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Abstract.
In this paper the recently developed variable-resolution option within the Community

Earth System Model (VR-CESM) is assessed for long-term regional climate modeling of
California at ∼28 km and ∼14 km horizontal resolutions. The mean climatology of near-
surface temperature and precipitation is analyzed and contrasted with reanalysis, grid-
ded observational datasets and a traditional regional climate model (RCM) – the Weather
Research and Forcasting (WRF) model. Statistical metrics for model evaluation and tests
for differential significance have been extensively applied. With only prescribed sea sur-
face temperatures, VR-CESM tended to produce a warmer summer (by about 1 to 3 ◦C)
and overestimated overall winter precipitation (about 25%-35%) compared to reference
datasets. Increasing resolution from 28 km to 14 km did not produce a statistically sig-
nificant improvement in the model results. By comparison, the analogous WRF clima-
tology (constrained laterally and at the sea surface by ERA-Interim reanalysis) was ∼1
to 3 ◦C colder than the reference datasets, underestimated precipitation by ∼20%-30%
at 27 km resolution and overestimated precipitation by ∼65-85% at 9 km. Overall, VR-
CESM produced comparable statistical biases to WRF in key climatological quantities.
This assessment highlights the value of variable-resolution global climate models (VRGCMs)
in capturing fine-scale atmospheric processes, projecting future regional climate and ad-
dressing the computational expense of uniform-resolution global climate models.

1. Introduction

Global climate models (GCMs) have been widely used
to simulate both past and future climate. Although these
models have demonstrable success in representing large-scale
features of the climate system, they are usually employed
at relatively coarse resolutions (∼1◦), largely as a result of
the substantial computational cost required at higher reso-
lutions. Global climate reanalysis datasets, which assimilate
climate observations using a global model, represent a best
estimate of historical weather patterns. However, reanal-
ysis datasets still cannot fulfill the needs of policymakers,
stakeholders and researchers that require high-resolution re-
gional climate data (http://reanalyses.org/atmosphere/
overview-current-reanalyses). Regional features such as
microclimates, land cover, and topography, are not well
captured by either GCMs or reanalysis datasets [Leung
et al., 2003]. However, dynamical processes at unrepresented
scales are significant drivers for local climate variability, es-
pecially over complex terrain [Soares et al., 2012]. In or-
der to capture fine-scale dynamical features, high horizon-
tal resolution is needed for a more accurate representation
of small-scale processes and interactions [Rauscher et al.,
2010]. With these enhancements, regional climate data is
expected to be more useful for formulating climate adapta-
tion and mitigation strategies locally.

In order to model regional climate at high spatial resolu-
tions over a limited area, downscaling techniques have been
developed, such as statistical and dynamical downscaling.
Dynamical downscaling typically uses nested limited-area
models (LAMs) or, more recently, variable-resolution en-
abled GCMs (VRGCMs) [Laprise, 2008]. In this context,
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LAMs are typically referred to as regional climate models
(RCMs) when used for climate study. Forced by the out-
put either from GCMs or reanalysis datasets, RCMs have
been widely used to capture physically consistent regional
and local circulations at the needed spatial and temporal
scales [Christensen et al., 2007; Bukovsky and Karoly , 2009;
Mearns et al., 2012]. Recently, there has been a growing in-
terests in the use of VRGCMs for modeling regional climate.
Unlike RCMs, VRGCMs use a relatively coarse global model
with enhanced resolution over a specific region [Staniforth
and Mitchell , 1978; Fox-Rabinovitz et al., 1997]. Strategies
that have been employed for transitioning between coarse
and fine-resolution regions within a VRGCM include grid
stretching [Fox-Rabinovitz et al., 1997; McGregor and Dix ,
2008] and grid refinement [Ringler et al., 2008; Skamarock
et al., 2012; Zarzycki et al., 2014a]. VRGCMs have been
demonstrated to be effective for regional climate studies and
applications at a reduced computational cost compared to
uniform GCMs [Fox-Rabinovitz et al., 2006; Rauscher et al.,
2013; Zarzycki et al., 2015].

Compared with RCMs, a key advantage of VRGCMs is
that they use a single, unified modeling framework, rather
than two separate models (GCM and RCM) with potentially
disparate dynamics and physics parameterizations. RCMs
may suffer from potential inconsistencies between the global
and regional scales and lack two-way interactions at the nest
boundary [Warner et al., 1997; McDonald , 2003; Laprise
et al., 2008; Mesinger and Veljovic, 2013], which can be mit-
igated with the use of VRGCMs. VRGCMs also provide a
cost-effective method of reaching high resolutions over a re-
gion of interest – the limited area simulations in this study at
28km and 14km resolution represent a reduction in required
computation of approximately 10 and 25 times, respectively,
compared to analogous globally uniform high-resolution sim-
ulations. For the purposes of this paper, we focus on the
recently developed Community Earth System Model with
variable-resolution option (VR-CESM) as our VRGCM of
interest. This configuration is driven by the Community At-
mosphere Model’s (CAM’s) Spectral Element (SE) dynami-
cal core, which possesses attractive conservation and parallel
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scaling properties [Dennis et al., 2011; Taylor , 2011], as well
as recently developed variable-resolution capabilities [Zarzy-
cki et al., 2014a]. This model has been employed by Zarzy-
cki et al. [2014b] to show that a high-resolution refinement
patch in the Atlantic basin for simulating topical cyclones
represented significant improvements over the unrefined sim-
ulation. Zarzycki et al. [2015] also compared the large-scale
climatology of VR-CESM 0.25◦ and uniform CESM at 1◦,
and found that adding a refined region over the globe did
not noticeably affect the global circulation. Rhoades et al.
[2015] has also assessed the use of VR-CESM for modeling
Sierra Nevada mountain snowpack in the western United
States.

However, for the purposes of long-term regional climate
modeling, particularly in California, VR-CESM has yet to
be rigorously evaluated. This paper aims to fill that gap
by analyzing the performance of VR-CESM against gridded
observational data, reanalysis data and in comparison to
a traditional RCM. Our variable-resolution simulations are
implemented with horizontal resolutions of 28km and 14km
respectively, which are much more typical for dynamically
downscaled studies. This paper focuses on California in the
western United States as the study area. With its complex
topography, coastal influence, and wide latitudinal extent,
California is an excellent test bed for regional climate mod-
eling. Further, an understanding of local climate variability
is incredibly important for policymakers and stakeholders
in California due to its vast agricultural industry, mixed de-
mographics, and vulnerability to anthropogenically-induced
climate change [Hayhoe et al., 2004; Cayan et al., 2008].

For comparison, the Weather Research and Forecasting
(WRF, Skamarock et al. [2005]) model has been used for
simulating California’s climatology at 27km and 9km grid
spacing. RCM simulations over California have also been
conducted in previous studies and demonstrated the need
for high spatial and temporal resolution to better address re-
gional climate and extreme events, especially in the vicinity
of complex topography where large climatological gradients
are present [Leung et al., 2004; Kanamitsu and Kanamaru,
2007; Caldwell et al., 2009; Pan et al., 2011; Pierce et al.,
2013]. In particular, Caldwell et al. [2009] presented results
from WRF at 12km spatial resolution and showed that, al-
though the RCM was effective at simulating the mean cli-
mate when compared with observations, some clear biases
persisted (particularly an overestimation of precipitation).

This study focuses on the models’ ability to represent cur-
rent climate statistics, particularly those relevant to heat
and precipitation extremes. We anticipate that this work
will validate VR-CESM for modeling the mean regional cli-
matology of California and will further motivate the adop-
tion of variable-resolution modeling to study other local cli-
matic processes. Our eventual goal is to utilize these models
for assessing historical and future regional climate extremes.

This paper is organized as follows: Section 2 describes the
model setup, datasets and methodology for evaluation and
intercomparison. In section 3, simulation results are pro-
vided and discussed, with focuses on near-surface (2-meter)
temperature and precipitation. Key results are summarized
along with further discussion in section 4.

2. Models and Methodology

2.1. Simulation design

In this study, all global simulations use the Atmospheric
Model Intercomparison Project (AMIP) experimental pro-
tocols [Gates, 1992]. These protocols are widely used and
support climate model diagnosis, validation and intercom-
parison. AMIP experiments are constrained by realistic sea-
surface temperatures (SSTs) and sea ice from 1979 to near
present without the added complexity of ocean-atmosphere

feedbacks in the climate system. In particular, observed
SSTs and sea ice at 1◦ horizontal resolution are provided
and updated following the procedure described by [Hurrell
et al., 2008].
2.1.1. VR-CESM

CESM is a state-of-the-art Earth modeling framework
managed by the National Center for Atmospheric Research
(NCAR), consisting of coupled atmospheric, oceanic, land
and sea ice models. For decades CESM has been used for
modeling present and future global climate [Neale et al.,
2010a; Hurrell et al., 2013]. The coupling infrastructure in
CESM communicates the interfacial states and fluxes be-
tween each component model to ensure conservation. Since
we follow AMIP protocols, only the atmosphere and land
model are integrated dynamically. Here, CAM version 5
(CAM5) [Neale et al., 2010b] and the Community Land
Model (CLM) version 4.0 [Oleson et al., 2010] are used.
As mentioned earlier, the SE dynamical core is employed
along with variable-resolution grid support. The FAMIPC5
(F AMIP CAM5) component set is chosen for these simula-
tions.

For our study, the variable-resolution cubed-sphere grids
are generated for use in CAM and CLM with the open-
source software package SQuadGen [Ullrich, 2014; Guba
et al., 2014]. The grids used in this study are depicted in
Figure 1. The maximum horizontal resolution on these grids
is 0.25◦ (∼28km) and 0.125◦ (∼14km) respectively, with
a quasi-uniform 1◦ mesh over the remainder of the globe.
Grids are constructed using a paving technique with a 2:1
spatial resolution ratio, so two transition layers are required
from 1◦ to 0.25◦, and one additional transition from 0.25◦

to 0.125◦. In our study, and previous studies (e.g. Zarzycki
et al. [2015]), general circulation patterns (e.g., wind, pres-
sure and precipitation) do not exhibit apparent artifacts in
the variable-resolution transition region, and the design of
the SE dynamical core ensures that dry air and tracer mass
are conserved globally [Taylor and Fournier , 2010]. Simula-
tions are performed over the time period from 1979-01-01 to
2005-12-31 (UTC) and year 1979 is discarded as a spin-up
period. This 26-year time period is chosen to provide an
adequate sampling of inter-annual variability, to limit com-
putational cost, and to coincide with the satellite era where
adequate high-quality gridded and reanalysis datasets are
available.

Variable-resolution topography files were produced by
sampling the National Geophysical Data Center (NGDC) 2-
min (∼4 km) Gridded Global Relief Dataset (ETOPO2v2),
followed by the application of a differential smoothing tech-
nique as described in Zarzycki et al. [2015]. Using this
technique, the c parameter from their Eq. (1) was ad-
justed to reduce noise in the vertical pressure velocity field.
The grid-scale topography is depicted in Figure 2, includ-
ing the topography of uniform CESM at 1◦. As we can see,
higher resolution provides clear improvement in the repre-
sentation of regional topography, which is necessary for the
correct treatment of fine-scale dynamic processes strongly
influenced by complex terrain. Topography at very coarse
resolution (∼1◦) cannot represent local details like the shape
of valleys or mountain peaks, resulting in the loss of regional
climate patterns.

Land surface datasets, including plant functional types,
at 0.5◦ were adopted. Greenhouse gas (GHG) concentra-
tions and aerosol forcings are prescribed based on historical
observations. CAM and CLM tuning parameters are not
modified from their default configurations.
2.1.2. WRF

WRF has been widely used over the past decade for mod-
eling regional climate [Lo et al., 2008; Leung and Qian,
2009; Soares et al., 2012; Sun et al., 2015]. In our study,
the fully compressible non-hydrostatic WRF model (version
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3.5.1) with the Advanced Research WRF (ARW) dynami-
cal core is used. WRF is a limited area model that supports
nested domains with a typical refinement ratio of 3:1. The
simulation domains of WRF are depicted in Figure 3. Two
WRF simulations, representing finest grid resolutions of 27
km and 9 km, are conducted. For the WRF 27km simula-
tion, one domain is used. For the WRF 9km simulation, two
domains are used, with the outer domain at 27 km (same
as the WRF 27km) and an inner nested domain at 9 km
horizontal grid resolution. For both simulations, grids are
centered on California and have 120×110 and 151×172 grid
points, respectively. At all lateral boundaries, 10 grid points
are used for relaxation to the coarse solution. In order to
reduce the drift between forcing data and modeling output,
grid nudging [Stauffer and Seaman, 1990] is applied to the
outer domain every 6 hours at all levels except the plane-
tary boundary layers (PBL), as suggested by Lo et al. [2008].
This setup uses 41 vertical levels with model top pressure at
50 hPa.

Additionally, the following physics parameterizations are
employed: WSM (WRF Single-Moment) 6-class graupel mi-
crophysics scheme [Hong and Lim, 2006], Kain-Fritsch cu-
mulus scheme [Kain, 2004], CAM shortwave and longwave
radiation schemes [Collins et al., 2004]. These settings are
chosen by assessing the results from several common pa-
rameterization combinations over one-year simulation, with
comparing to gridded observations. For the boundary layer,
the Yonsei University scheme (YSU) [Hong et al., 2006] is
used, and the Noah Land Surface Model [Chen and Dudhia,
2001] is applied. Both are chosen as they are common for
climate applications that balance long-term reliability and
computational cost. Although many other options and com-
binations of parameterizations are available for configuring
WRF (and others have tackled a complete assessment of
these options for particular problems), our choices are made
simply to represent a typical WRF configuration.

ECMWF Reanalysis (ERA-Interim) data at both the sur-
face and multiple pressure-levels provides initial and lateral
conditions for the domains. The lateral conditions and SSTs
are updated every 6 hours. ERA-Interim reanalysis (∼80
km) has been widely used and validated for its reliability
as forcing data [Dee et al., 2011]. WRF simulations are
conducted over the same time period as VR-CESM (i.e.,
1979-01-01 through 2005-12-31 UTC). Again, the year 1979
is used as a spin-up period and is discarded for purposes of
analysis. Notably, the ∼9 km resolution employed in the
innermost domain is finer than most previous studies for
long-term climate.

The topography employed for the 27 km and 9 km simu-
lations is interpolated from USGS (United States Geological
Survey) elevation data with 10-min (∼20 km) and 2-min (∼4
km) resolution, respectively. The post-processed grid-scale
topography is contrasted in Figure 2. Elevation differences
between VR-CESM and WRF are irregular and relatively
small, except over the Central Valley where VR-CESM has
consistently higher values than WRF. This indicates a differ-
ent methodology for preparation of the topography dataset
and may also be partly due to the use of the USGS elevation
instead of NGDC elevation datasets.

2.2. Methodology

Near-surface temperature and precipitation have been an-
alyzed over California to assess the performance of VR-
CESM in representing the mean climatology. Specifically,
our evaluation focuses on daily maximum, minimum and av-
erage near-surface temperatures (Tmax, Tmin and Tavg) and
daily precipitation (Pr). These variables are key in a base-
line climate assessment due to their close relationship with
water resources, agriculture and health. In this context, the

biggest impact of weather on California is through heat and
precipitation extremes. Since heat extremes dominate dur-
ing the summer season, we focus on June, July and August
(JJA) for assessment of temperature. On the other hand,
since the vast majority of precipitation in California occurs
in the winter season, December-January-February (DJF) is
emphasized.

In order to adequately account for natural variability of
the mean climate, the simulation period must be chosen ap-
propriately [Solomon, 2007]. However, the number of simu-
lated years required for adequate climate statistics depends
greatly on the regional climate variability and spatial scale.
Past studies have used average weather conditions over a
30-year period to ensure sufficient statistics and to avoid
imprinting from annual variability [Dinse, 2009]. To check
that our 26-year simulation period is sufficient, we have ex-
amined the interannual variability of mean temperature and
precipitation in all simulations and observations over 5, 10,
20 and 25 seasons or years. We observe that for clima-
tological mean temperature and precipitation, the relevant
statistics are effectively converged for a 20-year sample, sug-
gesting that our simulation period is sufficient to adequately
capture the variability of these quantities.

The results in section 4 are obtained from simulated and
observed data over the period 1980 to 2005. All datasets
have been linearly de-trended at each grid point so as to
facilitate averaging of all simulation years. It is found that,
for annual and JJA near-surface temperature (Tmax, Tmin

and Tavg), a statistically significant trend is present under
the two-tailed t-statistic with a significance level of 0.05.
The average magnitude of the linearly fit trend is about 1.3
K over 26 years for Tmax, Tmin or Tavg. No statistically
significant trend has been detected for precipitation.

California consists of a diverse variety of climate regions
as a consequence of its rugged topography and large latitudi-
nal extent. The distinct character of these regions is poorly
captured in typical coarse global climate simulations [Abat-
zoglou et al., 2009; Caldwell et al., 2009]. In order to assess
the performance of VR-CESM within each region, the state
has been divided into five climate divisions, including the
Central Valley (CV), Mountain Region (MR), North Coast
(NC), South Coast (SC), and Desert Region (DR). The spa-
tial extent of these divisions is depicted in Figure 3. These
five divisions are determined loosely based on the results of
Abatzoglou et al. [2009] and the climate divisions used by
the California Energy Commission. To restrict the analysis
in each division, simulations and datasets have been masked
to restrict climate variables to each division.

Standard statistical measures have been used to quan-
tify the model performance in comparison with the refer-
ence datasets. These include the root-mean-square devia-
tion (RMSD), mean signed difference (MSD), mean rela-
tive absolute difference (MRD), and sample standard devi-
ation (s). Further, spatial correlation is assessed by com-
puting Pearson product-moment coefficient of linear corre-
lation between climatological means from models and refer-
ence datasets. Mathematically, these quantities are written
as

RMSD =

√√√√ 1

N

N∑
i=1

(vi − v̂i)2 (1)

MSD =
1

N

N∑
i=1

(vi − v̂i) (2)

s =

√√√√ 1

M − 1

M∑
j=1

(vj − v̄)2 (3)

MRD =

(
N∑
i=1

|vi − v̂i|

)/(
N∑
i=1

v̂i

)
. (4)
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where vi and v̂i are values from the simulation output and
reference dataset, respectively; i is the grid-point index and
N is the total number of grid points over specific regions; j
is the simulation year index, M is the total number of sim-
ulated years and v̄ is the mean value over all years. Grid-
point differences are calculated by remapping the reference
datasets to the model’s output grid using bilinear interpo-
lation. Remapping using patch-based interpolation has also
been tested and nearly identical results have been observed.
When necessary, the statistical quantities are further aver-
aged over each division.

Throughout the remainder of this paper, student’s t-test
has been used to test whether two sets of annual-, seasonal-
or monthly-average data are the same. F-test is applied to
test whether the sample variances are equal. These tests
are used only when the sample population can be described
adequately by a normal distribution, where normality is as-
sessed under the Anderson-Darling test. When the sample
populations do not approximately follow a normal distribu-
tion, Mann-Whitney-Wilcoxon (MWW) test and Levene’s
test are employed in lieu of the t-test and F-test, respec-
tively. All statistical tests are evaluated at the p = 0.05
significance level.

Complementary results to this study are provided in the
online supplement, including the original grid-refined mesh
files, the sensitivity of climatological statistics to choice of
time period, the observed time trend, and other seasons not
addressed in this paper and corresponding statistics metric
tables. Results are also provided with comparison of VR-
CESM to the output from a globally uniform CESM run at
0.25◦ spatial resolution with the finite volume (FV) dynam-
ical core [Wehner et al., 2014].

2.3. Gridded and Reanalysis Datasets

Reanalysis and gridded observational datasets of the
highest available quality are employed (see Table 1). Dif-
ferences between gridded observations can be due to the
choice of meteorological stations, interpolation techniques,
elevation models and processing algorithms. Consequently,
the use of multiple reference datasets is necessary to under-
stand the underlying uncertainty in the observational data.
Detailed descriptions of these datasets are as follows.

NARR: The North American Regional Reanalysis
(NARR) is the NCEP (National Centers for Environmen-
tal Prediction) high-resolution reanalysis product that pro-
vides dynamically downscaled data over North America at
∼32 km resolution and 3-hourly intervals from 1979 through
present [Mesinger et al., 2006]. We note that some inaccu-
racies have also been identified in NARR, particularly in
precipitation fields [Bukovsky and Karoly , 2007].

NCEP CPC: This dataset provides gauge-based anal-
ysis of daily precipitation from the National Oceanic and
Atmospheric Administration (NOAA) Climate Prediction
Center (CPC). It is a suite of unified precipitation products
obtained by combining all information available at CPC via
the optimal interpolation objective analysis technique. The
gauge analysis covers the Conterminous United States with
a fine-resolution at 0.25◦ from 1948-01-01 to 2006-12-31.

PRISM: The Parameter-elevation Regressions on In-
dependent Slopes Model (PRISM) [Daly et al., 2008] sup-
ports a 4 km gridded dataset obtained by taking point
measurements and applying a weighted regression scheme
that accounts for many factors affecting the local clima-
tology. The datasets include total precipitation and min-
imum/maximum, (derived) mean temperatures and dew-
points. Monthly climatological variables are available for
1895 through 2014 from the PRISM Climate Group (Ore-
gon State University, http://prism.oregonstate.edu, cre-
ated 4 Feb 2004). Notably, PRISM is the United States

Department of Agriculture’s official climatological dataset.
PRISM is used as our primary reference dataset for model
performance evaluation.

UW: The UW daily gridded meteorological data is ob-
tained from the Surface Water Modeling group at the Uni-
versity of Washington [Maurer et al., 2002; Hamlet and Let-
tenmaier , 2005]. UW incorporates topographic corrections
by forcing the long-term average precipitation to match that
of the PRISM dataset. The temperature dataset is pro-
duced in a similar fashion as precipitation, but uses a simple
6.1 K/km lapse rate for topographic effect. The dataset is
provided at 0.125◦ horizontal resolution covering the period
1949 to 2010.

Daymet: Daymet is an extremely high resolution (1
km) gridded dataset with daily outputs of total precipita-
tion, humidity, and minimum/maximum temperature cov-
ering 1980 through 2013 [Thornton et al., 1997, 2014]. The
dataset is produced using an algorithmic technique that in-
gests point station measurements in conjunction with a trun-
cated Gaussian weighting filter. Some adjustments are made
to account for topography. Daymet is available through the
Oak Ridge National Laboratory Distributed Active Archive
Center (ORNL DAAC).

To assess differences in these data products, we have cal-
culated the MSD values among PRISM, UW and Daymet
for seasonally averaged JJA Tmax, Tmin and DJF Pr over
the five divisions and tabulated these results in Table 2. Stu-
dent’s t-test is employed to determine significances of differ-
ences. For Tmax and Tmin, gridded observational datasets
are different from each other over some divisions. The most
pronounced divergences occur in the NC region, with MSD
values reaching up to ∼4◦C, although differences are also
apparent for MR Tmin. Clearly, UW and Daymet have
a colder climatology than PRISM. NARR, as a reanalysis
dataset, is different from the others over most divisions, with
overall larger Tmin and smaller Tmax. For precipitation,
essentially no significant differences are present, especially
among PRISM, UW and Daymet. NARR and CPC (not
shown) seem to have slightly lower precipitation values than
others.

3. Results

3.1. Temperature

The mean JJA Tmax, Tmin and Tavg climatology over the
simulation period, together with PRISM and NARR refer-
ence data, is plotted in Figure 4. UW and Daymet have not
been plotted here since they are visually indistinguishable to
PRISM everywhere except for NC, where UW and Daymet
exhibit lower temperatures (see Table 2). Statistical mea-
sures over California are tabulated in Table 3. In general, all
simulations have captured the spatial climate patterns ex-
hibited by PRISM, with high spatial correlations (>0.95),
especially for Tmax and Tavg. Nonetheless, several clear bi-
ases (relative to PRISM) are present in these simulations,
as discussed below.
• Tmax: When compared with the reference datasets,

VR-CESM showed a warm bias of about 2 to 3 ◦C in Tmax

over much of the inland domain (CV and MR) and a 2 to
3 ◦C cool bias along the coast, although the coastal bias is
reduced by ∼0.5 ◦C at 14km resolution. This is in contrast
with WRF, which produced an overall colder climate every-
where except the CV. This bias is especially pronounced for
the WRF 9km simulation, which was approximately 3 ◦C
cooler than PRISM. Tmax within the CV has been over-
estimated by all the simulations. This likely represents a
systematic issue with high-resolution models with respect
to California. Possible reasons for this overestimation are
discussed at the end of this section.



HUANG ET AL.: EVALUATION OF VR-CESM FOR MODELING CALIFORNIA’S CLIMATE X - 5

• Tmin: VR-CESM showed a strong warm bias in Tmin

(∼3 to 4 ◦C), with a particularly large overestimation over
Nevada (> 5◦C). WRF also exhibited a warm bias, but of
a much smaller magnitude (∼2 to 3 ◦C). However, the pat-
tern of Tmin presented in Figure 4 in both WRF simulations
suggests a cooler interior to the CV and warmer perimeter,
which is not supported by observations.

• Tavg: The warm bias of Tmin and Tmax by VR-CESM
resulted in a similar overestimation of Tavg. For WRF, un-
derestimation of Tmax and overestimation of Tmin led to an
overall closer match to Tavg over most of the domain, but
is indicative of a suppressed diurnal cycle.

Compared with the reference datasets over California,
VR-CESM 0.125◦ produced the lowest RMSD values for
Tmax, whereas WRF had smallest RMSD for Tmin. How-
ever, in both cases the RMSD was around 2 ◦C. Notably,
Tmin from VR-CESM matched much more closely with
NARR, although this is likely indicative of a related warm
bias in NARR. In fact, closer examination of the differences
among VR-CESM, WRF and NARR marine near-surface
temperature patterns indicated that CESM and NARR have
Tmin values that are approximately 2 ◦C larger than WRF.
Since coastal near-surface temperature is strongly influenced
by ocean SSTs, this difference is likely a key driver of the
warm bias in CESM. The Delta breeze effect, which is as-
sociated with a sea breeze circulation that brings relatively
cool and humid marine air into the interior CV from the
San Francisco Bay area, was apparent in all runs. It is es-
pecially encouraging that VR-CESM generally performed as
well as WRF, in comparison with reference datasets, even
though VR-CESM was not constrained or nudged at the
lateral boundaries of the high-resolution domain.

The spatial standard deviation of JJA Tmax, Tmin and
Tavg from models and PRISM is presented in Figure 5. In
PRISM, the CV had smaller variability than surrounding
regions, although the difference is small (∼0.2 ◦C). Further,
areas with rougher topography did exhibit somewhat higher
variability than smoother locations. Interestingly, the higher
resolution (0.125◦) VR-CESM simulation also matched the
spatial pattern and magnitude of standard deviation ob-
served in PRISM, especially for Tmin and Tavg. However,
in WRF and VR-CESM 0.25◦, the variability is largely con-
sistent across different divisions, and the values are around
0.5 to 1.5 ◦C for all of the datasets, except for the high
Sierras in the WRF 9km simulation which showed enhanced
variability (∼2 ◦C). Compared with reference datasets, the
RMSD values of VR-CESM and WRF 27km are ∼0.1-0.2
◦C, and ∼0.2-0.3 ◦C for WRF 9km.

The seasonal cycle of monthly mean Tavg in each divi-
sion is shown in Figure 6 for simulations and for reference
data from PRISM and NARR along with the associated 95%
confidence interval. PRISM and NARR match closely al-
most everywhere except in the summer season of NC, SC
and CV, indicative of underlying observational uncertainty.
This difference is likely due to the discrepancy in assimi-
lating the coastal cooling effect. In general, model results
match closely with reference data with no larger than a 2 ◦C
absolute difference, with the largest errors occurring in the
summer and winter seasons. Compared with PRISM, VR-
CESM overpredicts summer Tavg in all divisions except NC
and SC, and underpredicts winter Tavg in all divisions. This
corresponds to a larger annual temperature range. WRF has
better performance in preserving the monthly trend when
compared with CESM, with about 1 ◦C underestimation
over all seasons. There is no clear improvement in the sea-
sonal cycle across resolutions.

Variability in monthly average Tavg is expressed by the
interannual standard deviation of monthly Tavg over the
26-year period and is plotted in Figure 7 for all divisions.
Generally, standard deviation is between 1 to 2 ◦C. Among
all models, WRF 27km is closest to PRISM (when assessed

using RMSD over the 12 month period). WRF 9km is also
relatively close to PRISM, but exhibits an unusual ∼1 ◦C
increase in variability in January and February (statistically
significant at the 0.05 level). VR-CESM exhibits a weaker
correlation with PRISM in all divisions with enhanced vari-
ability in DJF and weakened variability in April and May at
both resolutions, and in the fall season in the 0.125◦ simula-
tion. Nonetheless, the standard deviation from all datasets
is statistically equivalent to the reference (with p > 0.05),
except for the WRF 9km results in January and February.

Due to the impact of summer heat waves, we now focus
on Tmax over JJA. In Figure 8, the frequency distribution
of Tmax using all JJA daily values at each gridpoint over
26 years is depicted for models and reference data from UW
and Daymet. PRISM is not included since it only deviates
from UW and Daymet in the coastal divisions (NC and SC).
In these divisions PRISM is similar in character to UW but
shifted several degrees towards warmer temperatures. Prop-
erties of the frequency distribution, including average, vari-
ability, skewness and Kurtosis are tabulated in Table 4. As
exemplified by the similarity in the moments of the distribu-
tion, VR-CESM clearly captures the general distribution of
Tmax. Outside of the CV, skewness and kurtosis measures
match closely between VR-CESM and the UW dataset. In
the NC and SC, Daymet overestimates the frequency of very
cold days leading to deviation in the moments from UW.
Consistent with the observations in Figure 4, outside of the
CV, WRF tends to be cooler in general and VR-CESM tends
to be warmer. In NC and SC, all models more accurately
capture the frequency of high Tmax days than low Tmax

days. Enhanced frequency of cool Tmax values appears to
be the primary driver in overestimation of sample variance
in these divisions. For both VR-CESM and WRF there is
no apparent improvement in statistics at higher resolutions.

In the CV, models show a clear warm bias and underesti-
mated skewness, associated with a long forward tail and
temperatures approaching near 50 ◦C. As discussed ear-
lier, all models overestimate Tmax over CV. In order to
further assess the accuracy of the gridded observations, we
examine the Tmax data directly from recorded weather sta-
tion measurements over the CV (obtained from Global His-
torical Climate Network, provided by the NOAA/NCDC,
http://www.ncdc.noaa.gov/). The results validate that
Tmax values above 45 ◦C are rare (although station obser-
vations suggest these days may be slightly more frequent
than suggested by UW and Daymet). The warm bias as-
sociated with the aforementioned extreme hot days in both
VR-CESM and WRF is likely correlated with overly dry
summertime soil moisture, as discussed in Caldwell et al.
[2009]. This could be caused by the lack of accurate land sur-
face treatment in climate models – for example, Bonfils and
Lobell [2007] found that irrigation in CV has significantly
decreased summertime maximum temperatures, especially
in heavily-irrigated areas. Other studies have also found the
cooling effects of irrigation over CV, such as Kueppers et al.
[2007].

3.2. Precipitation

California’s Mediterranean climate is associated with
heavy precipitation in winter months and drier conditions
in summertime. Agricultural and urban water use in Cali-
fornia thus depends on accumulation of wintertime precipi-
tation, which accounts for approximately half of total annual
average precipitation as we calculated.

The long-term average climatology of DJF and annual
daily Pr over 26 years from simulations and reference
datasets (including PRISM and NARR) is depicted in Fig-
ure 9. Other reference datasets are almost the same as
PRISM. Statistical quantities over California are given in
Table 5. We can see that precipitation is heavily influenced
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by orography, leading to most accumulation occurring along
the NC and MR. As with temperature, the model results
match the spatial patterns of the PRISM, with high corre-
lation coefficients (>0.94).

For DJF Pr, especially along the western edge of the
Sierra Nevada and into the CV, VR-CESM overestimates to-
tal precipitation (∼25%-35%) relative to PRISM (see MRD
in Table 5), particularly for the coarser resolution (28 km)
simulation. This difference is statistically significant over
the western edge of the Sierra Nevada compared to PRISM
at the 95% level for VR-CESM 0.25◦. VR-CESM 0.125◦

performs better and produces far more realistic (and less
scale sensitive) precipitation over the Sierra Nevada with im-
proved treatment of orographic effects. On the other hand,
precipitation is slightly underestimated relative to PRISM
along the NC (with a statistically significant difference), par-
ticularly near the Oregon border. There are also notable
differences between WRF 27km and WRF 9km that sug-
gest a strong resolution dependence in the underlying micro-
physics. For DJF Pr, WRF 27km underestimates precipita-
tion along the NC (by about 20%-30%), but fairly accurately
captures precipitation in the CV; whereas WRF 9km greatly
overestimates precipitation (by about 65%-85%) along the
NC and MR (see MRD in Table 5). Using Table 5 as a guide,
VR-CESM 0.125◦ performs better than VR-CESM 0.25◦

and WRF 27km with RMSD values around 1.2 mm/day
over DJF. Since we expect most of this improvement is due
to a better representation of topography at 14km, this result
suggests that the default physical parameterization suite in
CESM is fairly resolution insensitive. WRF 9km is signifi-
cantly different from PRISM over the MR and part of NC,
and the potential reasons are discussed at the end of this
section.

Interannual variability of precipitation was calculated for
the models and PRISM using the standard deviation of an-
nual and DJF precipitation and depicted in Figure 10. In
general, precipitation variability exhibits a similar pattern to
the precipitation intensity. The spatial pattern of variabil-
ity agrees well between models and PRISM, with the clos-
est match provided by VR-CESM 0.125◦ and WRF 27km.
Standard deviation is ∼50% higher for WRF 9km, consis-
tent with overestimated precipitation intensity. VR-CESM
0.25◦ also tends to overestimate variability in the southern
Sierra Nevada, likely due to over enhanced orographic uplift
from the relatively coarse topography (relative to 0.125◦).
Comparing with all the gridded observations, RMSD values
are ∼0.7-0.9 mm/day for VR-CESM, ∼0.5-0.7 mm/day for
WRF 27km, and ∼1.7-2.0 mm/day for WRF 9km.

The annual cycle of precipitation averaged over each
month and region for the models and reference datasets (tak-
ing PRISM and NARR as representative of all datasets) is
presented in Figure 11. The 95% confidence intervals of UW
and PRISM are also depicted; differences between models
and reference datasets are statistically significant when sim-
ulation results appear outside of the highlighted region. In
general, the overall monthly climatology is consistent be-
tween models and reference datasets, with highest precipi-
tation values occurring over winter and lowest values over
summer. Nonetheless, the largest deviations occur during
the winter season. WRF 27km is drier than PRISM and UW
with relative differences ranging from ∼10%-40%, whereas
WRF 9km is far wetter with relative differences reaching
up to 40%-80% over these five divisions. VR-CESM tracks
well with observed precipitation with ∼10%-20% relative
difference everywhere except in the CV, where precipita-
tion is overestimated in the rainy seasons by about 70%-
80%. From the MWW test, VR-CESM and WRF 27km are
not significantly different from reference datasets in most
divisions, except over the CV in late winter to spring for
VR-CESM 0.25◦, and the NC winter and spring, and DR’s
winter for WRF 27km. The magnitude of precipitation

in WRF 9km is significantly different from the reference
datasets over most divisions, except DR and SC’s winter
and spring. Nonetheless, the strong seasonal dependence
on precipitation is apparent with extremely dry conditions
during summer months. A slight increase in summertime
precipitation is apparent in the DR, indicating the North
American monsoon. We also observe that the peak month
for precipitation tends to occur earlier in VR-CESM, partic-
ularly at 0.125◦, compared with the reference. VR-CESM
also exhibits some unexpected jaggedness (particularly De-
cember for VR-CESM 0.25◦ and February for VR-CESM
0.125◦), likely due to an issue with capturing the seasonal-
ity of moisture transport over the Pacific. This issue being
driven by variability outside of the high resolution domain
seems corroborated by the observation that WRF correlates
strongly with the reference datasets (even though the re-
ported magnitude is incorrect).

The monthly cycle of sample standard deviation is de-
picted in Figure 12. The variability in observations has
a similar monthly trend as precipitation rate, with overall
values from 0 to 4 mm/day. Generally, higher interannual
variability occurs over locations with higher mean precip-
itation (see Figure 11), also observed by previous studies
(for example, Duffy et al. [2006]). Compared with obser-
vations, VR-CESM and WRF27km exhibited no more than
1 mm/day larger variability in the rainy season except over
the CV. WRF 9km again showed enhanced variability (∼1.5
mm/day more) during the wintertime over most divisions.
The main cause of the interannual variability of precipitation
over California is the El Niño-Southern Oscillation (ENSO),
which varies the amount of moisture flux transported to this
region. To assess deviations from observations, the Levene
test was used in place of the F-test due to non-normality of
precipitation. Under this test WRF 9km was significantly
different from both reference datasets over summer and win-
ter periods in MR, and over July to September in DR and
SC. VR-CESM 0.25◦ was significantly different within the
CV over the winter season.

The frequency distribution of DJF Pr has been con-
structed from rainy days (Pr>=0.1mm/day) for the sim-
ulations and reference datasets and depicted in Figure 13.
Since the frequency of precipitation is very similar across all
reference datasets, only UW and CPC are included. Gen-
erally, VR-CESM matches closely with observations every-
where except in the CV. In the CV, WRF 27km appears
to better capture high-intensity precipitation events, but
performs poorly on low-intensity events (Pr<20 mm/day).
The underestimation of rainfall frequency in WRF 27km
appears consistent across divisions. WRF 9km produces a
significantly better treatment of low-intensity events, but
greatly overestimates the frequency of high-intensity events
(Pr>20 mm/day). For strong precipitation events, VR-
CESM matches closely to observations everywhere except
the CV.

The overestimation of precipitation for WRF at high res-
olution has also been found in previous studies. Although
not as pronounced as WRF 9km here, Caldwell et al. [2009]
demonstrated that WRF at 12km largely overestimated the
precipitation over California’s mountainous regions (how-
ever, this paper did employ a different set of parameteriza-
tions and had a different spatial extent of mountain region).
Further discussion can be found in former studies that em-
ploy different microphysics schemes (and so produce a wide
range of precipitation magnitudes) [Jankov et al., 2005; Chin
et al., 2010; Caldwell , 2010]. However, Caldwell et al. [2009]
also argued that the bias comes from a variety of sources,
rather than simply different choices of sub-grid scale param-
eterizations. The exact cause of this overprediction has yet
to be identified in the literature and a comprehensive anal-
ysis of the cause of these errors is beyond the scope of this
paper.
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A concise summary of model performance for JJA near-
surface temperature and DJF Pr over California is provided
by the Taylor diagram (Figure 14). This diagram includes
the spatially centered correlation between the simulated and
observed fields, the RMS variability of simulations normal-
ized by that in the observations, and mean differences from
a reference data [Taylor , 2001]. In general, all models corre-
late well with PRISM (used as the reference dataset in this
diagram). As previously mentioned, WRF is better at mod-
eling Tmin than VR-CESM; however, VR-CESM has smaller
deviation for Tmax. WRF 9km performs badly for precip-
itation with nearly a two times larger normalized standard
deviation than other simulations. Overall, VR-CESM pro-
vides a competitive representation of the regional climatol-
ogy over California and has errors which are comparable to
WRF. Comparing resolutions, there is only minor improve-
ment in VR-CESM 0.125◦ relative to 0.25◦ in simulating
Tmax and Pr.

4. Discussions and summary

The need for high-resolution model data to address re-
gional climate change and extreme events has motivated
the development of new modeling tools. Our study investi-
gated the use of a variable-resolution GCM (i.e., VR-CESM)
as an alternative approach for two-way dynamically down-
scaled climate modeling. The performance of VR-CESM
was evaluated for modeling California’s unique regional cli-
mate. This relatively new technique has been evaluated
against gridded observational datasets, reanalysis data and
the WRF model (forced with ERA-Interim data at lateral
boundaries).

Based on 26 years of high-resolution historical climate
simulations (1980-2005), we analyzed the mean climatol-
ogy of California across its climate divisions in terms of
both near-surface temperature and precipitation. Generally,
when compared with gridded observational datasets, both
VR-CESM and WRF adequately represented regional cli-
matological patterns with high spatial correlations (>0.94).
Uncertainty between reference datasets exists, and is sta-
tistically significant over some climate divisions, making it
necessary to utilize more than one high-quality observational
products in the model evaluation. Overall, we found that
VR-CESM showed comparable performance to WRF for re-
gional climate modeling at spatial resolutions of 10-30 km.

Simulated temperature was assessed in terms of mean cli-
matology of Tmin, Tmax and Tavg and interannual monthly-
averaged variability of Tavg. Deviations between the models
and the reference datasets are apparent, but their character
is different between VR-CESM and WRF. During the sum-
mer period, VR-CESM produced a 2 to 3 ◦C warmer cli-
mate than observations, especially in the CV. On the other
hand, WRF exhibited a colder (∼2 ◦C) Tmax over most divi-
sions (except the CV), but was only a little warmer in Tmin.
Overall, VR-CESM was more accurate in reproducing mean
climatology of Tmax, whereas WRF was better at modeling
Tmin and Tavg. WRF modeled the annual cycle of Tavg

better than VR-CESM with about a 1 ◦C overall underes-
timation. VR-CESM overestimated Tavg by 2 ◦C over the
summer season and underestimated Tavg by 2 ◦C over the
winter season, indicating a larger annual temperature range
over most divisions. Higher resolution (0.125◦) VR-CESM
captures the spatial pattern of annual variability for near-
surface temperature pattern shown in PRISM. Both WRF
and VR-CESM well represent variability in monthly average
Tavg over each climate devision, except for the WRF 9km
in January and February.

Temperatures were also further investigated in terms of
the climatology of JJA Tmax, due to its relevance to sum-
mertime heat waves. Both models successfully simulated
the spatial character of JJA Tmax, although both also had

an apparent warm bias over the CV. The failure to cor-
rectly capture CV Tmax is likely caused in part by the
lack of irrigation cooling over this division in both mod-
els. Future work will address this issue by applying irriga-
tion model to VR-CESM so as to figure out the role irriga-
tion plays in regulating Tmax and its frequency distribution.
Notably, the high-resolution (0.125◦) VR-CESM simulation
accurately captured the spatial pattern of interannual vari-
ability for near-surface temperature when compared with
PRISM. Both WRF and VR-CESM represented variability
in monthly average Tavg well over each climate division, ex-
cept for the WRF 9km simulation in January and February
where variability was greatly overestimated.

Precipitation was assessed in terms of mean climatol-
ogy, interannual monthly-averaged variability and frequency
of precipitation intensity. In general, VR-CESM matched
closely with PRISM everywhere except for an overestima-
tion of DJF Pr (about 25%-35%) along the western flank of
the Sierra Nevada and into the CV. Increasing the spatial
resolution to 0.125◦ produced some reduction in this over-
estimation (about 10%) likely due to improved treatment of
orographic effects. WRF 27km underestimated DJF precip-
itation (by about 20%-30%) along the NC and MR (where
almost all the precipitation appears), whereas WRF 9km
showed a large overestimation (about 65%-85%). The stan-
dard deviation of precipitation ranged from 0 to 6 mm/day,
with generally higher interannual variability over locations
of higher mean precipitation. When assessing the frequency
of strong precipitation events, VR-CESM matched closely
to the UW dataset everywhere except the CV.

Higher resolution (0.125◦) VR-CESM did produce better
results when assessing JJA Tmax and precipitation (along
with their variability), compared with the coarser resolu-
tion run. However, the improvements are not statistically
significant over most of the study area. The largest improve-
ment at higher resolution was in the spatial character of pre-
cipitation, driven primarily with a better representation of
the underlying topography. Notably, this result highlights
the relative insensitivity to resolution in VR-CESM’s physi-
cal parameterizations. This may be an advantageous result
for multi-scale modelers interested in climate applications.
Correctly simulating precipitation is vital to properly rep-
resenting snowpack, which is of critical importance to water
availability in the western United States [Bales et al., 2006;
Wise, 2012; Rhoades et al., 2015]. Decreased scale sensitiv-
ity implies the result will be more independent of the choice
of grid resolution.

For WRF, when resolution is increased to 9km, the
model produces vastly overestimated precipitation, as pre-
vious studies have also found when using RCMs for fine-
scale regional simulations. Although the convective param-
eterization was not disabled (as is suggested for some mod-
els below 10km resolution), the effect of this change would
likely not modify the results since almost all of the precip-
itation comes from resolved (large-scale) condensation (not
shown). In this sense, precipitation modeling bias of WRF is
more strongly related with resolved-scale processes and the
choice of microphysics scheme plays a major role, motivat-
ing the need for more work on scale-aware parameterizations
[O’Brien et al., 2013].

In summary, VR-CESM demonstrated competitive utility
for studying high-resolution regional climatology when com-
pared to a regional climate model (WRF). Deviations exhib-
ited within these models are not indicative of deep under-
lying problems with the model formulation, but one should
nonetheless be aware of these biases when using these mod-
els for climate studies. This study suggests that VRGCMs
are, in general, useful tools for assessing climate change over
the coming century. As the need for assessments of regional
climate change increases, alternative modeling strategies,
including VRGCMs will be needed to improve our under-
standing of the effects of fine-scale processes representation
in regional climate regulation. Future work will focus on the
capability of the variable resolution system to correctly cap-
ture the features of discrete, extreme heat and precipitation
events.
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Table 1. Reanalysis and gridded observational datasets used in this study.

Data source Variables used Spatial resolution Temporal resolution

NARR Pr, Ts 32 km daily, 3-hourly
NCEP CPC Pr ∼28 km (0.25◦) daily
UW Pr, Tmin, Tmax ∼14 km (0.125◦) daily
PRISM Pr, Tmin, Tmax, Tavg 4 km monthly
Daymet Pr, Tmin, Tmax 1 km daily

Table 2. MSD (left column minus top row) of JJA tem-
perature (◦C) and DJF precipitation (mm/day) between all
reference datasets. Statistically significant differences are em-
phasized (95% confidence level).

JJA Tmin PRISM UW Daymet

MR CV DR SC NC MR CV DR SC NC MR CV DR SC NC

UW -2.0 -0.5 -0.3 -0.4 -2.3
Daymet -1.8 0.2 -0.2 -0.3 -4.6 0.2 0.8 0.1 0.1 -2.3
NARR 2.5 2.5 3.1 -0.2 2.0 4.5 3.1 3.4 0.2 4.2 4.3 2.3 3.2 0.1 6.5

JJA Tmax PRISM UW Daymet

MR CV DR SC NC MR CV DR SC NC MR CV DR SC NC

UW 0.3 -0.1 -0.2 -0.7 -2.4
Daymet -0.3 0.4 -0.2 0.2 -3.7 -0.6 0.5 0.1 0.9 -1.3
NARR -1.3 1.2 -0.1 -0.6 -3.7 -1.7 1.2 0.1 0.1 -1.3 -1.1 0.7 0.1 -0.7 0.0

DJF Pr PRISM UW Daymet

MR CV DR SC NC MR CV DR SC NC MR CV DR SC NC

UW -0.2 0.1 0.0 -0.2 -0.2
Daymet -0.1 -0.4 -0.0 0.2 0.5 0.1 -0.5 -0.0 0.3 0.8
NARR -0.5 -0.4 -0.1 -0.1 -1.3 -0.3 -0.5 -0.1 0.1 -1.1 -0.4 -0.0 -0.1 -0.3 -1.8
CPC -0.8 0.0 0.0 -0.1 -1.1 -0.5 -0.1 0.0 0.1 -0.9 -0.6 0.4 0.0 -0.3 -1.7

Table 3. RMSD (◦C), MSD (◦C) and Spatial Correlation (Corr) for seasonally-averaged daily JJA temperatures over California.

RMSD UW PRISM Daymet

Tmax Tmin Tmax Tmin Tavg Tmax Tmin

VR-CESM 0.25◦ 2.32 3.75 2.92 3.12 2.60 2.81 3.93
VR-CESM 0.125◦ 1.90 3.63 2.45 2.94 2.18 2.48 3.70
WRF 27km 2.31 2.74 2.93 2.25 2.17 2.51 2.99
WRF 9km 3.32 2.94 3.49 1.84 1.77 3.20 2.94
Uniform CESM 1◦ 3.06 4.59 3.62 3.43 3.16 3.58 5.07

MSD UW PRISM Daymet

Tmax Tmin Tmax Tmin Tavg Tmax Tmin

VR-CESM 0.25◦ 0.98 2.91 0.61 1.73 0.82 1.18 2.88
VR-CESM 0.125◦ 0.65 2.85 0.20 1.66 0.58 0.82 2.74
WRF 27km -0.58 0.82 -0.95 -0.36 -0.77 -0.39 0.79
WRF 9km -2.28 1.86 -2.72 0.67 -1.14 -2.10 1.76
Uniform CESM 1◦ 0.82 3.03 0.60 1.76 1.08 1.24 3.38

Corr UW PRISM Daymet

Tmax Tmin Tmax Tmin Tavg Tmax Tmin

VR-CESM 0.25◦ 0.99 0.98 0.99 0.98 0.99 0.99 0.97
VR-CESM 0.125◦ 0.99 0.98 0.99 0.98 0.99 0.99 0.98
WRF 27km 0.99 0.98 0.99 0.98 0.99 0.99 0.97
WRF 9km 0.99 0.98 0.99 0.99 0.99 0.99 0.98
Uniform CESM 1◦ 0.99 0.96 0.99 0.97 0.99 0.99 0.95
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Table 4. The first four moments of the JJA Tmax frequency
in each climate division. Column titles refer to the Average
(Avg), Variance (Var), Skewness (Skew) and Kurtosis (Kurt).

CV MR

Avg Var Skew Kurt Avg Var Skew Kurt

UW 32.6 24.8 -0.8 0.9 26.7 33.2 -0.4 0.3
Daymet 32.7 23.5 -0.9 1.5 25.9 39.3 -0.5 0.5

VR-CESM 0.25◦ 34.1 26.2 -0.4 0.2 28.1 27.6 -0.4 0.3
VR-CESM 0.125◦ 34.3 28.5 -0.5 0.4 27.2 30.0 -0.4 0.3

WRF 27km 33.9 34.8 -0.5 0.2 24.9 34.8 -0.3 0.0
WRF 9km 32.4 33.1 -0.7 0.6 22.4 38.5 -0.5 0.6

NC SC DR

Avg Var Skew Kurt Avg Var Skew Kurt Avg Var Skew Kurt

UW 25.9 30.4 0.1 -0.5 25.9 30.4 0.1 -0.5 37.0 22.9 -0.6 0.7
Daymet 26.5 30.1 -0.3 0.4 26.5 30.1 -0.3 0.4 37.0 24.3 -0.6 0.6

VR-CESM 0.25◦ 26.4 37.4 0.1 -0.7 26.4 37.4 0.1 -0.7 37.6 19.0 -0.5 0.8
VR-CESM 0.125◦ 26.3 37.4 0.1 -0.6 26.3 37.4 0.1 -0.6 37.3 21.3 -0.5 0.4

WRF 27km 26.0 36.7 -0.1 -0.5 26.0 36.7 -0.1 -0.5 36.5 22.6 -0.6 0.5
WRF 9km 24.9 32.6 0.0 -0.6 24.9 32.6 0.0 -0.6 34.4 24.4 -0.5 0.4

Notes: If skew > 0 [skew < 0], the distribution trails off to the right [left]. If kurtosis > 0 [< 0], a sharper
[flatter] peak compared to a normal distribution (leptokurtic and platykurtic, respectively) is expected.

Table 5. RMSD (mm/day), MSD (mm/d), MRD, Spatial Correlation (Corr) for averaged precipitation over California

Annual CPC UW

RMSD MSD MRD Corr RMSD MSD MRD Corr

VR-CESM 0.25◦ 0.61 0.39 0.30 0.98 0.62 0.29 0.29 0.96
VR-CESM 0.125◦ 0.47 0.21 0.24 0.98 0.53 0.12 0.24 0.97
WRF 27km 0.42 -0.21 0.21 0.97 0.58 -0.31 0.24 0.97
WRF 9km 2.23 1.49 0.97 0.95 2.05 1.39 0.85 0.96
Uniform CESM 1◦ 1.97 -1.57 0.99 0.94 2.31 -1.70 0.99 0.91

PRISM Daymet

RMSD MSD MRD Corr RMSD MSD MRD Corr

VR-CESM 0.25◦ 0.72 0.20 0.31 0.95 0.57 0.19 0.25 0.97
VR-CESM 0.125◦ 0.62 0.05 0.26 0.96 0.50 0.03 0.22 0.97
WRF 27km 0.77 -0.40 0.27 0.96 0.65 -0.41 0.27 0.97
WRF 9km 1.89 1.32 0.78 0.97 2.01 1.31 0.76 0.96
Uniform CESM 1◦ 2.53 -1.83 0.99 0.90 2.31 -1.80 0.99 0.93

DJF CPC UW

RMSD MSD MRD Corr RMSD MSD MRD Corr

VR-CESM 0.25◦ 1.49 0.99 0.36 0.97 1.45 0.67 0.33 0.95
VR-CESM 0.125◦ 1.19 0.64 0.29 0.97 1.23 0.35 0.27 0.96
WRF 27km 0.89 -0.38 0.21 0.97 1.29 -0.69 0.26 0.96
WRF 9km 4.26 2.61 0.86 0.95 3.84 2.32 0.70 0.95
Uniform CESM 1◦ 3.97 -3.12 0.99 0.93 4.80 -3.50 0.99 0.90

PRISM Daymet

RMSD MSD MRD Corr RMSD MSD MRD Corr

VR-CESM 0.25◦ 1.65 0.58 0.35 0.94 1.35 0.51 0.28 0.96
VR-CESM 0.125◦ 1.40 0.29 0.29 0.95 1.17 0.21 0.25 0.96
WRF 27km 1.55 -0.79 0.28 0.96 1.35 -0.85 0.28 0.96
WRF 9km 3.57 2.26 0.66 0.96 3.80 2.18 0.65 0.95
Uniform CESM 1◦ 5.07 -3.65 0.99 0.90 4.69 -3.65 0.99 0.93
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(a) VR-CESM 0.25° (b) VR-CESM 0.125°

(c)

Figure 1. The approximate grid spacing in the (a) VR-
CESM 0.25◦ and (b) VR-CESM 0.125◦ meshes used in
this study. (c) A depiction of the transition from the
global 1◦ resolution mesh through two layers of refine-
ment to 0.25◦ and again to 0.125◦.
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Topographic Height (m)

Figure 2. Topographic heights (from top left to bot-
tom right) for VR-CESM 0.25◦, VR-CESM 0.125◦, uni-
form CESM 1◦, WRF 27km, WRF 9km and ERA-Interim
(∆x ∼80 km).
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               WRF domains Climate divisions across California

Topographic Height (m)

Figure 3. Left: WRF 27km (entire plot region) and
WRF 9km (solid black box) simulation domains; Right:
five climate divisions for California. Both plots are over-
laid with WRF model topography.
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Figure 4. JJA averaged daily Tmax, Tmin and Tavg

from models and reference datasets, and differences
(sharing the same legend) between model results and
PRISM.
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Figure 5. Sample standard deviation of JJA average daily Tmax, Tmin and Tavg from model results and PRISM.
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Figure 6. Seasonal cycle of monthly-average Tavg for
each climate division. The shading corresponds to the
95% confidence interval of PRISM and NARR.
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Figure 7. Standard deviation values of monthly-average Tavg for each climate division.



X - 20 HUANG ET AL.: EVALUATION OF VR-CESM FOR MODELING CALIFORNIA’S CLIMATE

Central Valley (CV) Mountain Region (MR)

Northern Coast (NC) Southern Coast (SC)

Desert Region (DR) California

Tmax (     C) Tmax (     C)

Tmax (     C) Tmax (     C)

Tmax (     C) Tmax (     C)

Figure 8. Frequency distribution of JJA daily Tmax over the simulation period 1980-2005.
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Figure 9. Annual and DJF precipitation from model
results and reference datasets, and differences (sharing
the same legend) between model results and PRISM.



X - 22 HUANG ET AL.: EVALUATION OF VR-CESM FOR MODELING CALIFORNIA’S CLIMATE

D
JF

 (m
m

/d
ay

)
An

nu
al

 (m
m

/d
ay

)

Figure 10. Sample standard deviation of Annual and DJF precipitation from models and PRISM.
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South Coast (SC)

Figure 11. As Figure 6, but for monthly-average total
precipitation. The shading refers to the 95% confidence
interval of PRISM and UW.
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Figure 12. As Figure 7, but for monthly-average total precipitation.
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Figure 13. As Figure 8, but for DJF Pr (note that the vertical scale is logarithmic).
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Figure 14. Taylor diagram of the annual climatology
for the entire California region using the PRISM dataset
as reference.


