests is on the propettigsare relevant to tracer transport. These include palsic
properties, such as positivity and preservation of noadirtracer correlations, and numerical issues, such azdmbai-
vertical coupling and the use of terrain-following verticmordinates. We have provided recommended setups and
diagnostics that aim to establish a standard for three-uSineal tracer transport test cases on the sphere. Fortran
initialization routines are provided in the supplemeniafgrmation.

We have demonstrated the test cases and produced examyts vsing two dynamical cores; CAM-FV and MCore.
Error norms and mixing diagnostics have been provided tovadlasy comparison with future dynamical cores. The results
highlight the extent of the deformation in test 1-1 and te&; and how the simple horizontal advection of tracers over
orography becomes a challenging test when hybrid ter@lowing coordinates are used.

Appendix A - Vertical Lagrangian Pressure-Based Coordinaes

If an advection scheme utilizes a floating Lagrangian cawid without explicit vertical transport, as in Lin (200#)e
conservation law for the advection takes the form

%(qu) + V- (iApq) =0, (52)
wherew denotes the horizontal wind vector, ang the pressure thickness of the layers. The vertical trangipen needs

to be mimicked by a vertical remapping algorithm after theizomtal advection step. The following discrete algorithm
is suggested to prescribe the time-dependent deformirsgire surfaces. First, we recommend calculating the peessu
valuesp(to) at the future time, = ¢t; + At whereAt symbolizes the time step length andis the current time counted
in seconds since the start of the advection test. The newymeesalues are then discretely given by

At
plaz) = plen) + At (gt + 5. (59

where a time-centered evaluation of the time-dependemesgjons is selected. The time dependenvariation can then
be computed as the difference of the pressures at moddkiogsrat time,, and set back to its initial value as part of a
remapping algorithm.

For example, using (19) the pressure for test 1-1 is updated a

p(ta) = p(t1) + At wp sin [)\ — 2771- (t1 + %)] cos() cos {2771- (tl + %)} s(p(t1)). (54)

Appendix B - Placement of Vertical Levels Using Hybrid Coeffcients

The hybrid orography-followingy-coordinate (Simmons and Burridge 1981) comprises a presswordinate with a
o = p/ps component. The pressure at vertical leyé$ given by

P\, m,t) = a(n)po + b(n)ps(\, v, 1), (55)
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wherea(n) andb(n) are the hybrid coefficients, angd= p(z)/ps under the special condition that = po. Note that we
also use this setup for test 1-3, as away from the mountainefleeence surface pressure is equabgoFor isothermal
conditions the vertical pressure profiles are given by (8, #his can be used to relateto z. The hybrid coefficients at
interface levels are then calculated as in Laprise and &6{f890)

a(n) =n —b(n), (56)
_ 1~ "top (57)
1 —ntop’

wherentop = p(ztop)/ps- The hybrid coefficients at full model levels, with indéxare computed by the linear average
of the interface levels

1

ak :5 (ak+%+ak7%)’ (58)
1

b= (biey +biy) (59)

Note that in the discrete system equations (55) and (6) dyeeguial for the interface levels and not the full model level
This is due to the linear average used to calculate (58) é8)d mwever, this discrepancy is small and does not affect th
setup of the tracer tests in this document. Therefore, fopthrpose of the tracers tests in this document, it can bemgssu
that (55) and (6) are equal on both interface and model levels

Appendix C - Mixing Diagnostics

A measure of the types of numerical mixing which occur dutiregsimulation can be quantitatively obtained using mixing
diagnostics. Following Lauritzen and Thuburn (2012) andritaenet al. (2012) there are three categories of numerical
mixing: Real mixingwhere scatter points move to the concave sidg;®ange-preserving unmixing/here scatter points
move to the convex side af, or below the convex hull, but not outside the initial datage;Overshootingwhere scatter
points fall outside the initial data range.
We first defineA A, as the area of grid celk and A as the total area of the domain. Further, we defipeas

the normalized shortest distance between the paipt&;) and the initial(x, ¥ (x)) correlation curve. For the initial
distribution given in (32)d}. is defined as

where
1 1/3
Clxr: &) = 5 |:432Xk + 6\/750(2§k —1)3+ 5184Xi} : (61)
roo 1 5 5
100 6) = COms ) + Gy (ﬂ - Egk) , (62)
A ks €)= min [max (x50 (e €4) ) o | (63)
and
2 2
_ Xt — X & —Y(x)
L(X’ Xk;&k) - \/(X(maz) _ X(mzn)) + (é‘(mal) _ g(mzn) : (64)

The constant mixing ratios which bound the initial profile ar

X =0, xmer) = 1o, (65)
gmim = 0.1, gmen) =0.9.

The mixing diagnostics work based on the classification ohedement pai(yy, &) into regionA, B or (AU B)’. The
mathematical descriptions of and3 are
A= {06 € ™ Xm0 and Flx) < & <) |

B = {06100k &) € [, 0)] s [€0m), ¢me0)] and (e, &) & A},
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whereF is the straight line which connectg (™), £(ma=)) and(y (me®) ¢lmin)),
The diagnostic for mixing that resembles ‘real’ mixing idided as

_ 1 dAAg, i (xk, &) € A,
b= A zk: { 0 otherwise. (66)
The diagnostic for mixing that is range-preserving is
_ 1 dkAAk, if (Xk,fk) € B,
bu = A zk: { 0 otherwise. (67)
Finally the diagnostic for overshooting is
_ 1 dpAAy, i (xk, &) € AUB,
bo = A ; { 0 otherwise. (68)

In all cases the summation is taken over all cglls

For simplicity, and to prevent these calculations usiny Vamge file sizes, we chose to constrict our analysis to thee fiv
equidistantly-spaced model levels at 4500, 4700, 49000 &h@ 5300 m when calculating the mixing diagnostics and
correlation plots for test 1-1.

Appendix D - Perceived Vertical Velocity for Test 1-3

We are interested in writing a purely horizontal velocitydia in both a coordinate-following and a Cartesian basis. This
procedure allows us to identify the source of the “percéiwattical velocities which may be caused by an underlying
terrain-following vertical coordinate system with slogiocoordinate surfaces. The basis vector following cootdifines
can be decomposed into a purely horizontal velocity and elpuertical velocity. Mathematically, this takes the form

R oz\ . .
gs = (8_) Gz + gz, (69)
€z S
wherez is an arbitrary horizontal coordinate (such)asr ), z is the height coordinate,denotes the quantity which is

constant along coordinate lines afid 5. andg,. denote basis vectors along surfaces of congtanandz, respectively.
Given a velocity field in coordinate-following sphericalardinates (with basis vectogg andg;) we have

1 0z
o oz = = 7
gA acos (aA)SgZ +g/\7 ( 0)
L 1 /0z\ . .
9d¢ *a <8_(,0)ng + Go- (71)

For test 1-3, we impose a purely horizontal velocity fi€le: g\ + u, g, on the sphere (horizontal with respect to the
“main sea level”). Consequently, in coordinate-followspherical coordinates we have

i =uy | g5 — (%) ; +u, | gp — 1(22) 5 (72)
=Uux | 9 acosyp \ OA ng o | 9e a \ 9y ng )
. . U 0z U 0z .
=uxgs + UpJp + [_aco/\sgo (5) - f (%) ] gz (73)

The basis vector for the last term in (73})jis Therefore, we observe that in coordinate-following formtvave introduced
the additional “perceived” vertical velocity

U 0z Uy [0z
v @ Ccos <8)\)S a (&p)s’ (74)
whereuy andu, are the zonal and meridional velocities with respect to teamsea level. Here, they coincide with
andv shown in (42) and (43). The “perceived” vertical velocitypeads on how coordinate surfaces vary with height. The
derivatives in (74) are taken along the sloping coordinattases (surfaces of the constant generalized verticatiauate
s). Oncew is computed the corresponding perceived vertical presaioeity w is given by (39).

To demonstrate how the perceived vertical velocity is cotaguve present it in the height-based orography-following
coordinate of Gal-Chen and Somerville (1975) (here denGt&ll The formulation for the perceived vertical velocity fo
the hybrid pressure-baseaoordinate (Simmons and Burridge 1981), which is often uségdrostatic dynamical cores,
is also shown. If other vertical coordinates are used theafidaition for the vertical velocity needs to be newly derived
according to the algorithm given here.
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Gal-Chen Vertical Coordinate

The GC vertical coordinate € [0, ztop| maps to the range € [2,(A, ¢), ztopl- It is defined as

- <z ZS(Av QD)
Z =2z — (75)
top <Ztop — 2s(A, @))
wherezs (A, ¢) is the surface elevation, for instance defined by (46),,qeg is the height position of the model top.
Coordinate surfaces in Cartesian space are defined viavbesaof (75),

z = ZS()\, (,0) + i(ztop - Zs()‘a (,0)) (76)
“top

To compute the perceived vertical velocity we differergiét6) along surfaces of constantobtaining
0z 0Oz z
= = 1—- = 77

0z Oz z
— = 1-— . 78
dp 0y < Ztop) e

The final step in this procedure requires one to compute thedrdal derivatives of; with respect to\ ande. Using the
Schar mountain profile (46) the derivatives of the surfdeeation are given as follows:

hom . Trm cos? Trm
_ in Iim )
0z 2t B G
el B () () (2 (). ren
0, otherwise.

wherez € {\, ¢} and

Orm  COS Py cos psin(A — Ap,)

_ 7 80
8>\ \/1 — COS2 (rm(Av SO)) ( )
Ory = sinpy, €08 ¢ + cos Qpm sin @ cos(A — Ay, (81)
Do V1= cos?(rm (A, ¢)) .

Note that whem,,, (A, ¢) = 0 or =, which will occur at(X, ¢) = (Am, ©m) OF (A, £ 7, —0p,), We enforceag—;l =
and% = 0. At each coordinaté), ) the set of equations (74)-(81) then leads to a unique perdeiglocity associated
with the terrain-following coordinate transform.

Hybrid-n Vertical Coordinate

Calculation of the perceived vertical velocity under hgbyi coordinates requires the computation of the horizontal
derivatives ofz with respect tox and ¢. Under hybrids coordinates we use the fact that a(n)po + b(n)ps (A, ©)
(Simmons and Burridge 1981). Combining this with the pressguation for isothermal conditions with temperatiise
and the reference surface presspyeve obtain

_ _Rado 1o ps(A )
o= =P ot + 00202 ©2)
Consequently,
% - _ RaTo a p5(>‘a 50) - Maps
((’M) [ () + bl) Do ] po O’ (83)
% — _ RaToy p5(>‘a 50):|_1 Maps
(380)77 - g [a(n) + o) Po po Op (64)
Equivalently,
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0z RyTy Ips

) I b , 85
( m)n m M2y (85)

0z RqTy Ips

=) =- b ) 86
(350)77 9p ) dp (89)

Since the surface profile is given in terms of heightve need to use

Ips gpo (gzs) 0zs
= exp

ox B _RdT() RdTo ox ’

(87)

wherex denotes a place holder € {), ¢}) and% is again given by (79)-(81). Since pressure is constanttivith, we
also have that the pressure velocity is related to the \ar&locity via equation (39).
In practice the following steps can be used to apply the perdevertical velocity under a hybrig-vertical coordinate:

Compute the surface height derivatives from (79)-(81).
Compute the surface pressure derivatives from (87).
For each coordinate line (vertical edge) compute (86)-(8
Compute the perceived vertical velocityfrom (74).
Compute the perceived pressure velogitiyom (39).
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