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Abstract

Detection and Representation of Atmospheric Blocking:

An Examination of Block Characteristics

The availability of global-scale climate data, both observational and modeled, has provided

opportunities to address countless research questions as pertains to the atmosphere, both

in terms of understanding the physical processes and exploring model scenarios. The

research community has been aided by increasingly powerful computational resources and

higher quality data. However, a number of challenges still remain, in terms of both the

representation and detection of weather features within gridded data.

This dissertation explores these issues in the context of atmospheric blocking events,

which are large-scale, quasi-stationary, high pressure features that divert the jet stream

and are subsequently correlated with extreme temperatures and precipitation. Chapter

1 provides an overview of the current literature pertaining to the questions that will be

addressed in Chapters 2-4. There are three main topics addressed in this document: the

detection of atmospheric blocks and the conditions that lead to block identification; the

representation of blocks in a suite of CMIP5 climate models compared to observations,

and correlation of model bias and resulting blocking feature bias; and finally, the relative

change of blocking representation in the new CMIP6 generation of models as compared

to their CMIP5 counterparts. Throughout this research, a number of new metrics and

analytical techniques were developed in order to assess the features of detected blocks

and compare the blocking results for different objective detection algorithms and models.

Using the StitchBlobs package, blocks are detected as individual, 3-dimensional (latitude,

longitude, and time) features that contain per-timestep information on each block’s extent,

persistence, and intensity. Differences are assessed in terms of the resultant distributions

of block characteristics, as well as the spatial patterns of the blocks and the underlying

characteristics of the model fields.

The results show that there is still much work to be done on all of these topics. A

comparison of three objective detection algorithms in Chapter 2 concludes that the choice
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of algorithm and the study region will produce significantly different results in blocking

statistics. In Chapter 3, the final results show that while biases in blocking frequency can

be explained fairly well by regressing the normalized bias values against normalized bias

values in block and model characteristics, there are some outlier models, such as HadCM3

and HadGEM2-CC, which cannot be explained by the utilized set of explanatory variable

biases. Finally, in Chapter 4, it is shown that, while the CMIP6 models themselves

demonstrate some notable improvement in the model characteristics over their CMIP5

counterparts, the relationship between model biases established in Chapter 3 remains

largely unchanged. Furthermore, replacing some of the CMIP5 models with their CMIP6

counterparts serves to slightly decrease model accuracy with respect to the explanation

of the variance. The analytical methods that have been utilized in this dissertation could

be further improved with the inclusion of additional, more complex metrics that better

incorporate spatial trends and a better overall definition of blocking.
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Chapter 1

Introduction and Background

Atmospheric blocking is a synoptic-scale weather phenomenon with important social and

ecological impacts that arise due to its correlation with many kinds of extreme weather,

such as heat waves (Pfahl and Wernli, 2012; Grotjahn, 2011; Lee and Grotjahn, 2015),

cold spells (Sillmann et al., 2011; Grotjahn and Faure, 2008), and floods (Houze et al.,

2011; Hong et al., 2011). Yet it is a phenomenon that is not fully understood in terms of

the underlying physics. From initial subjective studies conducted in the mid-1900s to the

more powerful objective methods later developed with the aid of computers, atmospheric

blocks remain an area of active research because there is no clear consensus on the optimal

method for detecting and classifying blocks; this has led to the development of multiple ob-

jective blocking detection methods, each with its own biases. While some of the literature

has started to display a convergence towards a common blocking climatology, there is not

consistent agreement across all detection methods. Studies tend to be heavily focused on

a couple of regions, especially the North Atlantic; this is problematic when attempting to

apply blocking methods to other regions, such as the North Pacific, which also experience

a high frequency of blocking but tends towards blocks with characteristics that are not

as easily captured by certain detection algorithms. Furthermore, due to the continuously

evolving understanding of the mechanisms that lead to block formation, maintenance,

and dissipation, blocking climatologies also vary across individual climate models. Gen-

erally, climate models do not yet produce a blocking climatology that is consistent with

observations; North Atlantic blocking is notoriously underrepresented in climate models,
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and blocking in other sectors is also lower than observed, although frequency biases are

seasonally and regionally dependent (Schiemann et al., 2016). Possible solutions include

increased spatial resolution(Schiemann et al., 2016), correcting underlying biases in model

mean state (Scaife et al., 2011), and improved representation of orography (Berckmans

et al., 2013) or physical parameterizations (Martinez et al.). However, the aforementioned

regional dependency of block characteristics means that corrections to one source of model

blocking error will not necessarily fix overall blocking representation.

The following sections will provide context for subsequent chapters. Section 1.1 defines

atmospheric blocking and describes some of the observed regional and seasonal trends in

blocking climatology, as well as discussing some of the potential causes for block forma-

tion. Section 1.2 discusses the representation of blocks in climate data, both in terms of

algorithmic definition and blocking in climate models.

1.1 A brief overview of atmospheric blocking

The American Meteorological Society (AMS) definition of blocking (Glickman, 2000) uses

three criteria for classifying a flow pattern as blocked:

1. persistent obstruction of the normal west-to-east flow pattern,

2. pronounced meridional flow in the upper levels, and

3. anticyclonic circulation at high latitudes accompanying cyclonic circulation at low

latitudes.

The onset of a blocking feature results in temporary redirection of the jet stream, which

is in turn responsible for the aforementioned anomalous weather conditions. Blocks take

several forms, including the well-known omega block, a poleward high co-located between

two equatorward lows; high/low dipoles; and persistent ridges, and often take on more

than one form during their life cycles. All of these varieties nonetheless satisfy the criteria

established by the AMS definition.
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1.1.1 Formation and maintenance of atmospheric blocks

In their examination of geopotential height anomalies, Dole and Gordon (1983) showed

that the probability of anomaly persistence increases with time up until five days, after

which the probability of persistence is nearly constant; this, along with later papers,

have found that five days is an acceptable minimum threshold for blocking persistence.

However, despite the body of literature that examines the existence and effects of blocking,

the causes are less clear.

A common theme of blocking formation theories involves interference of large-scale

waves. The phase speed for westward propagation of barotropic Rossby waves has latitu-

dinal dependence via the β parameter:

c = − β
k2

(1.1.1)

where β = 2Ω cosφ0
a

decreases in the poleward direction. Thus, Rossby waves with the

same wavenumber that propagate at lower latitudes will have a larger phase speed. At

small scales, latitudinal variations can be neglected; however, they are significant when

one considers weather phenomena of the scale on which blocking occurs. For example,

Grose and Hoskins (1979) modeled the impact of orography on zonal flow, and showed

that the interaction of the resultant Rossby wavetrains, produced northwards and south-

wards of the mountain feature, led to downstream blocking where the waves were out

of phase due to latitudinal variations. Hoskins and Karoly (1981) found that tropical

sea surface temperature (SST) anomalies can produce similar interactions; upper-level

divergence and vorticity anomalies that arise from SST anomalies form stationary Rossby

wavetrains as in the topography case. Here, the smaller wavenumbers propagate strongly

poleward while the larger wavenumbers remain confined to lower latitudes, resulting in

the split wavetrains. However, the influence of SST anomalies displays regional varia-

tions. Mullen (1989) demonstrated that tropical warm SST anomalies enhance blocking

over the Northern Pacific but suppress it over the central Pacific, and extratropical cool

SSTs similarly suppress central Pacific blocking; while SST anomalies, both tropical and

extratropical, had little to no effect on the Atlantic basin at all.
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Another important component of blocking involves forcing by synoptic-scale transient

eddies, which are one of the main drivers of extratropical weather. Eddy vorticity helps

maintain the anticyclonic structure of a block against the mean westerly flow, and the

eddy straining mechanism proposed by Shutts (1983) states that the deformation of eddy

vorticity leads to an energy transfer which maintains and strengthens the split flow in the

vicinity of the block.

1.1.2 Seasonality and interannual variability

Generally, the winter and spring seasons of the respective hemispheres display a higher

frequency of blocking, although there are regional variations (Lupo and Smith, 1995); and

the blocks that occur during these seasons are also more intense (Dole and Gordon, 1983).

Recurring seasonal and multiannual patterns are shown to have influences on the various

factors which affect the dynamics surrounding blocking. For example, Barriopedro et al.

(2006) found that some of the less frequent climatological oscillations, such as the NAO,

explained as much as 45% of the variance in blocking trends in the Northern Hemisphere;

when the NAO is in the negative phase, blocking events are more likely to be longer

and more frequent. Another major influence for the cold seasons is the positive phase of

the Scandanavian (SCAN) pattern, which accounts for 30% of blocking variance further

eastward over Europe and results in increased frequency and a northeastern shift of the

frequency maxima center. In the Pacific, the Western Pacific (WP) pattern accounts for

25% of spring blocking variability and the and Eastern Pacific (EP) accounts for 35% of

winter variability, with the negative phase of each pattern correlated to increased blocking

frequency. Additionally, La Niña leads to a westward shift to blocking patterns in the

Pacific compared to El Niño.

1.1.3 Geographical trends

There is extensive literature on favored locations for block formation and persistence

(Treidl et al., 1981; Tibaldi et al., 1994; Wiedenmann et al., 2002; Barriopedro et al.,

2006), with patterns of blocking maxima displaying a few distinctive trends. The Northern

Hemisphere is more prone to block formation than the Southern Hemisphere, which is
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likely due to a greater proportion of land mass, leading to increased drag and subsequently

a jet stream with more curvature. Also notable is the fact that blocks are prevalent on

the east side of ocean basins and the west coasts of continents; blocks over land masses,

while not uncommon, are less frequent and generally not as intense as those located over

the ocean (Dole and Gordon, 1983).

In the Northern Hemisphere, the Atlantic (centered about 10W-30E) and Pacific (cen-

tered about 180) basins are generally the most favored locations for blocking due to storm

track activity downstream of North America and Asia, respectively. A third, continental

region located over Eurasia shows enhanced activity during JJA that is linked to the

Mediterranean Sea (Whittaker and Horn, 1981). The circumstances for blocking for-

mation have been shown to differ between the Atlantic and the Pacific. For example,

Nakamura et al. (1997) proposed that Pacific blocking is caused mainly by eddy forc-

ing, as opposed to the Atlantic basin, where existing quasi-stationary Rossby waves are

found to be an important ingredient in block formation. Similarly, Altenhoff et al. (2008)

performed an analysis utilizing PV-streamers, and proposed that the Atlantic basin ex-

periences weaker surface baroclinicity which leads to stronger anticyclone formation, as

opposed to the more strongly baroclinic Pacific basin. Dunn-Sigouin et al. (2012) finds

that Euro-Atlantic blocking is correlated with geopotential height anomaly dipoles over

the Atlantic, which is similar to the negative phase of the NAO; Pacific blocking events

are associated with a wave train pattern that resembles the negative phase of the PNA.

Southern Hemisphere blocks tend to be shorter in duration than their Northern Hemi-

sphere counterparts, with the Pacific blocks (maximum blocking frequency at about

120W) and near Australia (from 140E-180) showing the greatest persistence. Wieden-

mann et al. (2002) suggests that the relatively lower frequency of Southern Hemisphere

blocking is possibly due to a lower frequency of favorable interactions between synoptic-

and planetary-scale waves, as well as less frequent cyclone development which enhances

or maintains blocks.
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1.2 Quantification and representation of blocking

1.2.1 Objective detection of atmospheric blocks

Blocking has been studied for decades, but the first attempts at finding blocks required

visual inspection of flow patterns and were thus limited in scope (Rex, 1950). Such

subjective assessment leads different individuals to potentially different conclusions about

a flow pattern. The development of an objective procedure for identifying blocks is thus

important for a number of reasons:

1. Consistency: While the development of objective methods requires some prelim-

inary human judgment in the choice of parameters, an algorithmic definition of

blocking removes the human subjectivity from the rest of the procedure and thus

produces results that are internally consistent for a given dataset.

2. Efficiency: These methods can be automated, making computation and compari-

son of blocking climatologies possible across very large volumes of high-resolution,

multi-decadal data.

3. Improved scientific understanding: Algorithms are based on current concepts of

block formation and maintenance. Objective detection methods can allow for these

concepts to be rigorously tested and improved as more information is gathered.

Objective methods based on a variety of fields and techniques have been developed

over the years (see Figure 1 of Barriopedro et al. (2010) for an overview), and intercompar-

ison studies such as Barnes et al. (2012) have explored whether these methods produce

consistent blocking climatologies. Barnes et al. (2012) compares three longitudinally-

varying (1D) methods (i.e. calculated about a single time-varying central latitude): Pelly

and Hoskins 2003 (potential temperature (θ) on a constant potential vorticity surface),

Tibaldi and Molteni 1990 (500 hPa geopotential height (Z500) gradient over a latitudinal

range), and Scaife et al. 2010 (zonal wind over a latitudinal range). The analysis, which

was performed on 43 years of Northern Hemisphere data, concludes that these methods

yield similar results in terms of calculated blocking frequency and duration across the
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time and longitude axes. However, these are only two possible metrics under which ob-

jective methods can be examined, and other papers have noted inherent differences in

the methods due to both the data and the chosen method. For example, Davini et al.

(2012) notes that there are distinct regional differences in both the geopotential height

fields and the resultant characteristics of detected blocks. Over Greenland, blocks princi-

pally correspond to cyclonic Rossby wave breaking with a dipole structure, and split-flow

blocking generally happen in the midlatitudes over central Europe. The structure of a

block impacts the effectiveness of the detection method; Scherrer et al. (2006) compared

detection of an omega block versus a persistent ridge, using the aforementioned Z500 gra-

dient method of Tibaldi and Molteni (1990) as well as two potential vorticity (PV )-based

metrics. All three detection methods produced similar results for the omega block, but

displayed notable difference in both the size and center locations of the blocked areas for

the ridge. The authors attribute the differences to both the choice of the variable (Z500

versus PV ) and the use of an anomaly versus total field.

In Chapter 2, the importance of a robust blocking detection methodology is highlighted

by comparing the blocking climatologies and block characteristics of features detected by

three different objective detection algorithms.

1.2.2 Representation of blocking in climate models

Beyond differences introduced by the methodology, blocking results are also altered by

the characteristics of the input dataset. An assessment of Northern Hemisphere blocking

in CMIP5 data (Masato et al., 2013), where the historical and RCP8.5 experiments were

compared to the 40-year ECMWF reanalysis (ERA-40) using both 1D and 2D block-

ing detection methods, notes that the mean of historical models greatly underestimates

wintertime blocking compared to the reanalysis, particularly over Europe. Such under-

prediction has been noted elsewhere, both in terms of short-term forecasting (Tibaldi

and Molteni, 1990) and other uses of CMIP data (Dunn-Sigouin and Son, 2013; Davini

and D’Andrea, 2016). Models tend to underestimate both the number and persistence

of blocking events, which both contribute to the reduced blocking frequency noted in the

models.
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The difference in blocking within climate models has been associated with many under-

lying model biases. For example, Scaife et al. (2010) finds that blocking representation in

models is improved by correcting biases in the winter-mean geopotential height. Coupled

ocean-atmosphere models tend to exhibit higher biases, due to the additional influence

of sea surface temperature biases Scaife et al. (2011). Increasing the model resolution

can reduce the bias in SST and therefore reduce the resultant bias in blocking frequency,

although improvements are largely seen in the Atlantic. In fact, improvements in one

region might worsen blocking representation elsewhere. For example, while Schiemann

et al. (2016) noted a marked improvement in Euro-Atlantic blocking with increased spa-

tial resolution, there was actually a detrimental effect to the representation of Pacific

blocking in the CAM5 model. Berckmans et al. (2013) found similar trends in the rep-

resentation of blocking with respect to the Atlantic versus the Pacific in the Northern

Hemisphere. They observed that increased orographic resolution led to higher topogra-

phy in the Rocky Mountains, resulting in increased suppression of storm tracks and the

jet, a more intense SW-NE jet tilt in the Atlantic, and increased blocking activity down-

stream. Pacific blocking, however, is influenced by the topography of the Tibetan Plateau,

which does not change as dramatically between the low and high resolution models and

thus does not lead to the same magnitude of improvement; other factors, such as the

representation of the Pacific jet, exhibited a stronger influence on the resultant blocking

climatology in the Pacific basin. Dunn-Sigouin et al. (2012) observes that improvements

in the representation of Pacific blocking appear to be associated with improved model

physics rather than higher spatial resolution.

1.2.3 Methods of quantifying blocking results

Many blocking studies assess blocking on a per-gridpoint basis rather than tracking blocks

as unique features, which limits the metrics that can be used to assess model performance.

The most commonly measured quantities in blocking studies are blocking frequency and

block duration, due to their ease of assessment using per-gridpoint tracking. In gridded

fields, blocking frequency is defined as a per-gridpoint average of blocked days (blocked

versus not blocked) over the extent of the study period, which does not require knowledge
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of individual block extents; duration, as defined by studies such as Barnes et al. (2012),

involves searching for consecutively blocked longitudes and then identifying regions of

persistent blocking over time. Other papers have created additional metrics to assess

blocking characteristics, such block intensity (Lupo and Smith, 1995; Wiedenmann et al.,

2002), speed (Sinclair, 1996), and size (Croci-Maspoli et al., 2007).

1.3 Outline of Thesis

This thesis addresses three main topics, as presented in the previous sections: block de-

tection, block representation, and assessment of block characteristics. Chapter 2 presents

an intercomparison of three objective detection algorithms: Dole and Gordon 1983, a

geopotential height anomaly-based algorithm; Tibaldi and Molteni 1990, a geopotential

height gradient-based algorithm; and Schwierz et al 2004, a potential vorticity anomaly-

based alorithm. This chapter examines the differences in resultant blocking climatologies

for each of the three algorithms in terms of block characteristics and the underlying flow

patterns that lead to these differences.

Chapter 3 examines compares blocking between reanalysis datasets and the CMIP5

climate model ensemble, both in terms of the averaged blocking climatologies and the

characteristics of the blocks produced within the models. These differences are connected

to differences in the underlying physical fields within the models. Chapter 4 builds upon

this analysis by comparing a subset of the CMIP5 models with corresponding CMIP6

models.
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Chapter 2

Intercomparison of Objective

Blocking Algorithms

This chapter expands upon previous intercomparison efforts; blocking is assessed in terms

of distinct blocking features rather than per gridpoint, and each algorithm is applied

across the full latitude-longitude (2D) range of the study regions, which include both

the Northern (NH) and Southern (SH) Hemisphere midlatitudes. Assessing algorithmic

differences via individual blocking events allows determination of block characteristics

beyond blocking frequency: here, we consider the size, duration, distance traveled, and

zonal speed of each block as determined by each algorithm. We choose to utilize 2D rather

than 1D blocking indices in order to more fully examine regional variations in blocking;

most notably, low-latitude blocking is often missed by 1D methods. Furthermore, it

demonstrates how these algorithms perform in regional climatologies outside of those for

which they were developed. In particular, attention is paid to the underlying flow patterns

that lead to differences in objective blocking climatologies. Our analysis shows that each

of the assessed algorithms only capture a subset of meteorological patterns defined by

the AMS definition of blocking, and the level of agreement between algorithms is highly

dependent on region and block type. This an important point to consider when attempting

to assess current and future blocking trends and the impacts of corresponding extreme

weather. A further benefit of this study is that the metrics and algorithms developed

through this work may be leveraged for evaluation of global climate datasets, either from
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individual model runs or from coordinate intercomparison efforts.

Section 2.1 outlines the three objective detection algorithms and the analysis frame-

work, which was developed with the goal of standardizing the detection methodology as

much as possible across the algorithms. Section 2.2 compares results between the three

algorithms in terms of both the averaged and instantaneous blocking patterns, as well

as some of the characteristics of the detected blocks. Section 2.3 explains some of the

meteorological factors which influence the algorithms’ results, and Section 2.4 summarizes

and discusses the implications of differences between algorithm results.

2.1 Data and Methodology

2.1.1 Data

Our dataset is the ERA-Interim reanalysis from the European Center for Medium-Range

Weather Forecasts (Dee et al., 2011). Temperature, meridional and zonal wind, and

geopotential variables are 6-hourly at 1-degree spatial resolution in the time period of

March 1, 1979- February 28, 2018 (39 years). The latitude range employed spans 25-75

degrees in each hemisphere, and the longitudinal extents of each region are outlined in

Table 2.1; the abbreviations in the table will be used for each region hereafter. These

regions are based on the suggested ranges in Wiedenmann et al. (2002); each region is

roughly centered over a local maximum of blocking frequency.

NH
Continent (NC) Pacific (NP) Atlantic (NA)

40E, 140E 140E, 100W 100W, 40E

SH
Indian Ocean (SI) Pacific (SP) Atlantic (SA)

30E, 130E 130E, 60W 60W, 30E

Table 2.1: Longitudinal extents of study regions; each region has a latitudinal extent of
25-75 degrees in their respective hemispheres. The regions can be seen outlined on the
maps in Figures 2.2-2.6. The two-letter abbreviations will be used to refer to these regions
throughout the paper.

Two of the methods (Tibaldi and Molteni (1990), hereafter referred to as TM90; and

Dole and Gordon (1983), hereafter referred to as DG83) are based on the Z500 variable,
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V : LTDM V V ∗ = V − V

α = 1.5 × σV ∗

or αmin
Ṽ ∗ = V ∗

α

PV ∗ and Z∗: Look for Ṽ ∗ ≥ 1

GHGN =
Z(φn)−Z(φ0)

φn−φ0

GHGS =
Z(φ0)−Z(φs)

φ0−φs

NH: AGP = 1 if
GHGN < −10 m/deg lat
GHGS > 0 m/deg lat

SH: AGP = 1 if
GHGN < 0 m/deg lat
GHGS > 10 m/deg lat

AGP : Satisfy GHGN and GHGS criteria

Initial Calculations

file list variable region constraint time/size
constraints

Inputs

Determine
clusters (nearest

neighbor)

Identify points
where variable ≥ 1

Eliminate
clusters smaller
than min size

Per time step (instantaneous blocking):

Create 3D (t, x, y) blobs:
Over time axis, join
clusters that overlap
by at least 1 grid box

Assign a unique
identifier

Eliminate blobs
persisting less

than min duration

Per time step:
find min/max/center
lat/lon values, area

Per blob

StitchBlobs

Figure 2.1: Schematic of workflow for blocking calculations using StitchBlobs

while the third method (Schwierz et al. (2004), hereafter referred to as S04) is based on

vertically averaged PV (V PV ). The Z500 fields are derived from the geopotential variable

(Z = Φ/g). From temperature and the horizontal wind components, we calculated Ertel

PV (EPV , described in Appendix A.1) and then averaged this over the 150-500 hPa layer

to produce V PV .

2.1.2 Blocking Detection Methods

The blocking climatology varies with the choice of detection scheme, as shown below.

In order to explore some of the points raised by Davini et al. (2012) and Scherrer et al.

(2006)—particularly the differences due to variable choice and region— we utilize schemes

that are based on two different variables (Z500 and V PV ) and field types (anomaly-based

versus total field).

A standardized analysis framework, StitchBlobs, was developed for the intercompar-
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ison of global blocking detection schemes. The blocking detection workflow is outlined

in Figure 2.1, and further details on StitchBlobs, which is part of the TempestExtremes

package (Ullrich and Zarzycki, 2017), are provided in Appendix A.2. Instantaneous blocks

that meet the spatial constraint (minimum area of 106 km2) are stitched together across

time into distinct blocking events. StitchBlobs identifies events that fit the minimum time

constraint (5 days, the characteristic length of persistent height anomalies as per DG83),

then tags each event with a unique identifier and provides per-time-step information on

each block’s location (in terms of block center latitude/longitude coordinates) and size

(in terms of either maximum latitude/longitude extent or the area of the cluster). This

allows users to follow individual blocking events from formation to dissipation, and exam-

ine seasonal and regional trends in block characteristics such as size and zonal distance

traveled on a per-block basis.

The methods are briefly summarized in Table 2.2, and explained in greater detail in

the following sections. In order to differentiate between the methods from the original

papers and the ones presented here, we use different abbreviations: our version of TM90

is AGP , DG83 is Z∗, and S04 is PV ∗.

2.1.2.1 Geopotential Height Gradient (AGP)

The most frequently cited blocking detection method in the literature is TM90, which is

itself based on Lejenäs and økland (1983). Two gradients are calculated about a central

latitude as follows:

GHGN =
Z500(φn)− Z500(φ0)

φn − φ0

(2.1.1)

GHGS =
Z500(φ0)− Z500(φs)

φ0 − φs
(2.1.2)

where φ0, φn, and φs are the reference latitude and the latitudes 20◦ above and below

φ0, respectively, and GHGN and GHGS are the height gradients. For GHGN < −10

m/deg lat and GHGS > 0 m/deg lat, the point is considered instantaneously blocked;

the negative GHGN and positive GHGS values imply a large-scale high in the 500 hPa

geopotential height field.

TM90 performed these calculations about a single reference latitude band (60◦N), and
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Method Tibaldi and

Molteni 1990

(AGP )

Dole and

Gordon 1983

(Z∗)

Schwierz et al.

2004 (PV ∗)

Variable Z500 latitudinal

gradient (GHGN ,

GHGS)

Z500 anomaly

(Z500∗) with

latitudinal scaling

factor

Vertically averaged

PV anomaly

(V PV ∗)

Detected

Feature

Change in Z500

15◦ above/below

point, implying

presence of high

Positive Z500∗

with respect to

climatological

mean

Reversal of flow

with respect to

climatological

mean

Original

blocking

criteria

GHGN<-10 m/deg

lat and GHGS>0

m/deg lat over 4

days, per gridpoint

Z500∗ ≥ 100 m

over 10 days, per

gridpoint

V PV ∗ ≤ -1.2

PVU, with at least

70% overlap

between contours

over 5 days

Change

to

original

method

Extend analysis to

all latitudes within

25-75◦, 5 days’

persistence with

contour overlap

Varying anomaly

threshold, 5 days’

persistence with

contour overlap

Varying anomaly

threshold with

positive sign for SH

Table 2.2: Summary of original methods and modifications.
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Barnes et al. (2012) performed these calculations about a varying central latitude. The

TM90 algorithm was modified by Scherrer et al. (2006) to extend analysis to latitudes

35-75◦N and define φn and φs as 15◦ away from φ0; we further extend the analysis to

25◦ in both hemispheres. Furthermore, to apply this method in the SH, it is necessary

to switch the criteria and signs for the two gradients, since the orientation of ridges is

flipped and the SH latitudes are negative. Therefore, in AGP , GHGN < 0 m/deg lat

and GHGS > 10 m/deg lat in the SH.

In TM90, a blocking episode is defined as a region of blocked flow that extends over

at least 12 degrees longitude for a minimum of 4 days. This satisfies the second and third

points of the AMS definition (meridional flow and anticyclonic circulation); however, the

fact that this method is based on total fields means that it does not necessarily satisfy the

first point (obstruction of normal flow), since there is no reference to the mean climatology.

2.1.2.2 Geopotential Height Anomaly (Z∗)

DG83 utilizes Z500 anomaly (Z500∗), which is first calculated as the height departure

from the long term seasonal average, h′, then normalized by a latitudinal coefficient:

Z500∗ =

(
sin 45◦

sinφ

)
h′. (2.1.3)

This modification is necessitated by the latitudinal change in planetary vorticity; the con-

servation of absolute vorticity means that there must be an increase in relative vorticity

due to the decrease in planetary vorticity in the poleward direction. At the higher lat-

itudes, the convergence of latitudes leads to a bias in the representation of meridional

energy propagation.

A single grid point is defined as blocked if Z500∗ exceeds 100 m for 10 days, although

subsequent papers have used different combinations of heights and durations (for a 5-day

minimum duration, Sausen et al. (1995) used 250 m). As with TM90, this detection

method works by searching for high geopotential heights, although in this case the high is

defined with respect to the long term average. DG83 is theoretically capable of satisfying

the AMS criteria for blocking because anomalously high Z500 will modify the flow pattern

in a manner consistent with all three requirements. With that said, the relationship
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between the climatological mean and the instantaneous field can lead to overprediction of

blocking (particularly in the SH), as discussed in Sections 2.3.1 and 2.3.3.

2.1.2.3 Potential Vorticity Anomaly (PV∗)

S04 proposes a blocking detection method which entails searching for regions of persistent

column-averaged (150-500 hPa) negative PV anomalies (V PV ∗) in the NH (in PV ∗, the

relevant anomalies are positive in the SH). As with DG83, anomalies are calculated as

instantaneous departures from a long term daily mean (defined as the 15-year monthly

mean in S04). S04 favors the use of V PV over Z500 for anomaly-based detection, as

V PV ∗ more closely follows the shape of the dynamic tropopause, compared to a similarly

situated Z500 anomaly (Figures 1b and 2b in S04). While S04 does not explicitly account

for easterly flow as in TM90, the negative sign indicates anticyclonic circulation at and

below the layer with easterlies countering the mean flow, thus signifying underlying higher

pressure as in point 3 of the AMS definition. The use of V PV ∗ also accounts somewhat

for parts 1 and 2 of the AMS definition, but strongly negative (positive) values of vorticity

in the NH (SH), discussed in Section 2.3.2, or relatively low values of V PV with respect to

the climatological mean, discussed in Section 2.3.3, can cause this method to mistakenly

identify unobstructed flow as blocked.

2.1.2.4 Modifications to anomaly methods

For the purposes of global intercomparison, a few minor modifications are needed for

the anomaly-based detection methods. Since DG83 and S04 use different definitions of

climatological means and thresholds, it is necessary to redefine these quantities using a

consistent methodology rather than those of the original algorithms. The choice of thresh-

old is an important consideration when applying a method to a new dataset; as DG83

and S04 were initially developed using data from NA DJF, their hardcoded thresholds

are not directly applicable in other sectors. The applicability of threshold values to new

datasets is also an important consideration for multi-model intercomparisons; Woollings

et al. (2018) found that the timing and spatial distribution of projected changes in block-

ing using CMIP5 model output were dependent on region and methodology. Therefore,

a constant threshold that was determined using one model may not be representative of
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Figure 2.2: Seasonal averages of long term daily mean Z500 (top) and vertically averaged
PV (bottom) values for (left) JJA, and (right) DJF, ERA-Interim 1979-2018. Each sea-
sonal average contains 39 years’ worth of data. Red rectangles denote the study regions
as outlined in Table 2.1; from left to right, the NH regions are NC, NP, and NA, and the
SH regions are SI, SP, and SA. The contours are in intervals of 100 m for Z500 and 0.5
PVU for PV.

the climatology of another model. For a unified global study such as this one, a constant

threshold definition will lead to either under- or over-detection of blocks in other regions

because the anomaly thresholds are calibrated to the climatology of that region and time

period. Here we follow Barriopedro et al. (2010) and Dunn-Sigouin et al. (2012), who

address this problem by replacing the constant threshold definition with one derived from

the standard deviation of anomaly values.

Long term daily mean and anomalies: For this study, mean fields are computed for

each of the 365 days in a year (excluding leap days) across 26 years. The values on these
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Figure 2.3: Seasonal averages of (top) Z500 anomaly (Z500∗) and (bottom) vertically
averaged PV anomaly (V PV ∗) threshold values, as described in Section 2.1.2.4, for (left)
JJA and (right) DJF. Red rectangles denote same regions described in Figure 2.2 caption.
The contours are in intervals of 10 m for Z500∗ and 0.05 PVU for V PV ∗.

365 days are Fourier transformed and only the first 6 harmonics (0-5, with 0 corresponding

to the mean and 5 corresponding to a 73 day span, or slightly less than a season) are used

to back transform and obtain the long term daily mean (LTDM, denoted here as V , the

average of instantaneous variable V ). This procedure is further explained in Grotjahn

and Zhang (2017); it serves to smooth out the mean, which can otherwise have excessive

day-to-day variations. Figure 2.2 shows seasonal averages of the LTDM for the Z500 and

V PV fields. Anomalies from the LTDM, V ∗, can thus be defined as

V ∗ = V − V (2.1.4)
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Threshold and normalized anomalies: Whereas DG83 and S04 use constant mini-

mum anomaly value threshold values in their blocking definitions (thresholds of magnitude

100 m and 1.2 PVU, respectively), we calculate a threshold field that varies in both space

and time. At each grid point in the relevant field, we calculate the standard deviation of

that grid point’s time series; the threshold is defined as 1.5 times the standard deviation.

These values are then smoothed in both the zonal and meridional directions in a manner

similar to the LTDM computation. This procedure is then repeated across time with

the first 6 harmonics as with the LTDM calculation. However, an additional minimum

threshold criterion, αmin (100 m for Z∗ and 1.1 PVU for PV ∗), is imposed. This is nec-

essary for regions with little to no blocking activity, where the anomaly values (and thus

the standard deviation and threshold values) are very low. Using the standard deviation

of the anomalies for each day over the course of the 26-year time period, σV ∗ , threshold

α is defined as

α =





1.5× σV ∗ , if α ≥ αmin

αmin, otherwise

(2.1.5)

The range of threshold values as defined by the standard deviation is highly dependent

on region and season, as apparent in Figure 2.3. DG83 noted that the distribution of

persistent Z500∗ values varied from region to region in the wintertime, with standard

deviations of 170-180 m for the Atlantic and Pacific regions, as opposed to 45 m for

Eastern Asia; it is evident that using a constant threshold on a global analysis is not

advisable for Z∗. The distribution of V PV ∗ values, while less drastically variable with

respect to the magnitude of values compared to Z500∗, also displays some regional and

seasonal differences with respect to anomaly magnitudes, particularly when comparing

summer to winter. The spatiotemporally varying, standard deviation-based definition

ensures that only anomaly values that are at the tails of the local distribution at that

particular time step will be classified as blocked, irrespective of region or season.

The normalized anomalies, Ṽ ∗, are calculated as

Ṽ ∗ =
V ∗

α
(2.1.6)
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and areas with Ṽ ∗ ≥ 1 are considered blocked.

2.1.3 Quantification of agreement between methods

Three metrics are used for quantifying agreement between methods: pattern correla-

tion between the seasonally-averaged blocking patterns, probability of co-occurrence, and

block spatial similarity. We utilized multiple methods in order to separate out seasonally

averaged versus instantaneous agreement; pattern correlation is useful for assessing the

blocking climatology, but similarity and probability metrics provide further insight into

the agreement between methods with regards to individual blocks. The quantification

of probability and similarity serve similar purposes, but inevitably are different metrics

for comparing detection algorithms. Two methods could have a high probability of co-

occurrence if they consistently detect the same features, but a lesser value of similarity if

the resultant clusters produced by the two methods are very different in size and shape.

Pearson pattern correlation: This metric, denoted by C(M1,M2), measures the

strength of linear relationships between frequency values at corresponding coordinates for

methods M1 and M2. Higher correlation is seen when patterns are more similar, regard-

less of the relative magnitudes of the two data points. Pattern correlation has a range of

possible values from -1 to 1, in which magnitudes of 0.3 and below are considered weak,

and strong at 0.7 and above. Negative values indicate an inverse relationship between M1

and M2. Centered pattern correlation is computed using the NCL pattern cor function

with cosine latitude weighting.

Probability of co-occurrence: This metric, denoted by P (M1|M2), quantifies the

likelihood that a block will be detected by method M1, given that method M2 also

detects it. The methodology for calculating probability of co-occurrence can be found in

Appendix A.3.

Spatial similarity: This metric, denoted by S(M1,M2), quantifies the match between

areas designated as part of a block by methods M1 and M2. S is the intersection divided

by the union of the two areas. Since S varies for each block, an interquartile range will be

presented in the results. The methodology for calculating spatial similarity can be found
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in Appendix A.4.

2.2 Evaluation and intercomparison of atmospheric

block metrics

We begin with a single case study, to highlight the importance of selecting a method, then

present results for the entire ERA-Interim period in subsequent sections. The full ERA-

Interim results for JJA and DJF are presented as follows. First, each algorithm is assessed

in terms of its individual statistics (averaged blocking climatology, block duration, size,

distance traveled, and zonal speed measurements). Agreement between detection methods

(in terms of both averaged and instantaneous detection of blocks) is also assessed. Results

are considered statistically significant if there is a meaningful relationship in the data that

could not have occurred from random chance or sampling error alone. The methodology

for establishing statistical significance for all of the metrics in Section 2.2 is explained in

Appendix A.5. These metrics demonstrate that agreement in blocking frequency does not

imply consistency in the character of individual blocks. Namely, one needs to be careful

when drawing conclusions based on the blocking climatology alone, since there may be

significant differences in the meteorological character of individual blocks. Further, these

results are indicative that conclusions drawn with one blocking detection scheme may not

hold when another algorithm is used.

2.2.1 Case study: The Ridiculously Resilient Ridge

We present a case study of a persistent and pronounced ridge pattern that repeatedly

appeared off the western coast of North America in late 2013, then reoccurred during

the winters of 2014-2015 and 2015-2016. This feature, dubbed the “Ridiculously Resilient

Ridge” (or RRR for short) by Swain et al. (2014), was responsible for redirecting moisture-

heavy air northwards during the winter months. Because California receives the bulk of

its precipitation from December to March, the RRR was a key player in the drought that

devastated the state for almost 6 years.

Figure 2.4 shows the frequency of detected blocking in NP DJF from December 2012

to February 2016, and Table 2.3 provides the corresponding agreement metrics. Out of
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Method pair Correlation Probability Similarity

PV ∗ and AGP -0.01
P (PV ∗|AGP ): 0.32**

0.11 to 0.48**
P (AGP |PV ∗): 0.40**

Z∗ and AGP 0.06*
P (Z∗|AGP ): 0.78**

0.23 to 0.47**
P (AGP |Z∗): 0.35**

PV ∗ and Z∗ 0.52**
P (PV ∗|Z∗): 0.32**

0.30 to 0.51**
P (Z∗|PV ∗): 0.90**

Table 2.3: Pattern correlation, co-occurrence, and spatial similarity for RRR data (DJF,
December 2012-February 2016). Probability values above 0.7 are bolded. Similarity
values are formatted based on relative distributions of values—25th percentile values
above (below) 0.29 (0.15) and 75th percentile values above (below) 0.54 (0.39) are bolded
(italicized) to denote particularly high or low quantities relative to other values. Statistical
significance is denoted by a “*” for 0.01 < p < 0.05 and “**” for p < 0.01.

Figure 2.4: Blocking frequency, averaged over winters from 2012-2016, for the AGP
method (left), Z∗ method (center), and PV ∗ method (right)
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Figure 2.5: (a-b) Examples of ridges that were detected by only the anomaly methods
(Z∗, blue, and PV ∗, green) in January 2013. (c-d) Examples of ridges that were detected
by all three methods (including AGP , purple) in December of 2013.

the three methods, the one that most closely coincides with the location of the RRR—in

terms of a blocking maximum centered off of the West Coast—is the Z∗ method. The

PV ∗ method displays an inclination towards contours that co-locate with Z∗ contours

(P (Z∗|PV ∗) = 0.90), but the maximum is positioned further northwards and there is

only a modest correlation of C(PV ∗, Z∗) = 0.52. Due to the PV ∗ method’s propensity

to focus on the ridge peak, PV ∗ also picks up about half as many instances of ridging

(averaged blocking frequency of 9%, ∼8.28 days per season at its maximum over Alaska)

as Z∗ (averaged blocking 18%, ∼16.56 days per season in the location of the PV ∗ blocking

frequency maximum). The AGP method has an averaged blocking frequency that about

equals PV ∗ over Alaska, and a high probability of co-occurrence with Z∗ (P (Z∗|AGP ) =

0.78), but its maximum during this time is positioned over the Western Pacific, indicating

that it is less likely to identify the particular feature that we are interested in identifying

here.

The reason for this difference in the average blocking patterns with respect to the
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RRR becomes apparent in Figure 2.5. In each of these examples, the blocks detected

by the AGP , Z∗ and PV ∗ methods are outlined in purple, blue, and green solid lines,

respectively, and the thin contours depict 500 hPa geopotential height in 50 m increments.

Many times, the ridge that appears off the North American west coast has a north/south

oriented ridge axis with little to no horizontal tilt; therefore, the GHGS criterion of the

AGP method is not fulfilled, as will be discussed in Section 2.3.1. The blocking pattern

seen on December 7th, 2013 (Figure 2.5d) is one of the exceptions, due to both the slight

westward tilt (with increasing latitude) of the ridge axis and the local Z500 maximum at

220E, both of which satisfy GHGS > 0. However, even in this example, where all three

methods detected the feature, they defined the extent of the block differently; comparing

the three methods, S(PV ∗, Z∗) = 0.56, S(PV ∗, AGP ) = 0.38, and S(Z∗, AGP ) = 0.25.

If these detection algorithms were to be used in some sort of predictive capacity, the

Z∗ method would pick up RRR-like features every time they occurred, but detect many

additional features as well. The PV ∗ method would detect some of the same features as

Z∗, but it would also miss some instances, as in Figure 2.5b, and would not define the

extent of the block in the same way. Like PV ∗, the AGP method would also miss some

of these features, as well as identifying others that are not relevant here.

If the goal is to detect a ridge configuration similar to that of the RRR, then the

results suggest that of the three algorithms discussed in this paper, the Z∗ algorithm

is the most reliable method to find the ridge, with PV ∗ acting as a more conservative

substitute method. The algorithm design of AGP does not deal well with the particular

block shape that appears frequently during this time; therefore, the use of AGP is not

ideal for performing an analysis on future trends in blocking specific to the western United

States.

2.2.2 Blocking climatology by algorithm

Figure 2.6 compares seasonal blocking frequency obtained from applying the three detec-

tion methods to the full ERA-Interim reanalysis dataset from 1979-2018. Section 2.2.4

quantifies the amount of agreement between each of the methods, but it is obvious just

from viewing the frequency plots that, even using the same time and size thresholds,
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Figure 2.6: Long term seasonally averaged blocking frequency for (left) JJA and (right)
DJF, (top row) AGP method, (center row), Z∗ method, (bottom row) PV ∗ method.
Frequency values represent the fraction of blocked days per season as averaged over the
39 years of the study, with frequencies here ranging from 0.01 (less than one day per
season) to 0.40 (about 37 days per season). Contour lines have intervals of 0.03.
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these algorithms do not agree on the definition of blocking. Each of the three algorithms

produce distinct regional and seasonal differences in their overall global blocking clima-

tologies. Z∗ is the least discriminating, detecting blocks over the entire extent of each

study region (particularly in the winter hemispheres), with maxima of about 19% (18 days

per season); in contrast, AGP appears more optimized for the NH than the SH, as it de-

tects scarcely any blocks in the SH midlatitudes with the exception of SP, but has distinct

maxima of almost 40% (37 days) at the lower latitudes in the summer hemispheres. PV ∗

has maxima that are similar in location to Z∗ maxima, but the lowest overall magnitudes

of blocking frequency (maximum values of ≈ 9%, or 8 days per season).

These differences are analogous to results reported in previous blocking studies. Cer-

tain maxima seen in Figure 2.6 are also present in other studies, i.e. the maxima that are

centered over Scandinavia and the Aleutian Islands in the NH (Croci-Maspoli et al. 2007,

using S04; Dunn-Sigouin et al. 2012, using a hybrid of TM90 and DG83; Cheung et al.

2013, using TM90); and in the SH, the maximum centered in SP (Wiedenmann et al.

2002, using TM90; Parsons et al. 2016, using DG83). The results between papers diverge

in terms of the blocking frequency magnitude and the overall extent of blocking, but one

could reasonably assume that this was in part due to differences in methodology (choice of

variable, anomaly threshold, 1D vs 2D, extent of study region). Here, despite attempts to

standardize the detection methodology as much as possible, the three objective detection

methods still display differences in magnitude and extent.

One of the most notable differences between methods is seen in the lower latitudes.

The 2D blocking indices utilized here select certain blocking patterns that are typically

missed by the 1D indices of Tibaldi and Molteni (1990) and others, because 1D methods

only identify blocks in the vicinity of a central latitude. Low-latitude blocks are the

most obvious example of features that are missed by the 1D methods, and the largest

blocking frequencies are all at the lower latitudes. These features will be discussed in

further detail in Section 2.3.3; while they tend to be less stationary than other blocking

features, they still impair the zonal flow as per the AMS definition and are therefore

worth including in the results. AGP detects a high percentage of low-latitude blocks
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in the summer hemispheres (maximum frequency of ≈ 40%, or 37 days per season), as

well as in the winter hemispheres to a lesser extent. The summer low-latitude blocks

are rarely detected by the anomaly methods because deviation from the mean accounts

for seasonally high values of their respective variables, but AGP has no reference to the

mean climatology. However, the anomaly methods do detect low-latitude blocks in winter

(particularly in NP DJF), due to seasonally low values of the LTDM.

2.2.3 Blocking duration, zonal distance traveled, speed, size

This section addresses differences in the block duration, zonal distance traveled, zonal

block speed, and block size that emerge from each detection scheme (calculation methods

for each of these items is briefly explained in Appendix A.2). It should be noted that

all of these characteristics are somewhat intertwined with one another. Smaller detected

regions often correlate with shorter durations due to the size constraint, and block speed,

being a function of distance and duration, will be skewed by relatively high or low values

of either.

Results for each of the methods are presented in Figures 2.7-2.10, with the summer

season values of the respective hemisphere on the top row and the winter season values

on the bottom row. Statistical significance was established by using permutation, as

explained in Appendix A.5.

Block duration: These medians of these results fall within the range of previously

presented values (about 6-8 days), such as results from Wiedenmann et al. 2002. The

5-day minimum threshold provides a lower bound to the range of possible 25th percentile

values, but the upper bound is quite variable per method, as seen in Figure 2.7. Z∗-

detected blocks have the overall largest durations (as well as most of the largest outlier

values), although low-latitude blocks with longer durations values contribute to the upper

tail of the AGP in the summer hemispheres. PV ∗ has the smallest overall duration values,

but the difference is not always significant, particularly when compared to AGP . Smaller

duration values are partly an artifact of the size threshold, and PV ∗-detected regions tend

to be smaller and therefore meet the minimum size requirement less often.
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Figure 2.7: Boxplots of block duration values for NH (top) and SH(bottom), in days.
The upper and lower bounds of the box correspond to the 25th and 75th percentile
values; the ends of the whiskers correspond to 1.5 times the 25th and 75th percentiles.
Dots signify outliers beyond the whiskers. The brackets indicate pairs with statistically
significant differences in the median values, with a “*” denoting 0.01 < p < 0.05 and a
“**” denoting p < 0.01. The colors of the asterisks indicate which method’s median value
is larger (i.e. a purple asterisk indicates that the median value for AGP is larger).
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Figure 2.8: Similar to Figure 2.7 except with distance values in km.

Block zonal distance traveled: As most previous blocking studies determine blocking

on a per-gridpoint basis, it is difficult to draw direct comparisons to results here. Figure 2.8

shows that regions detected by PV ∗ tend to travel longer distances in the zonal direction

(particularly in winter), despite having shorter duration values; statistically significant

(p < 0.01) differences in median values between PV ∗ and other methods are in the 500-

1500 km range. There is a fairly consistent trend in which PV ∗ > Z∗ > AGP in terms

of the distribution means, although the differences in the overall distributions are not

always significant. It is worth nothing that for the AGP method, a larger proportion of

cases with distance values greater than 2000 km (≈ 24 degrees longitude) are associated

with low-latitude blocking than the other methods; 68% (232 out of 341 cases) of AGP

blocks with distance values greater than 2000 km were detected equatorward of 40 degrees,

compared to 4% (29 out of 696 cases) for PV ∗ and 28% (153 out of 758 cases) for Z∗. In
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Figure 2.9: Similar to Figure 2.7 except with zonal speed in km/hr.

general, interquartile ranges of SH distance values are greater than interquartile ranges

of NH distance values, and winter is greater than summer.

Block zonal speed: As with zonal distance, it is difficult to compare these results to

previous studies, but Sinclair (1996), which tracks anticyclones in the SH, used a criterion

of 3000 km in 5 days (or 25 km/hr) as a threshold for limiting tracking to slower-moving

features. This threshold was in terms of 2D distance, rather than zonal distance as

presented here, but assuming that the trajectory is mainly zonal with slight latitudinal

variation, an estimate of 25 km/hr is a reasonable estimate for an upper bound. Speed

values, as shown in Figure 2.9, tend to follow a similar pattern to distance values, PV ∗

displaying the largest values and faster speeds in the SH than the NH. PV ∗-detected

regions have the largest zonal speed values due to the combination of shorter duration

and longer zonal distance, particularly in the SH; the 25 km/hr benchmark from Sinclair is
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Figure 2.10: Similar to Figure 2.7 except with area in 106 km2

exceeded more often by PV ∗-detected regions than other methods, and the 75th percentile

value is regularly up to 50% larger than that of AGP or Z∗. The relationship between

AGP and Z∗ consistently shows AGP < Z∗ in the SH, but the pattern is less clear in the

NH, particularly in NH summer where AGP detects a substantial number of low-latitude

blocks with large distance and duration values, as noted in the previous sections.

Block size: It is worth noting that this is the one metric where almost every possible

combination of methods, seasons, and regions displayed significant differences between

distributions of values. Croci-Maspoli et al. (2007), which uses S04 (but without the size

threshold as defined here), presents results in which detected regions in the NH range from

0.5 to 4 × 106 km2; Figure 2.10 displays the range of block sizes for each method here.

The interquartile range for PV ∗ is largely in agreement with this finding (unsurprising as

the algorithm originated in S04), while those of AGP and particularly Z∗ tend to have
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larger 75th percentile values and a substantial number of outliers that reach a magnitude

of up to 20 × 106 km2, which is 5 times larger than the S04 value. Size is an important

consideration here because it can determine whether or not a detected region is rejected

due to the threshold constraint. When a blocked feature is detected by both the PV ∗ and

Z∗ methods, the larger Z∗ contour will frequently both appear earlier and persist longer

than the smaller PV ∗ contour (this is seen in Figure 2.16). This is not an artifact of

the threshold magnitude, as altering the magnitude of the threshold did not significantly

impact the distribution of block size; PV ∗ blocks on average will be smaller than their

Z∗ counterparts.

2.2.4 Intercomparison of blocking algorithms

Tables 2.4-2.6 provide a summary of the various co-occurrence metrics between the three

methods. Each section displays results for the NH and SH as separate subtables, with

the summer seasons on top. Correlation and probability tables contain single numbers,

as they were calculated as single quantities, but as spatial similarity was calculated for

instantaneous fields at each time step containing blocking, there are a range of similarity

values, presented here as interquartile ranges similar to the tables in the previous section;

there are instances of fields where S(M1,M2) > 0.9, but these are rare.

Pearson pattern correlation: The results in Table 2.4 highlight the clear differences

in blocking frequency that will arise given the choice of an anomaly versus a total field

(discussed further in Section 2.3.1). Correlation between AGP and the other methods

is consistently negative in the summer hemispheres due to AGP detecting blocks mainly

at the lower latitudes, and NC DJF is the only instance of correlation values that are

both non-negative and greater than 0.2. In comparison, C(PV ∗, Z∗) is almost always the

strongest positive correlation value for a particular region or season (with the exception

of C(PV ∗, AGP ) in NC DJF), with particularly strong correlation values in SH summer,

NA DJF, SI (both seasons) and NP (both seasons).

Probability of co-occurrence: The interpretation of the values in Table 2.5 must take

the relative quantities of each method’s detected features into account. For example, it

was previously noted that PV ∗ and Z∗ had similar averaged patterns, with some of the
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(a) Northern Hemisphere

Season Method pair NC NP NA

JJA

PV ∗ and AGP -0.21** -0.56** -0.46**

Z∗ and AGP -0.19** -0.38** -0.49**

PV ∗ and Z∗ 0.51** 0.76** 0.73**

DJF

PV ∗ and AGP 0.62** 0.01 -0.06*

Z∗ and AGP 0.26** -0.04 -0.01

PV ∗ and Z∗ 0.49** 0.71** 0.45**

(b) Southern Hemisphere

Season Method pair SI SP SA

DJF

PV ∗ and AGP -0.55** -0.54** -0.46**

Z∗ and AGP -0.68** -0.64** -0.58**

PV ∗ and Z∗ 0.76** 0.71** 0.79**

JJA

PV ∗ and AGP -0.48** -0.06* -0.59**

Z∗ and AGP -0.58** 0.09** -0.53**

PV ∗ and Z∗ 0.70** 0.44** 0.67**

Table 2.4: Pearson correlation values between blocking frequencies of each region, as
shown in Figure 2.6. Magnitudes above (below) 0.7 (0.3) are bolded (italicized) to em-
phasize patterns of consistently high or low values. Negative values imply an inverse
relationship between corresponding gridpoint values. Statistical significance is denoted
by a “*” for 0.01 < p < 0.05 and “**” for p < 0.01.
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(a) Northern Hemisphere

Season Method pair Probability NC NP NA

JJA

PV ∗ and AGP
P (PV ∗|AGP ) 0.04 0.05 0.04

P (AGP |PV ∗) 0.45 0.46 0.34

Z∗ and AGP
P (Z∗|AGP ) 0.11 0.18 0.13

P (AGP |Z∗) 0.43 0.66 0.44

PV ∗ and Z∗
P (PV ∗|Z∗) 0.14 0.29 0.24

P (Z∗|PV ∗) 0.48 0.73 0.60

DJF

PV ∗ and AGP
P (PV ∗|AGP ) 0.38 0.34 0.21

P (AGP |PV ∗) 0.30 0.38 0.48

Z∗ and AGP
P (Z∗|AGP ) 0.59 0.55 0.52

P (AGP |Z∗) 0.18 0.41 0.53

PV ∗ and Z∗
P (PV ∗|Z∗) 0.24 0.48 0.31

P (Z∗|PV ∗) 0.61 0.73 0.70

(b) Southern Hemisphere

Season Method pair Probability SI SP SA

DJF

PV ∗ and AGP
P (PV ∗|AGP ) 0.01 0.04 0.00

P (AGP |PV ∗) 0.03 0.11 0.01

Z∗ and AGP
P (Z∗|AGP ) 0.09 0.24 0.09

P (AGP |Z∗) 0.16 0.31 0.14

PV ∗ and Z∗
P (PV ∗|Z∗) 0.40 0.34 0.34

P (Z∗|PV ∗) 0.78 0.73 0.78

JJA

PV ∗ and AGP
P (PV ∗|AGP ) 0.13 0.24 0.18

P (AGP |PV ∗) 0.04 0.20 0.11

Z∗ and AGP
P (Z∗|AGP ) 0.49 0.66 0.67

P (AGP |Z∗) 0.06 0.18 0.14

PV ∗ and Z∗
P (PV ∗|Z∗) 0.26 0.31 0.28

P (Z∗|PV ∗) 0.72 0.71 0.79

Table 2.5: Probability of co-occurrence between instantaneously blocked fields. Probabil-
ity values above (below) 0.7 (0.3) are bolded (italicized) to emphasize high or low values.
All probability values are significant at the p < 0.01 level.
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highest correlation values in Table 2.4; however, this does not mean that they are equally

likely to predict one another. While P (Z∗|PV ∗) is consistently the highest value in a

given region, the reverse is not true, since Z∗ also detects many other regions that do

not coincide with PV ∗-detected regions. Also, averaged agreement does not necessarily

also mean instantaneous agreement; for example, C(PV ∗, AGP ) is 0.62 in NC DJP but

the probabilities of co-occurrence for these two methods are only about 30-38%, while

C(PV ∗, Z∗) is 0.49 in NC DJF but P (Z∗|PV ∗) = 0.61. In this instance, PV ∗ and AGP

detect blocks in similar areas, but the methods are not simultaneously detecting the same

features on a per-timestep basis.

Spatial similarity: The third measure of agreement between methods, spatial simi-

larity, is highly influenced by the size and location of detected regions relative to one

another. Note that the largest 75th percentile value is 0.62, which is unsurprising given

the differences in detected block size between methods even if the same feature is de-

tected, as was seen in Figure 2.5d. The results in Table 2.6 provide additional insight to

the results from the previous two sections. While PV ∗ and Z∗ again have some of the

highest values for similarity relative to other combinations of methods, S(PV ∗, Z∗) rarely

exceeds 0.6, and more often in the respective summer hemispheres when the Z∗ blocks are

smaller. Additionally, S(PV ∗, AGP ) < S(Z∗, AGP ) in most instances; this is sometimes

due to the relative sizes of the detected contours, but the PV ∗-detected contour is also

sometimes shifted with respect to the Z500-based methods (example in Section 2.3.2).

2.3 Meteorological drivers of differences between block-

ing algorithms

The various metrics displayed in Section 2.2 show that all three of the methods have

widely varying definitions of blocks, from the block’s physical characteristics to whether

or not a block is actually present at a particular point in time. The RRR case study,

in particular, highlights the importance of considering the nature of the region’s flow

field and prevailing block type when selecting the appropriate detection method. A few

meteorological factors that influence the differences between block detection methods are
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(a) Northern Hemisphere

Method pair NC NP NA

JJA

PV ∗ and AGP 0.21 to 0.46 0.08 to 0.38 0.16 to 0.43

Z∗ and AGP 0.35 to 0.58 0.13 to 0.37 0.19 to 0.50

PV ∗ and Z∗ 0.33 to 0.57 0.32 to 0.54 0.31 to 0.54

DJF

PV ∗ and AGP 0.27 to 0.53 0.15 to 0.43 0.13 to 0.43

Z∗ and AGP 0.35 to 0.58 0.19 to 0.42 0.25 to 0.50

PV ∗ and Z∗ 0.29 to 0.57 0.25 to 0.53 0.28 to 0.54

(b) Southern Hemisphere

Method pair SI SP SA

DJF

PV ∗ and AGP 0.02 to 0.21 0.08 to 0.37 0.02 to 0.08

Z∗ and AGP 0.07 to 0.23 0.18 to 0.39 0.06 to 0.24

PV ∗ and Z∗ 0.36 to 0.59 0.34 to 0.62 0.37 to 0.58

JJA

PV ∗ and AGP 0.05 to 0.26 0.08 to 0.31 0.05 to 0.31

Z∗ and AGP 0.24 to 0.46 0.21 to 0.43 0.28 to 0.47

PV ∗ and Z∗ 0.26 to 0.52 0.23 to 0.48 0.27 to 0.54

Table 2.6: Interquartile ranges of spatial similarity between instantaneously blocked fields.
The 25th and 75th percentile values are formatted based on the relative distributions of
these values— 25th percentile values above (below) 0.29 (0.15) are bolded (italicized),
and 75th percentile values above (below) 0.54 (0.39) are bolded (italicized) to denote
particularly high or low quantities relative to other values. All ranges of similarity values
were significantly different from the generated null distribution.
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Figure 2.11: Example, 12 hours apart in 1995 MAM, of instances in which there is (a)
less and (b) more agreement between the AGP method (purple) and the two anomaly
methods (blue and green) in SP.

discussed next.

2.3.1 Anomaly versus total field Z500-based methods

In Section 2.2.4, the magnitudes of the agreement metrics show that there is a clear

distinction between circumstances when blocks are detected by AGP , a method based on

the total Z500 field, as opposed to the other two methods that are based on anomalies

with respect to the LTDM. We limit the discussion here to the two methods that are

based on Z500 in order to reduce other sources of variability.

Both Z∗ and AGP were created with the purpose of detecting high values of Z500, but

AGP has no reference to the mean climatology; instead, it requires a significant change

in Z500 over a latitude range (30 degrees) that equates to more than half of each study

region’s latitude range (50 degrees). The difference in block detection is most evident

in the SH, where there is a much stronger zonal flow component than in the NH. This

stronger zonal flow implies that the requirements of the AGP method are fulfilled far

less often in the SH midlatitudes, since there is not sufficient distortion of the flow field;

AGP -detected blocks in the SH midlatitudes are often co-located with lows (dipole or

omega blocks) or have a tilt in their north-south axis, since this guarantees that there is

a sufficiently large Z500 gradient. In contrast, Z∗ is much less discriminating; it detects a

high number of blocks in the SH because the Z500 field has a strong meridional gradient

in addition to its mainly zonal flow, meaning that even fairly shallow ridges in the Z500

field are more likely to satisfy Z∗ anomaly thresholds.
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These points are illustrated in Figure 2.11, which shows a snapshot of an omega block

in SP on May 5th 18Z 1998 (left) and 12 hours later (right). At the earlier time, the two

anomaly methods produce clusters that are centered over the ridge (S(PV ∗, Z∗) = 0.78),

but the AGP method only picks out an area centered polewards of the lower geopotential

heights to the east of the ridge (before the size constraint was applied, there was also a

detected region in the vicinity of 190E,65S); S(PV ∗, AGP ) = 0.24 and S(Z∗, AGP ) =

0.26. Later, the intensification of the high in the 60-70S latitudes produces the necessary

height gradient to satisfy the criteria for AGP ; S(PV ∗, AGP ) = 0.46 and S(Z∗, AGP ) =

0.58.

2.3.2 PV ∗ links to shear and vorticity

The PV ∗ method picks out regions with PV that are highly anomalous with respect to

the climatological mean in the upper troposphere. Most often, these regions are areas

with particularly pronounced anticyclonic circulation in the Z500 field, such as dipoles or

omega blocks. Since anomalous vorticity and anomalous highs are linked, the two anomaly

methods are often very similar in terms of the location of the detected block, even if the

size of the detected cluster of grid points is not always the same. However, the EPV field

can be influenced by phenomena such as vertical shear (first two terms in Equation A.1.2)

or locally strong winds; it is a factor to consider in flow that does not have the necessary

meridional component to satisfy points 1 and 2 of the AMS definition of blocking. For

example, a jet streak embedded in otherwise zonal flow will lead to mistaken identification

of a region as blocked even though there is neither persistent obstruction nor pronounced

meridional flow. The PV ∗ method tends to detect gridpoints at higher latitudes than the

other two methods during each respective hemisphere’s summer, and over a wider range

of latitudes in the winter; this corresponds roughly to the location of the 500 hPa jet,

which shifts from polewards of 45 degrees latitude in summer to 40 degrees latitude and

below in the wintertime. Therefore, the PV ∗ method is somewhat linked to the presence

of the jet stream and embedded jet streaks.

Figure 2.12 demonstrates a case in which a PV ∗-detected cluster is shifted relative

to clusters detected by the other two methods, despite all of the methods identifying
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Figure 2.12: Example, in 24-hour increments, of omega block detection in 1989 NA SON.
The PV ∗ method is denoted by the green contour, the Z∗ method is blue, and the AGP
method is purple.

the same block. The 4-panel figure shows an omega block that is detected by all three

methods in 1989 NA SON; however, in Figure 2.12a, the Z∗ and AGP contours both

center on the high that is the top half of the block (S(Z∗, AGP ) = 0.56), while the

PV ∗ contour is shifted westwards (S(PV ∗, Z∗) = 0.29, S(PV ∗, AGP ) = 0.18). Daily

composites of the corresponding total wind (Figure 2.13) show that, on September 28th

6Z, 1989 (Figure 2.13a), there was a jet streak on the upstream side of the high pressure

feature which is being detected by the three algorithms. The vorticity (−gζ ∂θ
∂p

in Equation

A.1.2) associated with the anticyclonic curvature of the high is strongly negative at this

time, and further enhanced by vertical shear in the jet streak region. The combination

of these factors leads to the westward extension of the PV ∗-detected cluster relative to

the other two clusters. As time progresses (Figure 2.13b), a portion of the PV ∗-detected

contour continues to track that jet streak, which coincides with strongly negative vorticity,

until it reaches the downstream side of the omega block (Figure 2.13c). In Figure 2.13d,

the next jet streak has reached a higher latitude, where PV is larger and there is positive
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Figure 2.13: 500 hPa vector wind field corresponding to previous figure (September 28th-
October 1st), showing location of jet streaks. Wind speeds upwards of 45 m/s are visual-
ized as the red areas. The thick black contour corresponds to the blocked region detected
by PV ∗.

vorticity associated with the low. The anomaly is no longer exceeding the threshold;

therefore, the PV ∗ cluster separates from the jet streak and is in better agreement with

the other two methods (S(PV ∗, Z∗) = 0.52, S(PV ∗, AGP ) = 0.54).

2.3.3 Low-latitude blocking and flow impairment

Low-latitude blocking with respect to NH summer and the AGP method is discussed in

Davini et al. (2012);their paper questions whether these features are correctly character-

ized as blocks, since they are linked to poleward displacement of subtropical easterlies

and are less intense and persistent than those at higher latitudes. Low-latitude blocking

detection is present in all three methods: the AGP method has relative maxima in the

averaged blocking patterns in the respective summer hemispheres, and all three methods

find low-latitude blocks in the respective winter hemispheres (PV ∗ and Z∗ have distinct

maxima in the lower latitudes of NP DJF). Many of these low-latitude features are nearly

stationary (block speed averages 2-12 km/hr in both hemispheres) and persistent (block
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Figure 2.14: Example, in 48-hours increments, from NP JJA 2014, of a low-latitude block
detected by the AGP (the other two methods do not detect a block here). Thin contours
are Z500 in 50m intervals, and the thick purple contour denotes the detected feature. The
blue box spans [230E-234W, 25N-43N] and outlines the extent of the detected block.

Figure 2.15: Averaged (a) 850 hPa temperature, (b) 500 hPa meridional, and (c) 500 hPa
zonal wind anomalies for June 8th-17th 1984. The temperature contour intervals are 1K
and the wind contour intervals are 2 m/s. The blue box corresponds to the one seen in
Figure 2.14.

duration averages 6-12 days in both hemispheres). We present two cases of low-latitude

blocking here: one summer case, and one winter case.

Figure 2.14 shows an example of one of the more stationary low-latitude AGP -detected

regions in JJA, a persistent ridge over the central United States in 1994 that lasted from

August 23rd 12Z to August 30th 0Z and had an average zonal speed of 0.74 km/hr

over 7.75 days. The other two methods did not detect this feature, although the PV ∗
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Figure 2.16: Example, in 24-hours increments, from NP DJF 2006, of a low-latitude block
detected by the AGP (purple), Z∗ (blue), and PV ∗ (green) methods. The blue box spans
[165E-227E, 26N-47N] and outlines the extent of the detected block.

method detected a second feature at the higher latitudes of Figures 2.14b-d. Averaged

over the detected block’s lifespan, the 850 hPa temperature anomaly (Ta) in the vicinity

of the detected block is approximately +4K,the 500 hPa meridional wind anomaly (va) is

approximately ±5 m/s on either side of the block, and the 500 hPa zonal wind anomaly

(ua) is up to -5 m/s in the blocked flow region (see Figure 2.15). The size and shape of

the AGP -detected region fluctuates from panel to panel as the height gradient changes,

a trait that is more common among AGP -detected regions (particularly at the lower

latitudes) than their Z∗ or PV ∗ counterparts. The resultant averaged wind anomalies

are somewhat weaker than higher latitude cases, but the flow is indeed being consistently

diverted over the course of the ridge’s existence, and therefore satisfies the first point of

the AMS definition (as well as somewhat satisfying the second point of meridional flow).

In contrast, Figure 2.16 shows a low-latitude case in NP DJF in which all of the

methods identify a block in the midst of flow that is not sufficiently diverted or slowed.

This example shows January 5th 0Z to January 11th 0Z, 2006, where all three methods
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Figure 2.17: Averaged (a) 850 hPa temperature, (b) 500 hPa meridional, and (c) 500 hPa
zonal wind anomalies for January 6th-11th 2006. The temperature contour intervals are
1K and the wind contour intervals are 2 m/s. The blue box corresponds to the one seen
in Figure 2.16

detected a relatively shallow ridge that evolves into mostly zonal flow by the end of

the detected block’s lifespan, although the AGP method only detects the ridging at the

lower edge of the study region during the last few days (Figures 2.16c and d) and the

PV ∗ method disappears in Figure 2.16d. The PV ∗-detected region has an average zonal

speed of 12 km/hr over 8 days and the Z∗-detected region has an average zonal speed

of 10 km/hr over 12.5 days (the difference is mainly due to the longer lifespan of the

Z∗-detected region). The AGP -detected region has an average zonal speed of 7.86 km/hr

over 5.25 days (and it mainly tracks the ridge after the other two methods have stopped

following it, outside of the time window examined here). ua is -16 m/s in bottom half of

the blocked flow region outlined in Figure 2.17, but northwards of 35N, ua has a maximum

magnitude of 20 m/s. va is ±10 m/s on either side of the block and Ta is +5K within the

blocked region, both of which are larger anomalies than the JJA case. However, one must

always approach anomalies with caution; the Z500 field in Figure 2.16 does not indicate

that the zonal flow has been reduced at later times. Indeed, composites of the total wind

fields in Figure 2.18 show that while the JJA case has reduced wind speeds (maximum

5 m/s in the blocked region, compared to 20 m/s outside the impaired region), the DJF

case has wind speeds of up to 35 m/s in the northern portion of the “blocked” region,

which also coincides with the positive ua value in the northern half of the outlined region

in Figure 2.17. In the case of Z∗, this mistaken identification can be attributed to a fairly

shallow ridge in an area with a strong meridional gradient (as in Section 2.3.1). In the case

of PV ∗, vorticity values were only slightly negative or close to 0, but when considering

43



Figure 2.18: 500 hPa total wind fields and vectors for (a) the JJA blocking case in Figure
2.14 and (b) the DJF blocking case in Figure 2.16. The vectors indicate the wind direction,
and the colors indicate the wind magnitude.

V PV compared to V PV , sufficiently anomalous for V PV ∗ to surpass the local threshold

value of 1.2 PVU. In both instances of AGP -detected blocking, the presence of a sustained

ridge was enough to qualify as blocked, regardless of other criteria.

These examples suggest that not all low-latitude blocking should be discounted, at

least according to certain metrics; thus, applying blocking algorithms over a range of

latitudes rather than a single central latitude will produce a more complete climatology

of blocking hotspots. A number of detected low-latitude blocks will partially meet, or

fail to meet the AMS flow diversion criteria; the first case detected a region of impaired

flow, albeit a fairly weak one; and the second case did not produce demonstrably impaired

flow at all. However, algorithm “failures” are not unique to the lower latitudes; therefore,

rather than restricting analysis to a limited range of latitudes, future research should

consider algorithm limitations, which have been mentioned in previous sections, and make

use of additional diagnostic metrics to filter out non-blocked flow.

2.4 Conclusions

This study examines the blocking climatologies of six regions over summer and winter

seasons, and highlights some of the block characteristics from three detection methods,

which can be seen in Table 2.7. Maximum blocking frequency ranged from 9% (PV ∗)

to 40% (AGP ), with the locations of maximum blocking differing between AGP and

the anomaly methods. Some methods, such as the PV ∗ method, are quite conservative,
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AGP Z∗ PV ∗

Flow field

sensitivity

Equatorward low Strong high Strong curvature

Strong poleward Z500

gradient

Strong Z500 meridional

gradient

Strong winds, vertical

shear

Subtropical high pressure

Favored block

types

Omega block or ridge with

meridional axis tilt

All kinds (with sufficiently

large Z500∗)

All kinds (with sufficiently

large V PV ∗)

Cutoff low

Spatial

distribution

of frequency

NH: Higher latitudes,

Atlantic Ocean basin (and

some East Pacific),

summer low latitudes

Blocks detected over full

range of study regions

Higher latitudes in summer

seasons, wider range of

latitudes in winter seasons

SH: summer low latitudes,

SP midlatitudes

Location

(frequency)

of maximum

NH JJA equatorwards of

45 degrees (40%)

NP DJF equatorwards of

45 degrees (19%)

NP DJF equatorwards of

45 degrees (9%)

Notable

features

Less similar to other two

methods, highest frequency

of low-latitude blocking

Highest frequency of SH

blocking

Lowest overall frequency

magnitude between

methods

Duration ≈ 6.5− 10 days ≈ 6.5− 11 days Shortest overall between

methods (≈ 6.25− 9 days)

Zonal

distance

traveled

≈ 600− 2500 km; shortest

between methods in NH

winter and SH (both

seasons)

≈ 800− 3100 km Longest between methods

(≈ 1200− 3700 km) with

exception of NH summer

(≈ 600− 2100 km)

Zonal speed ≈ 3− 12 km/hr; slowest

between methods in NH

winter and SH (both

seasons)

≈ 4− 13 km/hr Fastest overall betweem

methods (≈ 6.5− 18

km/hr)

Size Smallest between methods

in SH winter

(≈ 1.5− 2.8× 106 km2);

≈ 1.8− 4.2× 106 km2

otherwise

Largest overall

(2.2− 5.2× 106 km2)

Smallest between methods

(1.6− 3.4× 106 km2)

except SH winter

Table 2.7: Summary of notable blocking frequency distribution and block characteristics.
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PV ∗ and AGP Z∗ and AGP PV ∗ and Z∗

Correlation Weak to moderate

negative correlation

Weak to moderate

negative correlation

Moderate to strong

positive correlation

Probability of

co-occurrence

Low to moderate for

both P (PV ∗|AGP ) and

P (AGP |PV ∗);
particularly low in SH

Moderate P (Z∗|AGP )

in winter, P (AGP |Z∗)
in NH summer; low

otherwise

Moderate to high

P (Z∗|PV ∗) in all

regions

Spatial

similarity

Lowest ranges of

similarity values

compared to other

method pairs

S(Z∗, AGP ) >

S(PV ∗, AGP )

Highest range of

similarity values

compared to other

method pairs in almost

all regions and seasons

Table 2.8: Summary of notable observations for intercomparison of objective detection
methods.

showing comparatively smaller frequencies and detecting smaller clusters; while others,

such as the Z∗ method, are less discriminating with respect to regions that are defined as

blocked, displaying both higher frequencies and larger clusters.

The intercomparison of the results, as summarized in Table 2.8, raises some points that

should be considered in future blocking studies that use objective detection algorithms.

Previous blocking studies often present averaged results, rather than examining them on

a per-block basis, but high averaged pattern correlation does not imply that two methods

will simultaneously detect the same features; furthermore, even when all three methods

detect the same feature, they do not necessarily define the block using the same cluster of

gridpoints. The AGP and anomaly methods had a much lower degree of agreement than

that between PV ∗ and Z∗, in both the averaged and instantaneous sense. However, even

the agreement between PV ∗ and Z∗ is affected by the relative sizes and placement of the

detected clusters, and the RRR case study demostrates that the block configuration is an

important element to “successful” detection of a block. This has implications to studies
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which attempt to link blocking to extreme weather, because attempts to correlate the

location of the block with the location of extremes will produce different results based on

the chosen algorithm.

The ideal blocking detection algorithm (one that detects all features that satisfy

the AMS definition) likely requires elements from multiple detection algorithms (such

as Dunn-Sigouin et al. (2012) or Barriopedro et al. (2010), which combine elements of

TM90 and DG83), as well as measurements of metrics such as block intensity (developed

by Wiedenmann et al. 2002) and flow diversion. Additionally, such an algorithm would

need to take seasonal and regional differences of the flow field into account. The results

show that there remains a significant discrepancy between published methods with re-

gards to how the AMS definition is interpreted, from the calculated blocking frequencies

to the average size and speed of the detected features. Many of the detected regions are

persistent in the sense that they are relatively nonstationary for at least 5 days, but the

resultant changes to wind speed and temperature are inconsistent. Blocks are a continuum

of forms, rather than clearly delineated idealized shapes; and each method is optimized

for detecting certain kinds of features under certain kinds of climatological conditions.

This chapter has summarized the factors that influence block detection by three dif-

ferent algorithms, and noted the relative strengths and weaknesses of these methods.

Additionally, it has outlined a number of metrics for both assessing individual methods

and comparing the results between methods. Objective algorithms show promise for an-

alyzing current and future trends, given their applicability to extremely large volumes

of high resolution data. Using results from historical models can provide a confidence

bound on anticipated changes in blocking characteristics in future climate simulations,

but careful consideration of algorithm biases should be factored into the analysis.
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Chapter 3

Assessment of atmospheric blocking

in reanalysis and model data

The results of Chapter 2, which show that the choice of algorithm impacts the block

characteristics as well as the blocking frequency, prompts a related question as it pertains

to the representation of blocking in model data. We now turn our attention to a related

question: how does the choice of model impact the block characteristics, and what are

some of the features of the model that cause these differences? Section 1.2.2 outlined

some of the known issues facing the accurate representation of blocking in climate models

versus the reanalysis datasets. Understanding the influence of particular model biases with

respect to blocking is useful for modeling groups in terms of both assessing and improving

climate models throughout the development process. By quantifying the relationships

between model biases and blocking biases, researchers are then able to select a subset of

models that will more accurately reflect realistic block formation, as well as working to

reduce the existing model biases that impact accurate block representation. Additionally,

understanding the correlations between model bias and resultant errors in block location

and formation will help to further inform understanding the dynamics of these features.

As in Chapter 2, the analysis is expanded beyond comparison of blocking climatologies;

the blocks are again assessed in terms of individual events, and we utilize a similar list

of block characteristics in this analysis, with the addition of further metrics that were

not calculated during the course of the Chapter 2 research. Analysis is restricted to one
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objective detection algorithm; we utilize the geopotential height anomaly method of Dole

and Gordon (1983) (e.g. DG83) that was modified as detailed in Section 2.1.2.4 to use a

spatiotemporally varying threshold. While many blocking studies utilize the geopotential

height gradient method (e.g. TM90), Chapter 2 demonstrated that this method fails to

capture certain block configurations, such as those with an insufficient tilt in the ridge axis.

The height anomaly method, being the least discriminating of the three detection methods

examined in Chapter 2, provides the widest possible variety of blocks for examination in

this chapter, which will enable us to determine whether there is a particular pattern in

the types of blocks that are produced by a model compared to reanalysis results.

This chapter will focus on the Pacific Ocean basins of both the Northern (NP) and

Southern (SP) Hemispheres; the boundaries of these regions remain unchanged from those

noted in Chapter 2. As previously noted in Chapter 1, increased spatial resolution does not

significantly improve representation of blocking in the NP basin, and using this study area

eliminates one potential source of variation introduced by the spatial resolution, as might

be seen in the Atlantic basin. All blocking calculations are performed on the provided grid

resolution, and only the blocking frequency results are regridded to a common 1-degree

spatial resolution in order to assess differences between reanalysis and model results for

the gridded variables.

We begin by presenting the blocking statistics for the average of four reanalysis

datasets in Section 3.2.1; these results form the benchmark against which the various

models are compared. Section 3.2.2 then puts forth the model results as deviations from

the reanalysis mean; we assess differences in the distributions of block characteristics and

jet latitude positions, as well as the horizontal wind and Z500 fields. The results are

shown as values normalized by the reanalysis interquartile range (explained in Section

3.1.3), with additional figures for the gridded variables in order to further discuss signif-

icant spatial differences. The normalized bias values are then used as input explanatory

variables for a linear regression analysis in Section 3.2.3; we begin with a linear regression

fit to all models, then explore the change in the model fit when outlier models are dropped

from the calculation.
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3.1 Data and Methodology

3.1.1 Data

Blocking is assessed on four reanalysis datasets (Table 3.1), each with 6-hourly temporal

resolution. The fields were averaged on a daily basis in order to provide similar temporal

resolution to the model data. The blocking results for each reanalysis did not display

significant differences from the multi-reanalysis average; therefore, Section 3.2.1, which

presents the baseline reanalysis blocking statistics, is in terms of the multi-reanalysis

mean. The 14 CMIP5 models listed in Table 3.2, which were obtained from the Lawrence

Livermore National Laboratory Earth System Grid Federation (LLNL ESGF) portal, are

comprised of the first ensemble member (r1i1p1) output from historical simulations and

have a daily temporal resolution with the timestep centered on 12Z. The overlap period

between all reanalysis and model data is 1979-2005 (27 years), which is less than the

30-year convention that is considered robust enough to account for natural variability,

but an assessment of 25-year versus 30-year blocking climatologies did not produce any

significant differences, implying that the 27-year time period is sufficiently robust for the

purposes of this chapter.

Institute Dataset horizontal resolution

JMA JRA-55 1.25x1.25

ECMWF ERA-Interim 0.75x0.75

NASA MERRA-2 0.5x0.625

NCEP CFSR 0.5x0.5

Table 3.1: Reanalysis models and horizontal resolution (lat/lon)

The results for the HadCM3 and HadGEM2-CC models (Table 3.3), which are also

CMIP5 models, are shown for comparison purposes, but were not included in the CMIP5

model ensemble average. Therefore, when referring to the CMIP5 models, we refer to

the models listed in Table 3.2; we refer to the models in Table 3.3 as the Hadley models.

The reason for this exclusion is that the seasonally averaged blocking frequency in the

Hadley models is approximately 5-10% higher than that of the CMIP5 models in both DJF
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and JJA, a result that has also been noted in Masato et al. (2013) (although a different

detection algorithm was used to produce the blocking climatology). We use these two

models to explore whether biases in the wind or height fields are sufficient to explain the

significant deviations of these two models from the rest of the CMIP5 ensemble.

Institute Dataset Horizontal Resolution

BCC BCC-CMS1.1 T106 (1.12◦)

CCCMA CanESM2 T42 (2.79◦)

CMCC CMCC-CESM 3.4x3.75

CMCC-CM T159 (0.75◦)

CNRM-CERFACS CNRM-CM5 T85 (1.4◦)

NOAA-GFDL GFDL-CM3 2x2.5

GFDL-ESM2M 1.5x2.5

IPSL IPSL-CM5A-LR 1.9 x 3.75

MIROC MIROC5 T85 (1.4◦)

MIROC-ESM T42 (2.8◦)

MPI-M MPI-ESM-MR T63 (1.88◦)

MRI MRI-CGCM3 T106 (1.12◦)

MRI-ESM1 T106 (1.12◦)

NCC NorESM1-M 1.9 x 2.5

Table 3.2: CMIP5 models and horizontal resolution (lat/lon)

Institute Dataset Horizontal Resolution

MOHC HadCM3 2.5x3.75

HadGEM2-CC 1.25x1.875

Table 3.3: Hadley Center models and horizontal resolution (lat/lon)

3.1.2 Metrics for assessing agreement between datasets

We are assessing model agreement both in terms of model characteristics (Table 3.4)

as well as the resultant blocking metrics (Table 3.5) once the detection algorithm has
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been run on all of the models. The methodology for calculating block duration, distance

traveled, size, and speed are all briefly summarized in Table 3.5, and were previously

described in Chapter 2.

Blocking intensity (BI) was developed by Lupo and Smith (1995) and modified in

Wiedenmann et al. (2002); we further modify it here to accommodate our 2D results (see

Appendix B.1). BI is a measure of the Z500 gradient relative to overall field’s climatology.

In the reference papers, blocks are classified as weak (BI < 2), moderate (2 < BI < 4.3),

and strong (BI > 4.3). We also present an anomaly intensity (AI) metric (Appendix B.2),

which is an area-weighted sum of anomaly values over the detected block extent. The AI

index complements the BI index, presenting the block’s intensity while also accounting

for the block’s size and the underlying atmospheric mean state.

We approximate both upper and lower level daily mean jet positions for each model in

the 27-year time period, as well as reanalysis and CMIP5 (excluding the Hadley models)

means. Li and Wettstein (2012) note that jets in NP are both thermally- and eddy-driven,

and that the dominant processes are seasonally dependent. NP jets are considered to be

more subtropical in nature, due the influence of tropical Pacific heating patterns such

as the El Niño Southern Oscillation (ENSO), as well as variations in geopotential height

patterns such as the Pacific/North American teleconnection pattern (PNA). However,

eddy forcing is still a driving force in development and maintenance of jet position as

well; and in summertime, when the equator-pole temperature gradient weakens relative

to wintertime, the maximum wind speed is observed to be in the vicinity of the eddy-

driven winds.

The jet position calculations are performed using a methodology inspired by Woollings

et al. (2010); the jet position is defined as the latitude of the maximum bandpass-filtered,

longitudinally averaged wind speed over 15-65 degrees in the respective hemisphere. The

multi-year averaged latitude values are further smoothed retaining only the first five har-

monics of the multi-year averaged time series, similar to the procedure used in Chapter 2

for determining the LTDM.

The blocking frequency, U, V, and Z500 fields are all gridded fields, and we assess
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Metric Abbrev Units Description

Geopotential height Z500 m Geopotential height at 500 mb

zonal wind U m/s Zonal wind velocity at 500 mb

meridional wind V m/s Meridional wind velocity at 500 mb

Eddy-driven jet position J850 ◦N/◦S Latitude of maximum zonally averaged

wind at 850 mb

Subtropical jet position J250 ◦N/◦S Latitude of maximum zonally averaged

wind at 250 mb

Table 3.4: Model variables and abbreviations used in this paper

the model differences both in terms of the field’s mean value and its variability over time

(as measured by the standard deviation of per-gridpoint time series).While we utilize the

median field bias values (see Appendix ?? for the calculation procedure) for both the

seasonal mean and variability of the fields in the linear regression calculations, we also

present the full multi-year seasonally averaged fields for JJA and DJF, with statistically

significant differences indicated by stippling. These significant differences were deter-

mined by taking per-year seasonal averages (standard deviations) of the field for both the

reanalysis average and the model of interest, then performing the t-test at each gridpoint,

using the respective distributions of per-year values to assess whether there is a significant

difference in the mean (standard deviation).

By evaluating both the model characteristics (Table 3.4) and the resultant block char-

acteristics (Table 3.5), we gain a more comprehensive understanding of both the blocks

produced by a given dataset, as well as the connection between the block characteristics

and the inherent model physics. Blocks are formally defined as synoptic-scale, quasi-

stationary features, but the thresholds for quantities such as duration or size vary by

methodology, and consequently change the resultant blocking climatology. While some

thresholds (5 day duration, 106 km2 minimum size) have basis in the literature, other

metrics, such as zonal speed, have no prior constraint (although we attempt to eliminate

faster moving features by requiring a minimum of 50% overlap from one contour to the
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Metric Abbrev Units Description

Blocks per season NB count Number of blocks per season

Mean centroid latitude LA ◦N/◦S Mean absolute latitude of block’s

centroid coordinate

Mean centroid longitude LO ◦E Mean longitude of blocks centroid

coordinate

Duration DD days Number of time steps (in days) for

which the block is identified (min 5

days).

Zonal Distance ZD km Difference between block center

start and end longitudes

Zonal Speed ZS km/hr Zonal distance divided by duration

Block Area BA km2 × 106 Area of the contour which captures

the cluster of detected points (min

106 km 2)

Anomaly Intensity AI none Area-weighted sum of block

anomaly values

Blocking Intensity BI none Maximum geopotential height nor-

malized by the local conditions

Table 3.5: Blocking metrics and abbreviations used in this paper

next over time).

It is worth noting that some of the block characteristics listed in Table 3.5 are not

fully independent of one another. For example, speed is the result of duration divided

by distance; also, larger blocks tend to have longer durations due to the minimum size

threshold constraint.

3.1.3 Linear regression calculations

In order to assess the extent to which various model biases impact the resultant blocking

frequency, we regress median difference values in the variables from both Table 3.5 and
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3.4 against blocking frequency differences for the respective models. Additionally, we

regress each variable bias in Table 3.4 variable against Table 3.5 variable biases. A similar

analysis was previously conducted in Davini and D’Andrea (2016) to assess the impact

of SST biases on blocking frequency. However, their analysis used root mean square

error (RMSE), which, while quantifying absolute model error, does not retain the sign of

the bias. The intent here is to investigate the relationship between model fields and the

characteristics of the blocks that are produced by these models; therefore, RMSE does not

work for our purposes. We use the block bootstrapping procedure described in Appendix

?? in an attempt to determine a meaningful bias magnitude in the context of the overall

spatial pattern while retaining the sign of the bias.

For each of these analyses, the regression equation can be generally expressed as

mi = c0 + c1f1 + c2f2 + ... (3.1.1)

where mi is the normalized difference of the reanalysis average and the model for the

variable in question, c0 is a constant, and cn are the slope coefficients for biases fn.

The regression models are calculated using the ordinary least squares (OLS) regression

calculation from the Python statsmodels package. Each variable bias V ∗ is normalized

prior to the regression calculations by the reanalysis average’s corresponding interquartile

range, IQRVR (the difference between the 75th and 25th percentiles) for that region and

season:

V ∗N =
VM − VR
IQRVR

(3.1.2)

where VM and VR are the seasonally averaged values of the model and reanalyses, re-

spectively and V ∗N is the normalized variable value. Normalization is necessary to ensure

that biases with larger absolute magnitudes (such as the Z500 biases) do not factor dis-

proportionately into the regression calculations, as well as taking regional and seasonal

climatology differences into consideration.
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Before performing the regression calculation, we determine whether any of the vari-

ables exhibit high collinearity, which will disproportionately weight the resulting model fit.

The variance inflation factor (VIF) flags variables that have significant multicollinearity

with other variables, which could skew the fit of the linear regression. The statsmodels

package calculates VIF for each possible input value relative to all others, and an explana-

tion of the calculation steps is found in Appendix B.4. Variables with a VIF greater than

5 (this is a commonly accepted threshold in the literature) are dropped from the list of

input variables. We then regress blocking frequency against the remaining list of explana-

tory variables and examine the model fit in terms of the parameters in the subsequent

section.

Interpretation of regression summary output: The results in Section 3.2.3 are

displayed in terms of the variable coefficients cn, the coefficient of determination, R2, the

t-statistic, and the p-value. Each of these values relays a different piece of information

about the fit of the regression equation:

• cn: The relative weight of the corresponding explanatory variable in the overall

linear equation. Since all of the explanatory variables are standardized, coefficients

with higher magnitudes can be considered to explain a larger proportion of variance

in the outcome. Negative values imply a negative correlation between the dependent

and independent variables.

• R2: The amount of variance in the independent variable that can be described by

the explanatory variables. A high R2 value implies that much of the variance in the

independent variable is correlated with variance in the explanatory variables.

• t-statistic: The coefficient divided by the standard error of the coefficient. A larger

value of the t-statistic implies that the coefficient is large, the standard error of the

coefficient is small, or both.

• AIC and BIC: metrics for quantifying relative model quality, accounting for both

overfitting (too many parameters) and underfitting (poor predictive value). Lower
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values of AIC and BIC imply a better model. (See Appendix B.4 for the formulas

for AIC and BIC).

• p-value: The probability that the coefficient cn is 0 (implying that the variable has

little to no influence in the resultant regression equation). At the 95% confidence

interval, p < 0.05 implies that the coefficient is nonzero and the corresponding

explanatory variable should be included in the linear regression equation.

High influence outliers: The statsmodels package contains a function for detecting

models that contain significantly anomalous input or output values. The outlier models

are described in terms of the following quantities:

• Leverage: A measure of how different the individual model’s explanatory variables

are from the entire set of explanatory variables as a whole.

• Studentized residual: Residuals are the difference between the observed and pre-

dicted values of the regression equation. A studentized residual is an observation’s

residual divided by the standard deviation of all other residuals (i.e. excluding the

residual that is the dividend).

• Cook’s distance: A measure of how much the values in the regression model change

when a particular observation is removed from the calculations.

See Appendix B.4 for the equations related to these measures, as well as the supple-

mental figures for plots of the models. The function outputs labels for the models that

surpass either the leverage or residual thresholds, regardless of the resultant influence

value (measured by Cook’s distance). Note that a high influence value is not necessarily

a detrimental impact to the model fit; it merely signifies that removing that observation

from the calculation will result in a significantly different model fit.

3.2 Results

We begin in Section 3.2.1 with the baseline values from the average of ERA-Interim, JRA,

MERRA2, and CFSR for JJA and DJF, with some brief remarks on seasonal and regional
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differences. These values are the basis for the model comparisons in Section 3.2.2, and the

interquartile range, or the difference between the 75th and 25th percentiles, is the quantity

that is used to normalize the model-reanalysis differences. Section 3.2.3 presents a linear

regression analysis between blocking frequency model bias and biases in other block and

model characteristics. The regression is first performed on the full set of models, and then

a second time with significant outlier models removed in order to determine if variable

significance changes without the outlier models present. The individual block variables

are also regressed against the model variables in order to explore possible explanations

for variations in block characteristics between models.

3.2.1 Reanalysis average of blocking metrics

Tables 3.6 and 3.7 present the per-season median and interquartile range of blocking

metrics for NP and SP, with the corresponding summer season values on the left and the

corresponding winter season values on the right of the table. For the blocking frequency,

U, V, and Z500, the discussion also references Figures 3.1-3.4, which show the reanalysis

multi-year seasonal average and variability plots for the specified region and season.

Blocking Frequency (BF): Blocking frequency ranges from the smallest blocking fre-

quency in SP DJF, with a maximum of 6%, to the largest in NP DJF, with a maximum

blocking frequency of 14%. Figures 3.1 to 3.4 display BF fields in the top left corner of

each figure. Blocks are more concentrated towards the poleward latitudes in the respective

summer hemispheres compared to the winter counterparts, which contain blocking spread

out across the extent of the study region. Note that the BF field patterns for the average

and temporal variability are very similar, although the magnitude of the variability field

is on average more than double that of the mean field. This is unsurprising, as areas with

higher blocking frequency will have more instances of switching from a non-blocked state

(0) to a blocked state (1) in the instantaneous field.

Number of blocks (NB): The number of blocks per regions and season ranges from

3 to 8 blocks per season, with NP JJA having the lowest range of values (3 to 7) and SP

JJA having the highest range of values (4.75 to 8).
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Figure 3.1: (Top subfigure) NP JJA mean fields for (top left) blocking frequency in 0.02
interval spacing starting at 0.02, (top right) Z500 with 100 m interval spacing, (bottom
left) U with 5 m/s interval spacing, and (bottom right) V with 2 m/s interval spacing.
(Bottom subfigure) NP JJA standard deviation fields for (top left) blocking frequency in
0.05 interval spacing starting at 0.05, (top right) Z500 with 20 m interval spacing, (bottom
left) U with 1 m/s interval spacing, and (bottom right) V with 1 m/s interval spacing.
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Figure 3.2: As for 3.1, with NP DJF.
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Figure 3.3: As for 3.1, with SP DJF.
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Figure 3.4: As for 3.1, with SP JJA.
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JJA DJF

Q25 Q50 Q75 Q25 Q50 Q75

BF (%) 1.349 3.660 5.610 3.537 6.703 9.160

BF SD (%) 11.665 18.951 23.069 20.320 25.618 29.003

NB (#) 3.500 4.250 7.000 4.500 5.750 6.750

LA (N) 48.320 51.690 59.900 35.660 44.680 56.310

LO (E) 174.970 195.000 217.990 174.050 192.390 219.310

DD (days) 5.000 7.000 9.000 6.000 7.000 10.000

ZD (km) 431.420 837.210 1418.190 429.510 1022.250 1834.100

ZS (km/hr) 3.960 6.570 9.560 4.280 7.420 11.530

BA (km2) 2.280 3.070 3.750 3.390 4.420 5.950

AI 4.260 6.440 8.100 9.280 13.190 20.540

BI 1.510 1.830 2.180 2.410 3.540 4.120

Z500 (m) 5599.895 5683.674 5814.641 5203.299 5330.329 5533.028

Z500 SD (m) 75.685 91.664 102.626 119.685 134.379 149.527

U (m/s) 3.792 6.251 9.475 5.180 11.813 16.206

U SD (m/s) 8.094 9.135 9.895 10.960 12.194 13.453

V (m/s) -0.730 0.591 1.598 0.490 2.373 3.642

V SD (m/s) 7.454 8.461 9.393 10.913 12.050 13.251

J850 (N) 44.160 46.530 48.820 38.150 38.820 40.370

J250 (N) 44.820 48.350 51.310 33.510 33.910 35.430

Table 3.6: NP values for the blocking frequency (BF), the various blocking metrics listed
in Table 3.5, and the field variables listed in Table 3.4. The values are listed for the 25th
(Q25), 50th (Q50), and 75th (Q75) percentiles.

Mean centroid latitude (LA): The summer (winter) seasons tend towards more pole-

ward (equatorward) latitude values, with a 50th percentile value of 52N (45N) in NP and

50S (47S) in SP. However, there is less of a difference between the winter and summer

seasons in SP than in NP; the overall flow pattern in SP is much more zonal due to the

comparative lack of land mass (with the exception of SE Australia on the western edge
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DJF JJA

Q25 Q50 Q75 Q25 Q50 Q75

BF (%) 2.196 3.301 4.535 2.999 3.981 4.892

BF SD (%) 14.664 17.672 20.800 17.217 19.712 21.857

NB (#) 3.250 5.500 7.000 4.750 6.750 8.000

LA (S) 39.040 50.290 59.110 35.920 47.480 59.010

LO (E) 172.880 206.790 252.130 184.780 225.590 255.740

DD (days) 5.000 6.000 8.000 5.000 6.000 9.000

ZD (km) 379.870 978.780 1662.690 850.130 1514.100 2232.320

ZS (km/hr) 4.460 8.800 12.420 6.280 10.460 14.050

BA (km2) 2.730 3.540 4.270 2.880 3.640 4.570

AI 6.470 9.470 12.680 8.150 11.510 15.590

BI 1.770 3.370 4.250 2.030 2.860 4.170

Z500 (m) 5258.736 5494.509 5703.509 5176.352 5378.461 5534.993

Z500 SD (m) 91.907 118.692 135.107 110.503 142.010 165.860

U (m/s) 9.335 13.560 17.250 12.186 13.777 16.062

U SD (m/s) 9.676 10.660 11.304 11.417 12.123 12.460

V (m/s) -0.936 -0.039 0.815 -0.944 -0.153 0.601

V SD (m/s) 9.252 11.122 12.633 11.715 12.876 13.795

J850 (S) 52.850 53.260 53.540 53.470 54.280 56.040

J250 (S) 47.820 50.240 50.920 32.130 32.530 32.760

Table 3.7: As for Table 3.6, with SP values

and the tip of South America on the eastern edge).

Mean centroid longitude (LO): In contrast to LA, there is almost no difference

between the winter and summer seasons in NP, again likely due to the land mass, which

is responsible for reinforcing a standing wave pattern in NP regardless of season. In SP,

a greater number of blocks tend more eastwards within the region in winter compared to

summer, with a median value of 207E in DJF and 226E in JJA.
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Duration (DD): In general, the summer months tend towards shorter blocks than

the winter months, with SP DJF having the shortest durations (5-8 days) and NP DJF

having the longest durations (6-10 days). The longer-lasting blocks in NP DJF explain

why this study region has the largest blocking frequency, despite SP DJF experiencing

more blocking events (but shorter ones) overall.

Zonal distance traveled (ZD): Here, we see that in general SP displays larger distance

values for a given season than the northern counterpart, although SP DJF has a larger

proportion of short-distance blocks than NP JJA (likely connected to shorter durations).

Zonal speed (ZS): SP has faster speeds compared to the NP speeds for corresponding

seasons, which is due to both longer distances and shorter durations than NP.

Block area (BA): NP DJF has the largest blocks and NP JJA has the smallest, with

SP showing similar distributions between winter and summer seasons.

Anomaly Intensity (AI): Summer blocks have lower AI values than winter blocks in

both regions, with the highest overall AI values in NP DJF. The 75th percentile AI value

in NP DJF is 30% higher than the 75th percentile value for SP winter.

Block Intensity (BI): NP JJA produces mainly weak (BI < 2) blocks; NP DJF and

SP in both seasons have blocks with stronger Z500 gradient values. The 75th percentile

BI value for SP JJA is slightly higher than the 75th percentile value for NP DJF, which is

seemingly at odds with the previously noted comparison of AI values. However, NP DJF

blocks are on average much larger; the BI index does not factor this into the calculation.

500 mb geopotential height (Z500): NP JJA has the highest heights on average

(about 5700 m) with a maximum height of almost 6000 m in the equatorward parts of the

region. The winter seasons of both regions average about 5400 m with maximum heights

of about 5800 m, but the patterns are quite different. NP DJF has a tighter horizonal

Z500 gradient over the lower western half of the region, which is mainly ocean, compared

to the weaker horizonal gradient in the eastern part of the region (over the North Atlantic

land mass and the Pacific Coast Ranges). SP in both seasons displays a mostly zonal

average height pattern with the strongest Z500 gradient across the middle latitudes in
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the region, with lower heights in JJA (winter). The largest amount of variability is seen

in the upper mid-Pacific in NP (approximately co-located with the BF maximum), and

slightly polewards of the center of SP.

500 mb zonal wind (U): The bottom left panels of Figures 3.1 and 3.2 show that in

NP, there is a concentrated region of stronger zonal wind in the lower half of the region

that corresponds to the jet core, with a maximum of about 15 m/s in JJA and 36 m/s in

DJF and wind speeds averaging about 6 m/s in JJA and 11 m/s in DJF. In SP (Figures

3.3 and 3.4, bottom left), the summer (DJF) has a more concentrated band of stronger

wind around 50S (poleward of the Australian continent), with average winds of about

11 m/s; the winter wind speed displays a maximum of 22 m/s at the equatormost (25S)

latitudes, with a lesser local maximum of 18 m/s around 60S and overall average wind

speeds around 14 m/s. As with Z500, variability tends to be higher in winter seasons

compared to the summer. The location of variability maxima are not co-located with

the location of the mean field maxima; rather, the largest variability is associated with

shifting of the maximum zonal wind position, in both the zonal and meridional directions.

500 mb meridional wind (V): There is an alternating pattern of positive/negative

regions of V, with the largest opposing magnitudes in NP DJF (the central part of NP

DJF, off the coast of North America, is about -10 m/s). The mean meridional wind

speeds are an order of magnitude smaller than zonal wind, ranging from about -2 to 4

m/s among the various study regions. The positive maxima in the summer seasons of

the respective hemispheres are shifted westwards relative to winter, which corresponds to

the westward shift of the zonal wind maximum. This indicates that the large-scale wave

pattern is different between the two seasons, with the winter wave pattern displaying

a larger amplitude, higher wind speeds, and a trough centered over the ocean basin,

although the difference is much more notable in NP than in SP. However, unlike the

largely positive zonal wind values observed in the seasonal averages of U, V has regular

occurrences of both positive and negative values depending on the position of the large

scale wave pattern; thus, the V variability field has a larger maximum magnitude than

the U variability field.
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Figure 3.5: Position of the low-level (850 mb, left column) and upper level (250 mb, right
column) jets for NP (top row) and SP (bottom row). The reanalyis average is denoted
by the black line and the individual models are the colored lines. Summer months are
highlighted in orange and winter months are highlighted in blue for the respective regions.

850 and 250 mb jet position (J850, J250): Woollings et al. (2010) notes a weak

bimodality in jet position in both NP and SP, and that observation is reflected here. The

relative positions of upper and lower jet positions display distinct seasonal trends for both

hemispheres. In NP, there is a 2-degree difference between the median maximum wind

positions, and in SP there is a 3-degree difference; this vertical coherence is also evidenced

by the latitudinal position of the zonal wind maxima (see supplemental material, Figures

3.1 and 3.3). During the summertime, the meridional temperature gradient and, subse-

quently, the upper level jet, is weaker; thus, the maximum wind position will be in the

vicinity of the eddy-driven jet in both the upper and lower levels.

In contrast, there is more separation between the positions of the upper-level and lower-

level winds in wintertime, with approximately a 5 degree positional difference between
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the upper and lower winds in NP and a 22 degree positional difference between the upper

and lower winds in SP. During the winter, the eddy-driven jet is present at both the

upper and lower vertical levels, but the upper level jet traps eddies, which subsequently

reduces meridional propagation (Nakamura and Sampe, 2002). In SP, the 850 mb jet

position is fairly constant throughout the year, without the equatorward migration in

the summertime as observed in NP; this is likely due to the strength of the meridional

temperature gradient (influenced by the Antarctic land mass) and the unimpaired flow in

this region.

3.2.2 Model biases with respect to the reanalysis average

Figure 3.6 visualizes the strength of the relationship between pairs of variable model bias

values, using the Pearson correlation (similar to Chapter 2) on the set of model bias values

(CMIP5 and the outlier Hadley models both) for both hemispheres and seasons. Figure

3.7 presents the sign and significance of these biases in all measured quantities— blocking

frequency, block characteristics, model fields, and the calculated jet positions. More

detailed per-region figures with additional detail on difference magnitudes are available in

the supplemental materials (Figures C.1 to C.4), as well as individual plots of the model

fields in terms of the mean and variability, and Taylor plots that summarize the pattern

and magnitude differences for these fields (Figures C.5 to C.52). We also present the

interquartile range of all model bias values in Tables 3.8 and 3.9, where differences that

meet the level of significance are noted with bolding. Significant differences are denoted

by dark red (positive) and dark blue (negative), while non-significant differences are light

red and blue for the respective signs of the biases. The differences for the field variables

(blocking frequency (BF), geopotential height (Z500), and the two wind variables (U

and V)) come with the caveat that the difference values somewhat oversimplify the more

complex spatial differences in the full field. To maintain consistency with NP, the biases

in the latitude values (LA, J850, and J250) are positive for a poleward bias and negative

for an equatorward bias (this is not reflected in Figure 3.5, where the latitude values

maintain the sign).

As discussing individual model differences would be exceedingly long-winded, we
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choose to focus on broader trends in the the significant differences, and reserve discussion

of individual models for the linear regression analysis.

3.2.2.1 Correlation between model biases

Figure 3.6 shows the Pearson correlation values that signify the strength and direction

of the relationship between the denoted row and column variables. This relationship is

calculated using the 64 bias values (4 bias values for each of the 16 models, as this includes

the NH and SH winter and summer biases) for each of the two variables being compared.

The correlation is calculated using the per-model variable bias pairs.

BF (leftmost column in Figure 3.6) is highly correlated with BA (0.89), and moder-

ately correlated with DD (0.55), NB (0.49), AI (0.56), and BI (0.66). The almost perfect

correlation between BF bias and BF variability bias (0.99) echoes the previous observation

that the patterns between the mean and variability fields were very similar in the reanal-

ysis. In contrast to previous literature, there is a very low correlation (-0.11) between BF

and the Z500 bias value, and even less (-0.06) with the Z500 variability bias field. This

is interesting, considering the literature that has explored correcting biases in blocking

frequency by correcting the mean bias, as in Scaife et al. (2011). This may simply be

a limitation of the mean bias value without its spatial component, but it is also impor-

tant to consider that we are examining the accurate depiction of extreme events, and the

representation of the mean state does not necessarily correlate with the representation of

outlier cases.

Some other notable correlation values lead to those variables being excluded from

the final list of input variables that are used in the linear regression. This is due to

the fact that strong correlations between input variables will introduce redundancy into

the regression model and increase the standard error of the coefficients. The following

variables have a VIF of more than 5 and are excluded from the input list:

• BA: BA bias is strongly correlated with BF bias (0.89), but its strong relationships

with AI (0.73), BI (0.84) and moderately strong relationship with DD (0.66)

• U SD: U SD is highly correlated with V SD (0.89) and Z500 SD (0.7) and moderately

correlated with J250 (0.5) and LO (0.43)
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Figure 3.6: Pearson correlation values between model biases of the corresponding row and
columns variables. Each relationship is determined between the set of all CMIP5 (and
Hadley) model biases (one pair per model, region and season for a total of 64 bias pairs)
for the specified variables.
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JJA DJF

Q25 Q50 Q75 Q25 Q50 Q75

BF -0.497 -0.121 0.309 0.158 0.533 0.917

BF SD -2.151 -0.316 1.183 0.296 0.907 1.800

NB 0.500 0.750 1.000 -0.750 0.250 0.250

LA -1.093 0.401 0.751 1.091 2.409 3.476

LO -1.869 0.654 3.604 6.511 11.359 16.463

DD -1.000 -0.250 0.000 0.000 0.000 0.250

ZD -82.958 -24.221 26.760 63.779 198.322 227.634

ZS -0.693 -0.375 -0.031 0.516 1.205 1.826

BA -0.374 -0.165 -0.063 -0.317 -0.175 -0.028

AI -1.577 -1.110 -0.441 -0.042 0.565 1.775

BI -0.372 -0.194 -0.032 -0.456 -0.283 0.022

Z500 -39.806 -19.686 11.509 -55.265 -36.010 -3.319

Z500 SD -6.510 -3.347 -0.384 -0.797 6.985 15.819

U -1.120 -0.283 0.452 -1.072 -0.786 0.441

U SD -1.746 -1.263 -0.833 -1.299 -1.053 -0.708

V -0.109 0.128 0.177 -0.452 0.004 0.296

V SD -1.645 -1.290 -0.918 -1.427 -1.188 -0.745

J850 -1.269 -0.235 1.836 -2.332 0.051 1.029

J250 -5.407 -4.061 -2.319 -1.681 -0.873 0.119

Table 3.8: NP model bias value quantiles, as seen in Figure 3.7 (excluding the CMIP5
mean but including the Hadley models). The values are listed for the 25th (Q25), 50th
(Q50), and 75th (Q75) percentiles. Significant difference values are bolded.

• J250: J250 is moderately correlated with LA (0.62), LO (0.43), U (0.58), U SD (0.5)

and V SD (0.48)

• AI: AI is highly correlated with BA (0.73) and BI (0.71). It is also moderately

correlated with DD (0.56), Z500 SD (0.42)
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Figure 3.7: Significance and sign of biases for metrics in Tables 3.4 and 3.5. The top half
of each box represents NP biases and the bottom half of each box represents SP biases.
The left side of each box represents the summer months and the right side of each box
represents the winter months. Significant positive (negative) biases are denoted by dark
red (blue); non-significant bias values are indicated by lighter shades. White represents
instances in which the median values for both the reanalysis and model values are the
same. The gridded variables (BF, Z500, U, and V) have rows for both the mean and
variability bias values; the variability component is denoted with the suffix ” SD”.
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DJF JJA

Q25 Q50 Q75 Q25 Q50 Q75

BF 0.214 0.570 0.720 0.360 0.605 0.831

BF SD 0.497 1.359 1.790 0.736 1.374 1.750

NB -1.500 -0.500 -0.250 -1.000 -0.250 0.500

LA -0.937 1.268 2.486 -4.782 -3.919 -2.848

LO -0.452 7.747 12.287 -5.732 -3.903 -0.875

DD 0.000 0.750 1.000 0.875 1.000 1.000

ZD 17.644 93.462 273.108 -199.203 -128.822 -44.176

ZS -1.145 -0.848 -0.351 -1.410 -0.726 0.074

BA -0.001 0.178 0.424 0.153 0.272 0.497

AI -0.519 0.033 0.379 -0.883 0.372 2.047

BI -0.090 0.011 0.396 -0.235 -0.016 0.196

Z500 -26.022 -7.397 1.593 -33.978 -15.903 -8.781

Z500 SD -13.801 -6.677 -3.978 -7.544 -3.284 4.200

U -1.454 -0.805 -0.030 -1.433 -0.858 -0.137

U SD -2.205 -1.749 -1.386 -1.605 -1.237 -0.766

V -0.209 -0.100 0.028 -0.189 -0.069 0.076

V SD -2.657 -2.381 -1.739 -2.121 -1.782 -1.465

J850 -3.462 -2.438 -2.171 -4.782 -2.137 -0.800

J250 -4.444 -2.986 -2.300 -3.774 -3.087 -2.138

Table 3.9: SP model bias value quantiles, as seen in Figure 3.7 (excluding the CMIP5
mean but including the Hadley models). The values are listed for the 25th (Q25), 50th
(Q50), and 75th (Q75) percentiles. Significant difference values are bolded.

3.2.2.2 Trends in bias values

Figure 3.7 shows an overall summary of the sign and significance of the biases for the

various metrics in Tables 3.4 and 3.5. Some trends are particularly notable. First, few of

the block characteristic metrics display significant differences compared to the reanalysis;

the main exceptions are the two Hadley models (the two rightmost columns), which
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have significant positive biases in NB, ZD, BA, and BI for almost all regions and seasons.

Therefore, the Hadley models are consistently producing more blocks which are also larger

and more intense, which subsequently means that they are able to persist longer and travel

further. All of the models (including the Hadley models) overall display consistently

negative bias values in many of the model variables, particularly the jet position variables

and the wind variability variables. However, these model variables are not significantly

correlated with BF bias on an individual basis, nor with many of the block characteristic

bias values. There are strong correlations between the variability biases for Z500 and the

wind fields, but this is unsurprising given the relationship between pressure gradient and

wind speed.

Another observation of interest is the fact that BF bias, with the exception of NP

JJA, is mainly positive, in both the mean and variability bias values. Previous blocking

literature has maintained that models tend to underpredict the frequency of blocking,

but many of these studies were focused on a different region (NH Atlantic) and used a

different method (TM90, from Chapter 2). Here, we are using an anomaly-based objective

detection algorithm rather than one based on an absolute field. Removing the mean bias

from the absolute field will result in a better representation of the meridional Z500 gradient

that is necessary for the TM90 algorithm. However, that is not the case here; we previously

noted the apparent disconnect between the BF and Z500 field biases in the discussion of

bias correlations. An anomaly-based method will search for deviations from the mean,

regardless of the magnitude of the mean state, and the spatiotemporally-varying threshold

ensures that extremes are detected in the context of the local climatology. Thus, it is

possible that a mean model bias will not be reflected in the resultant blocking frequency

bias, as long as the extreme events are properly represented.

3.2.3 Linear regression of bias values

3.2.3.1 Linear regression of blocking frequency against individual variables

Table 3.10 summarizes the resulting OLS fits for normalized BF bias against the normal-

ized bias of each individual variable in the table. LO, ZS, Z500 (mean and variability),

U (mean and variability), V variability, J250, and J850 did not have significant R2 values
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Variable R2 R2 (adj) intercept coef

BA 0.79 0.79 0.1636 3.3613

BI 0.43 0.42 0.675 2.6872

AI 0.32 0.31 0.5595 3.1736

DD 0.30 0.29 - 3.9603

NB 0.24 0.23 0.4166 1.6664

ZD 0.15 0.14 0.3426 3.2181

LA 0.07 0.05 0.5002 -2.1561

V 0.07 0.06 0.406 -1.9492

Table 3.10: R2, adjusted R2, and coefficient values for linear regression fits of BF versus
individual explanatory variables. LO, ZS, Z500, Z500 SD, U, U SD, V SD, J250, and J850
are not shown.

and are not included in the table. Of the individual fits, BA bias has the largest R2 value

at 0.79 (almost double that of BI, with the second largest R2 values), which echoes the

correlation results from earlier. While the Hadley models produce notably outsized BF

biases compared to the rest of the models, eliminating them does not actually increase

the R2 values of most of the individual fits, as seen in Figure 3.8. It is clear from the

left column in the figure that the Hadley models are exerting an outsized influence on

the resulting fit; however, it is also clear from the overall R2 values of the individual OLS

results that one-to-one relationships are not sufficient to explain the variability in BF bias.

While BA has the largest R2 value out of all of the possible explanatory variables, it is

also moderately to highly correlated with a number of other explanatory variables (hence

its exclusion from the input list for the BF OLS calculations), which implies that BF bias

could also be explained by a combination of the variables that are highly correlated with

BA (i.e. the intensity variables), as well as other variables that are moderately correlated

with BF, such as NB.
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Figure 3.8: Individual scatter plots of BF versus (top) BA and (bottom) AI, including
(left) versus excluding (right) the Hadley models (marked as red scatter points).

3.2.3.2 Linear regression of block characteristics against model characteris-

tics

Table 3.11 shows the results of a series of OLS fits, in which each block characteristic

from Table 3.5 was regressed against the set of model characteristics from Table 3.4, i.e.

Ci = a0 + a1 ∗ Z500 + a2 ∗ U + a3 ∗ V + a4 ∗ J850 + a5 ∗ J250 + a6 ∗ Z500SD

+ a7 ∗ USD + a8 ∗ VSD (3.2.1)

From these OLS fits, we can determine a number of relationships between block biases

and the underlying model biases, although the largest R2 value is 0.5 and therefore only

explains a moderate amount of variability in the dependent variable. While correlation
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variable R2 R2 (adj) intercept Z500 U V J850 J250 Z500 SD U SD V SD

AI 0.50 0.43 - -0.4592 - -0.5362 - -0.0424 - - -

LA 0.43 0.35 - - - - - 0.0588 - - -

LO 0.42 0.34 - -0.2389 - - -0.0174 0.0351 0.2295 0.1791 -0.3163

BI 0.39 0.30 - -0.6297 0.7022 -0.5282 - -0.0568 - - -

DD 0.37 0.28 - - - -0.2549 -0.0247 -0.0349 - - -

BA 0.32 0.22 - - - -0.8265 - -0.0681 - - -

ZS 0.28 0.18 - - 0.2479 - - - - - -

ZD 0.24 0.13 - - - - - 0.0286 - - -

Table 3.11: R2, adjusted R2, and coefficient values for linear regression fits of each block
characteristic variable against the model characteristic variables. A dash denotes a non-
significant coefficient value; BF and NB did not have a significant regression fit and the
values are not shown.

andR2 are not quantifying the same parameters, the sign of the individual OLS coefficients

match that of the correlation values between the block and model variables, and significant

relationships are mostly seen between variables that have correlation magnitudes greater

than 0.3.

This section of the analysis reinforces the idea that the relationship between models

and the resulting block characteristics is complex and not easily defined by pairwise

relationships. For example, the AI bias OLS equation has Z500, V, and J250 biases as the

significant explanatory variables. OLS fits calculated for AI bias against each of the other

individual biases yield R2 values on the order of 0.1; however, using multiple variables

increases the R2 value to 0.5. When this analysis was performed using only model biases

against BF bias, the resulting OLS fit resulted in a non-significant regression (i.e. no

relationship between BF bias and the model biases in combination). Therefore, BF bias

cannot be explained by model biases alone. However, by including all possible variables

in the BF bias regression calculation (excluding those that introduce multicollinearity),

we are able to capture a greater amount of the variance in the BF bias and create a better

model.

3.2.3.3 Linear regression of BF bias against block and model biases

These OLS calculations examine the relationship between per-model blocking frequency

bias and all other possible explanatory variables, excluding the variables with a high VIF
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(as noted in Section 3.2.2.1). The equation can generally be expressed as

BF [m] = B0 +B1 ∗NB[m] +B2 ∗ LA[m] +B3 ∗ LO[m] +B4 ∗DD[m] +B5 ∗ ZD[m]

+B6 ∗ ZS[m] +B7 ∗BI[m] +B8 ∗ U [m] +B9 ∗ V [m] +B10 ∗ VSD[m] +B11 ∗ Z500[m]

+B12 ∗ Z500SD +B13 ∗ J850[m] (3.2.2)

where B0 is a constant and each Bn is the coefficient of the corresponding explanatory

variable. In the first model fit (which will be referenced as OLS 3.1), all 64 data points (16

models with the winter and summer biases for NP and SP) are included in the regression

calculation. The model is assessed in terms of the R2 value (which determines how

much of the variance is explained) and the variables that have significant coefficients in

the regression equation. The Cook’s distance metric is used to determine data points

representing influential outlier models that are impacting the model fit. These points

are excluded from the second calculation (which will be referenced as OLS 3.2), and the

analysis procedure is repeated a second time.

Linear regression with all variables (OLS 3.1): Table 3.12 shows the output of

OLS 3.1, which results in R2 = 0.74 (adjusted R2 = 0.67). While a total of 13 possible

variables were used in the calculation, the majority of the variance in BF bias can be

explained by five variables: number of blocks (NB), blocking intensity (BI), zonal wind

(U), zonal distance (ZD), and centroid longitude (LO). LO has a negative coefficient value,

meaning that a westward bias in block location (i.e. blocks forming further upstream)

is associated with a positive blocking frequency bias, and vice versa. A negative U bias

has been demonstrated in the literature to correlate with more blocking (He et al., 2014).

BI (and to a certain extent, ZD) is associated with more intense, longer-lasting blocking

events, and NB is associated with more overall events, so it stands to reason that positive

biases in these variables would result in corresponding positive blocking frequency biases.

From Figure 3.6, recall that BF bias is moderately correlated with NB(0.49) and BI

(0.66), and less well correlated with ZD (0.39). U (-0.08) and LO (-0.13) have the lowest

correlation values, which is interesting considering that both are somewhat associated
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variable coef se t pval

NB 1.3291 0.318 4.178 0.000

BI 2.1322 0.467 4.568 0.000

U -1.7406 0.737 -2.362 0.022

ZD 2.2493 0.997 2.256 0.028

LO -1.9138 0.865 -2.212 0.032

V -1.0191 0.650 -1.568 0.123

Z500 SD 0.7887 0.586 1.346 0.184

V SD -0.5167 0.517 -1.000 0.322

DD 0.7790 0.813 0.958 0.343

J850 0.0474 0.051 0.935 0.354

LA 0.7110 0.800 0.888 0.379

Z500 0.5073 0.742 0.684 0.497

ZS -0.4902 1.047 -0.468 0.642

B0 0.1131 0.362 0.312 0.756

R2 = 0.74, Adjusted R2 = 0.67, AIC=160.9,

BIC=191.2

Table 3.12: Linear regression of blocking fre-
quency biases as outlined in Equation 3.2.2.
Variables are sorted from smallest to largest
p-value, with the five significant variables
above the double line.
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with zonal flow (or lack thereof).

The variables that fall below the significance threshold are also a matter of interest,

even if they are not relevant in the context of the regression equation. The J850 bias has

a coefficient value that is close to 0. In hindsight, this is unsurprising, as the BF bias as

quantified here is somewhat divorced from the spatial component of the original variable,

and the correlation value between the BF and J850 biases is low. The large biases in

jet position are notable, but do not help to explain BF bias in this instance. The model

Z500 mean and variability biases also have low correlation values, despite many of the

individual models exhibiting significant biases; this further reinforces the observation that

the biases between BF and Z500 are largely unrelated.

Model Lev Resid CD BF NB (+) BI (+) U (-) ZD (+) LO (-)

MIROC-ESM (NP JJA) 0.631 0.753 0.070 -0.27 -0.07 -0.85 -0.22 0.04 -0.19

HadCM3 (SH JJA) 0.414 2.803 0.349 6.86 0.69 1.05 0.13 0.51 -0.08

HadGEM2-CC (SH JJA) 0.301 7.265 0.799 7.55 0.69 0.77 -0.39 0.02 -0.06

MIROC5 (SH JJA) 0.391 -2.278 0.219 0.41 0.38 -0.20 -0.87 -0.16 -0.08

Table 3.13: Significant outliers in OLS 3.1 that exceed the threshold for the leverage
(0.438), the studentized residual (2.008) and the Cook’s distance (0.063), as well as the
normalized bias values for BF and variables with p < 0.1. The signs next to the variable
names signify the sign of the coefficient.

Using the Cook’s distance metric described in the methodology section, four points

were flagged as significantly influential outliers (Table 3.13); these points will be excluded

in OLS 3.2. MIROC-ESM (NP JJA) has a large leverage value (i.e. significantly anoma-

lous input values). The other three models have large studentized residual values (i.e.

significantly anomalous predicted BF bias values compared to the actual BF bias).

Linear regression with influential outliers removed (OLS 3.2): In Section 3.2.3.1,

removing the Hadley outlier points had a significant impact on the R2 values of the OLS

fits between BF bias and individual variables, often decreasing the amount of explained

BF bias. Here, when the outlier points from Table 3.13 are removed from the dataset, the

R2 value increases slightly, from 0.74 in OLS 3.1 to 0.76 in OLS 3.2. While the amount

of explained variance in BF bias has not greatly increased compared to OLS 3.1, it was
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variable coef se t pval

NB 0.8607 0.143 6.016 0.000

ZD 1.6814 0.436 3.855 0.000

BI 0.7429 0.240 3.095 0.003

U -0.7363 0.409 -1.799 0.079

V -0.5197 0.296 -1.757 0.086

DD 0.5791 0.365 1.585 0.120

LO -0.5085 0.405 -1.254 0.216

Z500 0.3669 0.474 0.773 0.443

B0 0.1235 0.165 0.748 0.458

ZS -0.3332 0.489 -0.681 0.499

LA -0.2020 0.371 -0.545 0.589

Z500 SD 0.1438 0.267 0.538 0.593

V SD -0.1158 0.237 -0.488 0.628

J850 -0.0033 0.022 -0.148 0.883

R2 = 0.76, Adjusted R2 = 0.70 AIC=50.26,

BIC=79.58

Table 3.14: Linear regression of blocking fre-
quency biases against all possible explana-
tory variables as outlined in Equation 3.2.2,
with high influence outliers from Table 3.13
removed
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already high to begin with, and values of the model fit criteria, AIC and BIC, are much

lower (i.e. better) in OLS 3.2 (granted, some of this is due to fewer data points, but also

a better fit).

The magnitudes of NB, BI, and ZD have decreased (but so have the standard errors),

and LO is now below the significance threshold. U has dropped to slightly below the

p < 0.05 significance threshold, and V is now at almost the same significance level as U.

The fact that 3 out of 5 of the original significant explanatory variables remain significant

in OLS 3.2 indicates that overall, the relationship between NB, BI, ZD, and BF bias holds

even when there are outliers present.

Model Lev Resid CD BF NB (+) BI (+) ZD (+) U (-) V (-)

CanESM2 (NP JJA) 0.235 2.136 0.093 -0.08 -0.07 -0.38 -0.20 0.03 -0.04

HadGEM2-CC (SP DJF) 0.268 6.335 0.568 3.28 0.93 0.21 0.26 -0.18 0.01

CMCC-CESM (SP JJA) 0.479 -0.531 0.019 0.53 -0.54 0.25 0.02 -0.09 -0.87

Table 3.15: Significant outliers in OLS 3.2 that exceed the threshold for the leverage
(0.467), the studentized residual (2.013) and the Cook’s distance (0.067), as well as the
normalized bias values for BF and variables with p < 0.1. The signs next to the variable
names signify the sign of the coefficient.

The change in the model fit also means that there is a new set of outlier points in OLS

3.2. Table 3.15 shows the various parameters associated with the significant influential

outliers in this new fit. CMCC-CESM (SP JJA) has anomalous input values, but a non-

significant Cook’s distance value. Another Hadley model (HadGEM2-CC SP DJF) has

emerged as a significant outlier; in the previous model fit, it had a studentized residual

value of 0.347, but with the removal of the outlier points in the previous iteration, its

new residual value is 6.335 (the previously higher coefficients for NB and BI, as well as

the influence of the extreme outlier Hadley models, had contributed to a better predicted

fit value for HadGEM2-CC in the previous model). CanESM2 (NP JJA) also has a large

positive residual value, although in this case the BF bias is slightly negative.

Discussion: Of the two models, the second model (with the dropped model outliers)

has a better fit by all criteria; the R2 value is higher and the AIC and BIC values are

lower (Table 3.16) . There are still outliers in the second model fit as well, but considering
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Regression R2 AIC BIC Significant Variables

OLS 3.1 0.74 160.9 191.2 NB, BI, ZD, U, LO

OLS 3.2 0.76 50.26 79.58 NB, BI, ZD, (U, V)

Table 3.16: Summary table of linear regression results from OLS 3.1 (all data points) and
OLS 3.2 (outliers excluded). In the significant variables column, variables with 0.05 <
p < 0.1 are included in parentheses.

that the final regression equation has an R2 value of 0.76 (which implies that 76% of the

variation in blocking frequency bias can be explained by the explanatory variable bias),

it is reasonable to draw conclusions using this model fit.

For each of the models, NB, ZD, and BI were consistently significant explanatory

variables, with LO, U, and V as secondary explanatory variables. Influential data outliers

like the SP JJA Hadley models had a significant impact on OLS 3.1; once those outliers

were removed, the coefficients for some of the significant explanatory variables decreased

by as much as half of the previous value. NB is related to the frequency of blocking

occurrence, ZD and LO are related to the position of the blocking frequency, and BI is

related to the relative persistence of blocks. U and V also affect position and persistence,

but the relative uncertainty surrounding the averaged field bias values creates a higher

standard error relative to the model coefficient, which can result in a non-significant

coefficient value.

ZS, LA, DD, Z500, Z500 SD, V SD, and J850 were not significant explanatory variables

in either of the two model fits. For all of these variables, the standard error equaled or

exceeded the variable coefficient; there was too much uncertainty in the inputs to create

a good fit with the BF bias.

Outlier data points in the models contained either anomalous inputs (leverage) or

predicted BF bias values relative to the actual bias (residual). One example of a high

leverage model is MIROC-ESM in NP JJA, which has a positive Z500 bias (Figure 3.9,

top) that is an order of magnitude larger than that of other models (see Figure C.17 in the

supplemental figures for reference.) While the mean field pattern closely matched that of

the reanalysis (correlation of 0.95, see Figure C.19 for a Taylor plot), the variability of
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Type of Outlier Model OLS Observations

High Leverage (Inputs) MIROC-ESM (NP JJA) 3.1 Strong + Z500 bias

Strong - BI bias

CMCC-CESM (SP JJA) * 3.2 low pattern correlation in V

High Residual (Prediction) Hadley models (SP JJA) 3.1 Systematic positive BF bias

Strong + NB bias

Strong + BI bias

MIROC5 (SP JJA) 3.1 Strong - U bias

HadGEM2-CC (SP DJF) 3.2 Systematic positive BF bias

Strong + NB bias

CanESM2 (NP JJA) 3.2 Poleward BF concentration

Table 3.17: Outlier data points from OLS 3.1 and OLS 3.2, in terms of high leverage
and high residual values. Note that CMCC-CESM was a significant outlier, but not an
influential outlier.

the Z500 field over time (Figure 3.9, middle) was much lower compared to the reanalysis,

while also producing blocks that had much weaker BI values on average (strong negative

BI bias), and less of them (Figure 3.9, bottom). However, this was accounted for within

the model; and while the predicted BF bias was higher than the actual BF bias value,

it was not significantly so. Neither Z500 nor Z500 SD are considered to be significant

explanatory variables within OLS 3.1, but this was due to high standard errors in the

coefficient estimates rather than low coefficient magnitudes. Removing MIROC-ESM

from the input data lowered the coefficient values in OLS 3.2 while not significantly

changing the resulting model fit.

The high residual models consist of three Hadley models, MIROC5 in SP JJA, and

CanESM2 in NP JJA. MIROC5 is the only data point with a negative residual value; the

negative bias in the poleward half of SP is a major contributor to the model’s predicted BF

bias value, but the actual bias value ended up being lower. The Hadley models all display

strongly positive biases in NB, and the SP JJA Hadley data points also have strongly

positive BI biases as well. While the signs of the biases generally follow a pattern that

contributes to positive BF bias values (positive NB and BI, negative U) these variables are
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Figure 3.9: (Top) Reanalysis and MIROC-ESM NP JJA mean Z500 fields, (middle) cor-
responding Z500 variability fields, and (bottom) corresponding mean BF fields.

not sufficient to explain why the Hadley models have such outsized bias values compared

to the other CMIP5 models. CanESM2 also has a positive residual value, but a slightly

negative BF bias. However, in this case, the magnitude of the bias does not capture what

is happening in the BF field pattern. Like MIROC-ESM in NP JJA, CanESM2 has a

region of negative BF bias in the mid-Pacific (Figure 3.10; however, unlike MIROC-ESM,

this is somewhat offset by a positive bias in the poleward half of the region, leading to a
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Figure 3.10: Reanalysis and CanESM2 NP JJA mean BF fields

net bias value that is slightly negative. This is indicative of a pattern shift rather than an

overall magnitude bias; this model also has significantly positive LA and J850 bias values,

which suggests that the overall flow pattern is biased in the poleward direction.

3.3 Conclusion

We have explored a number of potential explanations for blocking frequency bias in CMIP5

models, as well as possible connections between model characteristics and resultant block

characteristics. The analysis was focused on the Pacific basins of the Northern and South-

ern Hemisphere for the respective winter and summer seasons. The reanalysis results show

little to no difference between individual reanalyses in either the model characteristics or

the suite of metrics used to assess various facets of blocking. The CMIP5 models, mean-

while, portray a wide range of both model characteristics and resultant blocking charac-

teristics. In contrast to past studies on Northern Atlantic blocking, the CMIP5 models

produce a higher median blocking frequency relative to the reanalysis mean climatology

in the Northern Pacific winter and Southern Hemisphere winter and summer. Some of

this could be due to the choice of detection algorithm; Chapter 2 demonstrated that the

AGP algorithm commonly used in many blocking studies is sensitive to the block config-

uration and does not detect ridges with a N/S oriented axis. We use the anomaly-based

Z∗ algorithm instead, which could account for the observed positive BF bias in many

models, since there is a negative Z500 bias in some of those same models.

There are moderate correlations between the model variable biases and the resultant
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block characteristic biases, although none of the R2 values for the linear regression equa-

tions exceeded 0.5; these relationships were also reflected in the pairwise correlation values

between model and block characteristics. While a linear regression between BF and BA

initially yielded R2 = 0.79, this fit was heavily influenced by outlier Hadley models, and

once these points were removed, the R2 value dropped to 0.2. In contrast, both OLS 3.1

and 3.2, which utilize multiple input variables, explain over 74% of the variance in model

blocking frequency bias, and the R2 value does not greatly change when outlier points are

dropped from the dataset. Biases in number of blocks, zonal distance, and block intensity

are significant explanatory variables in both regression fits, with the wind field biases and

centroid longitude serving as secondary explanatory variables. However, the relationship

between BF bias and the possible explanatory variables is complicated, and in certain

circumstances, the bootstrap averaging does not adequately capture the spatial pattern

of the gridded field bias.

We will reserve further conclusions for the end of the next chapter. We now proceed

to examine the changes to model results in the next generation CMIP6 models in Chapter

4.
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Chapter 4

Assessment of model progress in

between CMIP5 and CMIP6 models

This chapter is a continuation of Chapter 3; we continue to examine the connection

between blocking frequency and model bias, as well as any connections between model

characteristics and resultant block characteristics. Chapter 3 concluded that the number

of blocks, the intensity of blocking events, and the distance traveled by blocks were sig-

nificant variables in explaining biases in blocking frequency; there were also a number of

modest correlations between model biases and corresponding block characteristic biases.

Here, we follow a similar procedure to that outlined in Chapter 3, but with a new suite of

climate models. The reanalysis average of ERA, JRA, MERRA2, and CFSR again serve

as the reference from which to calculate relative model biases, and a subset of the CMIP5

models serve as the basis to compare whether or not there has been improvement in the

next generation of models.

The CMIP6 generation of models (Eyring et al., 2016) builds upon past efforts to create

a standardized model format which enable researchers to understand both historical and

future scenarios under a number of real-world and idealized conditions. As with previous

CMIP generations, the CMIP6 historical experiment is largely forced by observation-based

datasets, although the overview paper notes that there have been efforts to better quantify

aerosols in CMIP6 compared to CMIP5. Since both the CMIP5 and CMIP6 datasets are

theoretically representing the same atmospheric conditions, this assessment will quantify
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the extent to which a CMIP6 model has changed relative to the CMIP5 counterpart.

Blocks are assessed as individual blocking events that are detected using the geopotential

height anomaly-based objective detection algorithm outlined in Chapter 2 and previously

utilized in Chapter 3. Analysis is limited to the Northern and Southern Pacific basins, for

the time period 1979-2005, and blocking calculations are performed on the native grid.

We also use the same list of block and model characteristic metrics that were used in the

Chapter 3 assessment. We refer the reader to the Chapter 3 methods and appendices

for reference to the various techniques and equations, as well as the abbreviations and

definitions for the various metrics.

4.1 Data and Methodology

4.1.1 Data

We attempt to match as many model characteristics in between the CMIP5 and CMIP6

models as availability allowed. The CMIP6 models were obtained from the LLNL ESGF

portal, which was also the source of the CMIP5 data; all but CNRM-CM6-1 are variant

r1i1p1f1 (this was not available for CNRM-CM6-1; we chose to go with variant r1i1p1f2).

Almost all of the model pairs have the same resolution between the CMIP5 and CMIP6

generations; only IPSL-CM6A-LR increased horizontal resolution to 1.3x2.5 degrees, from

1.9x3.75 in IPSL-CM5A-LR.

In Section 4.2.1, the variable pairs are compared against the reanalysis mean, as in

Chapter 3; the CMIP6 model is further compared against the CMIP5 counterpart in order

to assess where there has been significant improvement or deterioration of model accuracy

with respect to the various model and block characteristics. Significant differences for

both the CMIP5 and CMIP5 models are assessed relative to the reanalysis, and the

mean improvement or deterioration of model accuracy is judge by comparing the absolute

differences of CMIP5 and CMIP6 relative to the reanalysis.

Comparative model error change is calculated by finding the difference between the

absolute bias values for CMIP5, C5e, and CMIP6, C6e:

Mec = |C5e| − |C6e| (4.1.1)
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Institute CMIP5 Resolution CMIP6 Resolution

BCC BCC-CSM1.1 T106 (1.12◦) BCC-CSM2-MR T106 (1.12◦)

CCCMA CanESM2 T42 (2.79◦ CanESM5 T42 (2.79◦)

CNRM-CERFACS CNRM-CM5 T85 (1.4◦) CNRM-CM6-1* T85 (1.4◦)

NOAA-GFDL GFDL-CM3 2x2.5 GFDL-CM4 2x2.5

IPSL IPSL-CM5A-LR 1.9x3.75 IPSL-CM6A-LR 1.3x2.5

MIROC MIROC5 T85 (1.4◦) MIROC6 T85 (1.4◦)

MRI MRI-ESM1 T106 (1.2◦) MRI-ESM2 T106 (1.2◦)

NCC NorESM1-M 1.9x2.5 NorESM2-LM 1.9x2.5

Table 4.1: CMIP5 and CMIP6 counterparts used in this chapter, and horizontal resolution
(lat/lon). CNRM-CM6-1 is the only CMIP6 model that is not the r1p1i1f1 variant.

If the CMIP6 bias is smaller in magnitude than the CMIP5 bias, Mec will be positive

and CMIP6 has improved over CMIP5; otherwise, the CMIP6 model has a stronger

absolute bias value than before.

We will focus the majority of the analysis on the variables that exhibited significant

influence on blocking frequency bias as calculated in Chapter 3, but will comment on any

other significant changes that occur between CMIP5 and CMIP6.

4.2 Results

As the reanalysis baseline has already been addressed in Chapter 3, we begin with a

discussion of the CMIP6 model and block biases. Section 4.2.1 presents the CMIP6

model biases and change relative to CMIP5 model bias, with additional figures for the

model fields. Section 4.2.2 substitutes CMIP5 models in the linear regression fits for their

CMIP6 counterparts, and the calculations from Section 3.2.3 are repeated. Finally, we

compare the regression results from Chapter 3 to those from this chapter, and discuss the

relative changes and comparative goodness of fit between the models.
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Variable Slope R2 Corr

J250 1.16 0.84 0.91

U SD 0.78 0.76 0.87

V SD 0.67 0.75 0.87

U 0.94 0.73 0.86

AI 0.75 0.69 0.83

BI 0.74 0.64 0.80

Z500 SD 0.68 0.63 0.79

LA 0.90 0.60 0.78

BF 0.85 0.58 0.76

BF SD 0.87 0.56 0.75

J850 0.88 0.56 0.75

BA 0.65 0.49 0.70

LO 1.06 0.45 0.67

ZS 0.65 0.44 0.66

Z500 0.91 0.43 0.65

ZD 0.59 0.32 0.57

V 0.47 0.24 0.49

NB 0.54 0.20 0.45

DD 0.42 0.16 0.40

Table 4.2: Slope of fit line between CMIP5 and corresponding CMIP6 biases, R2 value of
the fit line, and Pearson correlation between bias values. The table is sorted by the R2

values in descending order. A slope of 1 implies no change between CMIP5 and CMIP6
bias values. A slope of less than 1 implies that the CMIP6 bias values have decreased
relative to their CMIP5 counterparts. A slope of more than 1 implies that CMIP6 biases
have increased (these are bolded in the table). Lower R2 values signify that there is more
scatter in the bias values and that the change was not consistent across all of the model
pairs.
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Figure 4.1: CMIP5 and CMIP6 jet positions, with the reference reanalysis line.

4.2.1 CMIP5 and CMIP6 comparison of metric biases

Table 4.2 shows the relationship between CMIP5 biases and their CMIP6 counterparts,

and quantifies the mean direction of change in the bias values in between CMIP5 and

CMIP6. A slope parameter of less than 1, such as that for the U bias (0.94, with an R2

value of 0.73) implies that overall, bias in the U field has decreased in CMIP6 relative

to the CMIP5 equivalent. However, some of the relationships outlined in this table have

low R2 and correlation values, which means that there is not a systematic relationship

between changes in the bias values.

Two variables (J250 and LO) have slope values that are slightly greater than 1, im-

plying that CMIP6 biases have actually increased, albeit very slightly. The right panels

of Figure 4.1 show that while some particularly large outliers, such as MIROC5/MIROC6

in NH JJA, have been reduced in CMIP6, others, such as BCC-CSM1.1/BCC-CSM2-MR

in SH JJA, show increased bias in CMIP6. Others, such as the wind variability biases,
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exhibit a consistent improvement in model bias; Figure 4.2 shows one such example, where

all CMIP6 models but CanESM5 display net improvements over CMIP5 for U variability

in SP DJF. NB is an example of a variable where the improvement is more mixed. The

slope of the NB fit line is 0.54, which suggests a trend in decreased CMIP6 bias compared

to CMIP5. However, the R2 value is only 0.2, meaning that there is a lot of variability

in the relationship between the CMIP5 and CMIP6 data points. This is not necessarily a

bad thing, as it might be due to a significant reduction in bias in a few outlier cases.

Some general observations are worth mentioning. Both the distribution of bias values

(i.e. Tables 4.3 and 4.4) and the individual biases (Figure 4.3) should be taken into

consideration; some of the variable quantiles values show that, on average, the CMIP6

models have reduced bias values compared to the CMIP5 models (although it should also

be noted that the CMIP6 quantiles are only comprised of the values from 8 models as

opposed to the 16 models in the CMIP5 quantiles). However, on a model-by-model basis,

the picture is much more complicated, particularly when factoring in the spatial patterns

of the gridded variables, as noted in Chapter 3.

Some of the trends observed in Chapter 3 continue to hold true with the CMIP6

models. The Pearson correlation values between bias pairs, as previously assessed in

Chapter 3, have not significantly changed for the most part, which signifies that the per-

model relationships between these variable biases also remains unchanged even when some

of the data points are replaced. There are a few exceptions, which changes the variables

that are dropped from the list of possible explanatory variables. As before, BA, U SD,

and AI are dropped due to previously mentioned high correlation values with other input

bias values. However, in this analysis, J250 is retained; its correlation with LO dropped

from 0.43 to 0.28, and previously noted moderate correlations with U, U SD, and V SD

dropped in value by 0.05. In its place, V SD is dropped from the list of input variables;

it is highly correlated with Z SD (0.81) and U SD (0.91).

There is still a positive BF bias in all but NP JJA for the majority of the CMIP6

models (Figure 4.3, left subplot, top row), although the bias magnitude for many of those

models has also decreased (Figure 4.3, right subplot, top row). The model variables also
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Figure 4.2: (Left column) Reanalysis average, (middle columns) CMIP5 and CMIP6
biases, and (right column) relative change in model bias magnitude in between CMIP5
and CMIP6 for U variability in SP DJF. In the bias change plot, green implies that
the bias magnitude has decreased and pink implies that the model bias has increased.
Significant differences are denoted by stippling.
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Figure 4.3: (left) CMIP6 differences with respect to the reanalysis average, where (light)
dark blue signifies (non-)significant negative differences and (light) dark red signifies (non-
)significant postive differences (right) CMIP6 improvement (green) or deterioration (pink)
relative to CMIP5 bias
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JJA DJF

Q25 Q50 Q75 Q25 Q50 Q75

BF -0.922 -0.342 0.033 0.396 0.538 0.603

BF SD -2.021 -1.002 0.224 0.679 0.974 1.190

NB -0.500 0.750 1.000 0.000 0.250 0.250

LA -0.118 1.443 2.623 2.008 3.480 4.685

LO -5.584 0.259 2.141 5.637 6.527 8.555

DD -1.000 0.000 0.000 0.000 0.000 0.000

ZD -116.211 -54.144 4.136 45.045 93.139 159.739

ZS -0.798 -0.639 -0.485 0.338 1.108 1.363

BA -0.492 -0.263 -0.020 -0.260 -0.159 -0.093

AI -1.486 -0.899 -0.573 -0.356 0.864 1.814

BI -0.455 -0.314 -0.046 -0.576 -0.447 -0.347

Z500 -36.560 -15.904 -4.400 -40.476 -33.369 -12.367

Z500 SD -5.570 -1.411 2.494 6.530 9.695 14.628

U -1.302 -0.014 0.432 -0.684 -0.283 -0.008

U SD -1.416 -1.265 -0.558 -0.906 -0.749 -0.275

V -0.026 0.059 0.136 -0.284 -0.239 -0.040

V SD -1.530 -1.248 -0.576 -1.267 -0.691 -0.257

J850 -0.081 0.562 2.595 -1.032 -0.707 0.043

J250 -4.101 -2.059 0.028 -1.518 -1.431 -1.344

Table 4.3: NP CMIP6 model bias value quantiles. The values are listed for the 25th
(Q25), 50th (Q50), and 75th (Q75) percentiles. Significant difference values are bolded.

continue to display negative biases in wind variability and jet position, although Table 4.2

and Figure 4.3 show that the many of the models have reduced biases relative to CMIP5.

As these variables are not highly correlated with BF (and wind variability is excluded

from the linear regression analysis), it is doubtful that this will result in any meaningful

change in the linear regression fit.
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DJF JJA

Q25 Q50 Q75 Q25 Q50 Q75

BF 0.026 0.203 0.390 0.220 0.610 0.730

BF SD -0.080 0.652 1.102 0.420 1.257 1.569

NB -0.750 -0.500 -0.500 -0.750 -0.750 -0.500

LA 0.832 2.184 3.432 -3.818 -2.965 -2.184

LO 2.144 4.493 9.377 -3.270 -1.764 2.378

DD 0.000 0.000 0.250 0.000 1.000 1.000

ZD 45.567 90.390 238.607 -253.909 6.015 126.752

ZS -0.652 -0.195 0.102 -1.070 -0.450 0.372

BA 0.018 0.126 0.342 0.137 0.272 0.331

AI -0.532 -0.211 0.574 -0.061 -0.025 1.441

BI 0.025 0.118 0.626 -0.007 0.122 0.382

Z500 -36.713 -30.388 -14.469 -54.245 -38.957 -25.108

Z500 SD -11.039 -3.107 1.591 -5.761 -2.330 1.120

U -0.985 -0.109 0.562 -1.621 -0.554 0.532

U SD -1.899 -1.176 -0.984 -1.478 -1.333 -0.767

V -0.090 -0.027 0.005 -0.438 -0.239 0.086

V SD -2.351 -1.781 -1.468 -2.001 -1.719 -1.200

J850 -3.388 -1.861 -1.539 -3.554 -2.499 -1.418

J250 -3.779 -2.341 -1.455 -3.333 -2.680 -2.395

Table 4.4: SP CMIP6 model bias value quantiles. The values are listed for the 25th
(Q25), 50th (Q50), and 75th (Q75) percentiles. Significant difference values are bolded
and marked with an asterisk.

4.2.2 Linear regression fit with CMIP6 variables

In order to compare the effect of the CMIP6 models on the previous regression fits, we

substitute the CMIP6 models for the corresponding CMIP5 models but retain the rest of

the CMIP5 and Hadley models in the regression calculation. The list of input variables

remains unchanged with the exception of J250, which replaces V SD.
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variable R2 R2 (adj) intercept Z500 U V J850 J250 Z500 SD U SD V SD

AI 0.49 0.41 - -0.4291 - -0.4813 - - 0.3619 - -

LA 0.47 0.39 - - - - - 0.0482 - - -

BI 0.37 0.28 - -0.5373 0.7696 - - -0.0669 - - -

DD 0.29 0.19 - - - - -0.0226 - - - -

ZS 0.29 0.19 - - 0.3774 - - - - - -

BA 0.26 0.16 - - - -0.6958 - - - - -

NB 0.26 0.15 0.5161 - - - - - -0.6863 - -

LO 0.25 0.14 - -0.2199 - - - - - - -

Table 4.5: R2, adjusted R2, and coefficient values for linear regression fits of each block
characteristic variable against the model characteristic variables. A dash denotes a non-
significant coefficient value; BF and ZD did not have a significant regression fit and the
values are not shown.

The single BF-explanatory variable regression calculations that were performed in the

first part of Section 3.2.3 remain largely unchanged in terms of the regression fits to the

scatter plots; therefore, we skip discussion of this question and advance to examining the

change in the relationship between the block variables and model variables.

4.2.2.1 Linear regression of block characteristics against model characteris-

tics

Table 4.5 again shows the results of a series of regression fits, with each block charac-

teristics regressed against all of the model characteristics. Previously, BF and NB did

not have significant fit equations; this time, BF and ZD do not display any significant

relationships. As the model variables did not exhibit a strong relationship with the block

characteristics in the first place, this is unsurprising.

The wind variability biases, which only had a significant relationship with LO in the

previous version of this analysis, do not exhibit any significant relationships with any of

the block variables this time. However, the Z500 variability bias now has a meaningful

relationship with both AI and NB bias. The linear regression equation for AI in Chapter

3 previously had Z500, V, and J250 as explanatory variables; the coefficient values for

Z500 and V remain largely unchanged, and the addition of the Z500 variability bias

slightly drops the R2 values from 0.5 to 0.49. However, J250 did not have a particularly

large coefficient value in the previous analysis, and some of the largest biases in these
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variable coef se t pval

NB 1.3568 0.363 3.739 0.000

BI 1.6000 0.536 2.986 0.004

U -2.3202 0.951 -2.440 0.018

V -1.3474 0.666 -2.025 0.048

DD 1.5375 0.844 1.821 0.075

LO -1.8162 1.008 -1.801 0.078

ZD 1.9293 1.126 1.713 0.093

J850 0.0712 0.051 1.400 0.168

B0 0.2586 0.241 1.071 0.289

Z500 0.5684 0.825 0.689 0.494

Z500 SD 0.2064 0.396 0.521 0.605

LA 0.3986 1.089 0.366 0.716

ZS -0.2829 1.162 -0.243 0.809

J250 0.0171 0.103 0.167 0.868

R2 = 0.71, Adjusted R2 = 0.64, AIC=168.6,

BIC=198.9

Table 4.6: Linear regression of blocking fre-
quency biases against model and block bi-
ases, but with CMIP6 models substituted for
CMIP5 when available. Variables are sorted
from smallest to largest p-value, with the four
significant variables above the double line.

values (like MIROC5 in NP JJA) were corrected in the CMIP6 equivalent; the previously

established relationship in Chapter 3 no longer holds now that these biases have been

corrected, which is likely also why J250 is now included in the list of input variables for

the BF linear regression analysis.

4.2.2.2 Linear regression of BF biases against block and model biases

Linear regression with all variables (OLS 4.1) The first model fit (Table 4.6) has

an R2 value of 0.71, which is lower than the previous R2 values of 0.74 for the regression
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model with all variables. The significant variables from the first model fit are still relevant

here, although ZD and LO are slightly below the p < 0.05 significance level. V is also

included in OLS 4.1; while the standard error of the coefficient is the same as before, the

value of the coefficient itself is high enough to yield a significant t statistic.

It should be noted that the Hadley models, which were the most extreme BF outliers

in Chapter 3, have not been replaced by CMIP6 equivalent data in this analysis; neither

has MIROC-ESM, which was one of the outliers that was flagged in OLS 3.1. These

data points are still significant outliers in the new model fit, although MIROC-ESM

does not have a sufficiently high Cook’s threshold value to designate it as a significant

outlier; this new regression fit is able to predict a BF bias value that somewhat matches

the resulting MIROC-ESM BF bias, even though the some of the inputs for this model

are anomalously large. Meanwhile, the fourth outlier model in OLS 3.1, MIROC5, was

replaced with MIROC6. While the changes in the gridded model field biases was not

particularly large in MIROC6 (Table 4.7; also see Figure D.34 and Figure D.46 in the

supplemental figures), the magnitudes of the NB and BI biases did significantly decrease.

Model Lev Resid CD BF NB (+) BI (+) ZD (+) U (-) V (-)

MIROC5 (SP JJA) 0.391 -2.278 0.219 0.41 0.38 -0.2 -0.16 -0.87 0.31

MIROC6 (SP JJA) 0.365 -1.701 0.114 0.37 0.08 -0.07 -0.23 -0.78 0.30

Table 4.7: MIROC5 and MIROC6 (NP JJA) leverage, residual, and Cook’s distance
values from OLS 3.1 and 4.1, as well as normalized bias values for the relevant variables.

As MIROC-ESM NP JJA does not significantly impact the model fit, we retain it in

the input data (but not the two SP JJA Hadley models) and proceed to OLS 4.2.

Linear regression with SP JJA Hadley models removed (OLS 4.2) Once the

two outlier Hadley models are removed, the R2 value increases slightly but the AIC and

BIC values greatly improve, which is similar to what happened in Chapter 3 when the

outliers were removed in OLS 3.2. The coefficients for U and BI greatly decrease, and

their p-values drop below significance as a result; while the coefficient of NB also drops, its

standard error also decreased, and so it remains significant. ZD, which had dropped below

significance in OLS 4.1, is significant once more, and DD also joins the list. Interestingly,
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variable coef se t pval

NB 0.8783 0.155 5.653 0.000

ZD 1.6818 0.478 3.522 0.001

DD 0.9571 0.356 2.688 0.010

V -0.5914 0.286 -2.065 0.044

U -0.6274 0.420 -1.495 0.141

BI 0.3314 0.240 1.380 0.174

ZS -0.5830 0.488 -1.194 0.239

B0 0.0712 0.102 0.696 0.490

Z500 0.2405 0.349 0.690 0.493

LA -0.2356 0.459 -0.514 0.610

Z500 SD 0.0175 0.167 0.105 0.917

J250 -0.0041 0.043 -0.095 0.925

LO -0.0262 0.442 -0.059 0.953

J850 0.0006 0.022 0.025 0.980

R2 = 0.73, Adjusted R2 = 0.66, AIC=55.85,

BIC=85.63

Table 4.8: Linear regression of blocking fre-
quency biases against model and block bi-
ases with SP JJA Hadley model removed.
Variables are sorted from smallest to largest
p-value, with the four significant variables
above the double line.
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Figure 4.4: (Left) Reanalysis mean BF field, (left center), CanESM2, (right center)
CanESM5, and (right) the relative change in between CanESM2 and CanESM5 for NP
JJA.

removing MIROC-ESM NP JJA as well (not shown) does not change which variables are

significant explanatory variables, nor does it greatly change their coefficient or standard

error values. Removing it does impact the variables for which it exhibits particularly large

biases, such as Z500. But it is no longer an influential outlier as in OLS 3.1; therefore,

the model fit is not overall greatly impacted.

OLS 4.2 has 3 influential outlier data points: HadGEM2-CC (SP DJF), which was

also an outlier in OLS 3.2; HadCM3 SP DJF; and CanESM5. Previously, in OLS 4.1 we

observed that the improved bias values in MIROC6 as opposed to MIROC5 meant that

MIROC6 was not a significant outlier. CanESM2 was a significant outlier in OLS 3.2,

and the fact that CanESM5 has again been identified as an outlier point suggests that

existing biases in CanESM2 have not been reduced in CanESM5. Figure 3.10 shows that

the blocking patterns have not significantly changed in between CanESM2 and CanESM5.

Additionally, a comparison of relevant bias values for CanESM2 vs CanESM5 (see Table

4.9) shows that the bias magnitudes for BI, V, and DD actually increased relative to

CanESM2, while those for BF, NB, ZD, and U were similar.

Model Lev Resid CD BF NB (+) BI (+) ZD (+) U (-) V (-) DD (+)

CanESM2 (NP JJA) 0.235 2.136 0.093 -0.08 -0.07 -0.38 -0.2 0.03 -0.04 -0.12

CanESM5 (NP JJA) 0.281 2.164 0.121 -0.11 -0.07 -0.55 -0.19 0.02 -0.10 -0.25

Table 4.9: CanESM2 and CanESM5 (NP JJA) leverage, residual, and Cook’s distance
values from OLS 3.2 and 4.2, as well as normalized bias values for the relevant variables.

Discussion Table 4.10 summarizes the model results from the Chapter 3 and 4 regres-

sion models. Exchanging the CMIP6 model for the CMIP5 models actually served to

slightly decrease the model quality, although dropping outliers let to slight increases in
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Regression R2 AIC BIC Significant Variables

OLS 3.2 0.76 50.26 79.58 NB, BI, ZD, (U, V)

OLS 4.2 0.73 55.85 85.63 NB, ZD, DD, V

OLS 3.1 0.74 160.9 191.2 NB, BI, ZD, U, LO

OLS 4.1 0.71 168.6 198.9 NB, BI, U, V (DD, LO, ZD)

Table 4.10: Comparison of all model fits from Chapters 3 and 4, sorted with the best (low
AIC and BIC) on top. Variable biases with 0.05 < p < 0.1 are listed in parentheses.

Type of Outlier Model OLS Observations

High Leverage (Inputs) MIROC-ESM (NP JJA) 3.1, 4.1 * Strong + Z500 bias

Strong - BI bias

CMCC-CESM (SP JJA) * 3.2 low pattern correlation in V

High Residual (Prediction) Hadley models (SP JJA) 3.1, 4.1 Systematic positive BF bias

Strong + NB bias

Strong + BI bias

MIROC5 (SP JJA) 3.1 Strong - U bias

HadGEM2-CC (SP DJF) 3.2, 4.2 Systematic positive BF bias

Strong + NB bias

HadCM3 (SP DJF) 4.2 Systematic positive BF bias

Strong + NB bias

CanESM2 (NP JJA) 3.2 Poleward BF concentration

CanESM5 (NP JJA) 4.2 Poleward BF concentration

Table 4.11: Outlier data points from Chapters 3 and 4, in terms of high leverage and high
residual values. Note that CMCC-CESM was a significant outlier, but not an influential
outlier in OLS 3.2; the same applies for MIROC-ESM in OLS 4.2 but not OLS 3.2.

the R2 value and much smaller AIC and BIC values. If there were CMIP6 counterparts

for all of the CMIP5 models (particularly the outlier Hadley models) then there would

likely be a better fit in the Chapter 4 models, as all of the models in the regression would

be initialized with the same set of parameters and exhibit more consistent bias trends.

Across all models, number of blocks and the relative block intensity are consistently

associated with biases in blocking frequency. Biases in wind, zonal distance, and centroid
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longitude, which are associated with block position and the mean flow, are also signifi-

cant explanatory variables for a majority of the models. The regression fits were highly

impacted by outlier data points from the Hadley models, as well as a few others; nonethe-

less, all of the model fits outlined here have R2 values that exceed 0.7, which means that

a majority of the BF bias have a significant association with the variable biases noted

above. The outlier Hadley models were CMIP5 models with no CMIP6 counterpart,

which meant that they remained in the dataset throughout both Chapters 3 and 4 and

as a result skewed the fits of each. MIROC6 did not exhibit significant improvements in

the model fields, but improvements in some of the resultant block characteristics, which

meant that it was not flagged as a significant outlier in OLS 4.1. CanESM2 was an outlier

in OLS 3.2, but CanESM5 had similar or larger bias magnitudes for the relevant variables

in OLS 4.2, and thus remained a significant outlier.

4.3 Conclusion

We have examined the change in the new generation of CMIP6 blocking with respect to

previously calculated CMIP5 blocking which was examined in Chapter 3. Some improve-

ments were seen in the model characteristic bias values, although these improvements were

not reflected either in the resultant block characteristics or the new regression fits. When

CMIP6 models were substituted for their CMIP5 counterparts into linear regression fit

calculations, the model quality did not significantly deteriorate relative to the previous

fit, but using the CMIP5 observations yields a slightly better regression fit. Overall, all

of the models had R2 values that exceed 0.7; these models explain a large proportion of

BF bias and a few variables remain consistently significant throughout most or all of the

models. NB was a consistently significant variable, which is unsurprising. ZD and BI

were significant in 3 out of 4 models (and ZD was slightly below significance in 4.1). U

was significant in 3.1 and 4.1 and slightly below significance in 3.2. V was significant in

4.1 and 4.2 and slightly below significance in 3.2. OLS 4.2 was the only model to include

DD as one of the significant components, although it was also slightly below significance

in 4.1. As the per-model DD bias is comparatively low, with no significant biases in
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either CMIP5 or CMIP6, is is not entirely clear why this variable emerged as a potential

explanatory variable in the Chapter 4 models.

The outlier models, which are summarized in Table 4.11, show that the majority of

error arises from models in the CMIP5 dataset, even when CMIP6 models are substituted

into the new regression calculations. Unfortunately, not all CMIP5 models had an avail-

able CMIP6 counterpart, which means that most of the models that were the problem in

the first place were not substituted with a more recent model version. The Hadley mod-

els, which produce extremely high blocking frequencies that are not adequately captured

by the existing explanatory variables, are the most extreme example, although not all of

the Hadley models had bias values that were extreme enough to be flagged as outliers.

MIROC5 was the one case in which its CMIP6 counterpart corrected explanatory vari-

able biases, resulting in a predicted BF bias that better matched the observed BF bias.

Meanwhile, CanESM5 did not exhibit the same level of improvement over CanESM2.

Moving forward, there are other variables that would be worthwhile including in a

similar analysis. For example, SST is an important consideration in the Pacific basins,

as well as some of the interannual climate modes such as PNA. We have indices such as

mean centroid latitude and longitude as an approximation of block position; however, a

block trajectory metric, such as those used in tropical cyclone studies, would be useful

for assessing the mean path of blocking events throughout the study basins. Additionally,

characterizing the energetics leading up to and during the lifespan of blocks in the various

models will be useful for better assessing the biases in block characteristics such as block

intensity. Finally, the wave breaking index variable presented in Davini et al. (2012) would

be useful in determining whether the blocking was associated with cyclonic or anticylonic

wave breaking.
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Chapter 5

Summary, Conclusions, and Future

Directions

With improvements in both model approximation of atmospheric processes and the com-

putational power required to run these models, the research community continues to

advance towards more accurate simulations of weather and climate. This has important

societal and scientific implications, as models are essentially a sandbox in which the re-

searcher can explore a wide range of scenarios, from aquaplanet simulations to the effect

of increased C02 levels in the atmosphere. However, there is still much work to be done

with the existing tools available.

We have focused on atmospheric blocking, an extreme weather phenomenon that is

still an area of active research in terms of the governing physics. The mere definition of a

block, as described in terms that can be put into a computer program and used to process

a dataset, is still nebulous enough to warrant further study. We have demonstrated that

the definition of blocking in the context of different algorithms will yield very different

results in terms of both the block location and the block characteristics, even when the

same feature is detected in the same dataset by three different algorithms. We then

explored a different avenue in block representation by attempting to connect blocking

frequency bias to model biases in a number of explanatory variables, both in terms of the

inherent model characteristics and the characteristics of the blocks that were produced.

While the regression calculations focused on blocking frequency, a number of connections
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were drawn between other combinations of variables as well. Throughout the course of

this work, a number of new metrics and statistical methods were created to assess results,

including

• Modified versions of existing anomaly-based objective detection algorithms in which

the constant threshold is replaced with a spatiotemporally varying threshold

• A probability of co-occurrence metric that quantifies how likely a feature will be

detected by an algorithm, given another algorithm’s results

• A spatial similarity metric that quantifies agreement between algorithms when iden-

tifying the same blocking event

• A non-parametric, generalized method of quantifying the difference between two

distributions of values (particularly relevant when working with extreme value data)

• A non-parametric way to quantify a signed median field bias, using blocking boot-

strap sampling to construct a distribution of difference values between two gridded

fields and the permutation test to determine the significance of the median difference

value

• A methodology for normalizing biases by the distribution of the reference data

in order to compare values across different regions, seasons, and scales while also

retaining the sign of the bias

Finally, we explored the effect of including some of the most recent CMIP6 models

in place of their CMIP5 counterparts and examining the change in the OLS fit. Despite

containing significant outliers which impacted the overall regression model fits, all of the

models explained a significant proportion of the variance.

Some limitations remain that would be worth addressing in future work. First, a

more sophisticated definition of a block will be required to accurately capture the desired

features while filtering out others that are similar in some ways (i.e. persistent anomalous

geopotential height) but different in others (i.e. subtropical highs). Accomplishing this
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task requires a deeper examination of blocking characteristics as they relate to the relative

success of an individual algorithm; the RRR case study highlights a clear limitation of the

AGP algorithm with regards to its requirement of a block axis tilt, and there are steps

that could be taken to limit the results of the Z∗ algorithm.

Second, calculating bias values in weather data, with its tendency toward skewed

distributions and spatiotemporal dependence, is no trivial task, and in reducing bias

down to a single number, potentially relevant information is lost. There are some cases

in which the bias was a result of a pattern shift rather than a difference in magnitude,

which suggests that when it comes to spatial data, two quantities are needed to assess

bias: one for the magnitude component, and one for the spatial component. BF was

the independent variable of choice in our linear regression calculations, as it is the most

commonly used method for assessing model accuracy in blocking; however, there were

some notable outlier models that could not be explained by the multivariate relationship

that was established in the linear regression equation.

Finally, the comparison of the results between CMIP5 and CMIP6 highlights an op-

portunity to assess model improvement between generations, not just in terms of blocking

frequency but also in terms of individual block characteristics. Future blocking research

should make use of an expanded set of metrics beyond blocking frequency in model com-

parisons and assessments of model improvement. These additional metrics can aid re-

searchers in selecting a subset of models that suits their specific research need, such as

isolating the cause of a particular blocking characteristic bias as it relates to the mod-

els and what can be done to reduce the bias. We hope that this work will inspire new

questions while also addressing the research questions set forth at the beginning of this

dissertation, and inform future work with regards to both blocking and the underlying

methodologies to assess this phenomenon.
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Appendix A

Chapter 2 Appendices

A.1 Vertically averaged potential vorticity

In its simplest form, Ertel’s potential vorticity (EPV) is written as

EPV =
ζa · ∇θ
ρ

(A.1.1)

Assuming hydrostatic balance in order to eliminate density, (A.1.1) can be written as

EPV = g

(
1

r cosφ

∂v

∂p

∂θ

∂λ
− 1

r

∂u

∂p

∂θ

∂φ
− (ζ + f)

∂θ

∂p

)
(A.1.2)

in which g is the gravitational constant, r is the Earth’s radius, u and v are the zonal

and meridional wind components respectively, θ is potential temperature, and ζ + f is

absolute vorticity.

The form presented in Equation A.1.2 is in spherical coordinates (λ, φ) in the horizontal

direction and pressure level coordinates (p) in the vertical.

For S04, the EPV is vertically averaged over the 150-500 hPa layer using the integral

method,

V PV =
1

(p1 − p2)

∫ p2

p1

EPV (p)dp (A.1.3)

where p1 = 1.5× 104 Pa and p2 = 5× 104 Pa, respectively.
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A.2 Blocking Events and the StitchBlobs Software

All of code used to produce these results are included in the TempestExtremes software

package (Ullrich and Zarzycki, 2017). The algorithm for the AGP method is contained to

a single binary, BlockingGHG, while the calculations for PV ∗ and Z∗ involve a multi-step

process which is outlined in Section 2.1.2.4 and Figure 2.1.

The StitchBlobs binary takes the outputs from the desired algorithm and applies the

spatiotemporal constraints, and the corresponding BlobStats binary produced summary

text files which include per-feature information about:

• Minimum/maximum latitude and longitude coordinates

• coordinates of block centroid

• block area (in terms of fractional area)

This information is mainly used in Section 2.2.3, and the quantities are defined as

follows:

• Block duration: the number of time steps for which block is present, multiplied by

the time resolution.

• Block zonal distance: The difference between the start and end longitudes, converted

to km.

• Block zonal speed: Distance divided by duration.

• Block size: Fractional area multiplied by the Earth’s surface area, SA = 4π(6371)2

km2

A previous attempt to average speeds calculated over each 6 hour period was discarded

because the center coordinate would occasionally “jump” in between subsequent time

steps due to a change in the detected block’s size—usually caused by merging of distinct

features— and a subsequent shift in the centroid. This “jump” led to large zonal distance

values and, consequently, artificially high block speed values. The method used here
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(distance from start to finish, divided by duration) has its own drawbacks, as two methods

tracking the same block might yield different block speed measurements if the duration

and distance measurements differ between the two methods.

A.3 Probability of co-occurrence calculation

Co-occurrence is defined as the overlap between blocked regions detected by two or more

different methods, which corresponds to a region of Ck = 2 in similarity calculations. We

quantified co-occurrence by counting the time steps in which there was overlap (n[M1 ∩
M2]) during the similarity calculations as well as the number of blocks for each of the

methods (n[M1], n[M2], etc), then finding min(n[M1], n[M2], n[M1∩M2]) per time step.

The probability of co-occurrence is defined as

P (M1|M2) =
P (M1 ∩M2)

P (M2)
(A.3.1)

which translates to the number of times that blocks detected by methods M1 and M2

overlap over the number of times that blocks detected by method M2 occur.

A.4 Spatial similarity calculation

This method is similar in concept to the Jaccard index (Jaccard, 1908), also known as

intersection over union:

J(A,B) =
A ∩B
A ∪B =

A ∩B
A+B − A ∩B (A.4.1)

where A ∩ B are the common points between A and B and A ∪ B are the sum total

of points in A and B, minus the number of common points. In this instance, spatial

similarity calculations are performed on two fields M1 and M2, consisting of regularly

spaced grid points whose values are either 1 (block) or 0 (not a block) according to the

corresponding objective detection method.

However, there are two points to consider in these calculations:

1. We only wish to count common presence, not common absence (in order to quantify

the amount of agreement when two methods detect a block).
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2. A simple count of commonly blocked gridpoints between two methods will overem-

phasize spatial agreement at higher latitudes, since the meridians converge at the

poles and the actual distance between gridpoints is shorter.

To address point 1, the two fields are summed together (F = M1 + M2), where

gridpoints have values of 0 (no detection), 1 (one method detects blocking), or 2 (both

methods detect blocking); only nonzero gridpoints in F are considered.

For each cluster Ck of contigous nonzero gridpoints on F

S(Ck) =

Pk∑
n=1

(vn − 1) cos(φ)n

Pk∑
n=1

cos(φ)n

(A.4.2)

where Pk is the number of points in Ck, vn is the value of the gridpoint (either 1 or

2), and cos(φ)n is the cosine of that gridpoint’s latitude value.

Summing the cosine latitude values of gridpoints, rather than the number of points in

Ck, addresses point 2, as cos(φ)n is smaller at higher latitudes (thus approximating the

smaller area between gridpoints). The numerator is essentially the intersection of blocked

points (M1 ∩M2); the sum will only include cos(φ)n where vn = 2 (since vn = 1 means

that cos(φ)n is multiplied by 0). The denominator is the union (M1 ∪M2), where all

cos(φ)n are included in the sum.

A.5 Significance testing

The quantities in Section 2.2 are considered to be statistically significant if p < 0.05 (and

highly significant if p < 0.01), which implies that the quantity does not satisfy the null

hypothesis. The following sections explain the methods used to establish significance.

A.5.1 Permutation test

The permutation test is a nonparametric method of hypothesis testing similar to boot-

strapping (but without replacement). A sampling distribution is constructed by resam-

pling and/or shuffling data, thus avoiding assumption of a known sampling distribution

(for example, a normal distribution).

113



The general methodology is as follows:

1. Calculate the reference statistic R (correlation, difference of medians, etc.) between

the two datasets

2. Construct the sample distribution D by repeating the following 10000 times:

(a) Generate samples S1 and S2 (specifics in subsequent subsections)

(b) Repeat the calculation of R using S1 and S2 to generate sample statistic R̃

3. Count the number of times, nD, in D where R̃ is more extreme than R:

nD =





number of R̃ ≥ R, if R > D50

number of R̃ ≤ R otherwise

(A.5.1)

where D50 representing the 50th percentile of D and nD representing the number of

instances in D which satisfy the appropriate case.

The p-value is calculated as

p =
nD

10000
(A.5.2)

A.5.1.1 Blocking duration, zonal distance traveled, size, speed (Section 2.2.3)

Null hypothesis: Vectors of values V 1 and V 2 are drawn from the same distribution.

Therefore, if V 1 and V 2 are pooled and two new samples S1 and S2 are drawn from that

common pool, the difference in medians, M(S1, S2), of the samples’ distributions should

be similar to M(V 1, V 2).

Alternate hypothesis: The distributions of V 1 and V 2 are different enough thatM(V 1, V 2)

will differ significantly from M(S1, S2)

Sampling method:

1. Combine all values from V 1 and V 2 into common pool P

2. Draw new samples S1 (same length as V 1) and S2 (same length as V 2) from P

without replacement and calculate M(S1, S2)
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A.5.1.2 Pattern correlation (Section 2.2.4)

Null hypothesis: For fields F1 and F2, correlation C(F1, F2) will not change significantly

if one of the grids is shuffled (implying that the correlation value would be similar if the

pattern was entirely random).

Alternate hypothesis: C(F1, F2) is a result of this particular arrangement of frequency

values in each of the two grids being compared.

Sampling method:

1. Generate a list of 1000 random array indices i

2. Create two array subsamples, S1 = F1[i] and S2 = F2[i]

3. Shuffle the order of S2 to create Ŝ2 and calculate C(S1, Ŝ2)

A.5.2 Probability of co-occurrence (Section 2.2.4)

In order to verify that the probabilities would not significantly change with the addition of

more data, we took samples of the entire dataset for a particular region and season, with

the samples consisting of the equivalent of n = {1, 2, ..., length(data)} years that were

randomly selected from the set of possible years in the ERA-Interim data; probability of

co-occurrence was re-calculated with those samples. This procedure was repeated 1000

times and stored as pairs of years and probability (n, P ).

We calculated a linear regression between n and each of the probability values (lm(n ∼
P (M1|M2)) and lm(n ∼ P (M2|M1))) using the linear model (lm) function in R. Since

the slope of the line was approximately zero, the estimated equation was effectively the co-

efficient, which equaled the initially calculated probability value. The lm function returns

a p-value for each coefficient, therefore giving us a p-value for each calculated probability.

A.5.3 Spatial Similarity (Section 2.2.4)

This methodology was similar to the permutation test, although the end calculation for

the p-value was slightly different.

Null hypothesis: The algorithms detect features equivalently. Therefore, for fields F1

and F2, S(F1, F2) will not change significantly if the values of gridpoints on F1 and F2

are pooled and randomly reassigned.
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Alternate hypothesis: S(F1, F2) is dependent upon the results of the two algorithms being

compared.

For each pair of overlapping blocks, for the set of all nonzero gridpoint coordinates G

in both F1 and F2, the following is repeated 100 times:

1. Determine the number of blocked grid points in F1 and F2, nF1 and nF2.

2. Set all F1[G] and F2[G] to 0.

3. Randomly reassign nF1 grid points in F1[G] a value of 1 to create S1; randomly

reassign nF2 grid points in F2[G] a value of 1 to create S2.

4. Calculate S(S1, S2) and store the new value.

The result is two distributions; the distribution of calculated similarity values, S, and

the distribution of the sampled similarity values, S̃. The difference between the two

distributions is established using the Wilcoxon test (wilcox.test in R), which returns

the p-value.
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Appendix B

Chapter 3 Appendices

B.1 Blocking intensity calculation

Block intensity (BI) was first proposed in Lupo and Smith 1995:

BI = 100

(
MZ

RC
− 1

)
(B.1.1)

where MZ is the maximum Z500 value and RC is the value of the Z500 contour that

outlines the wave containing the blocking event. It measures the block’s geopotential

height gradient with respect to a subjectively determined height contour that represents

the block. This measure provides a way of comparing block intensity across different

regions and season, as the maximum geopotential height value of the blocked region is

normalized to values on a common scale of 1-10, with blocks classified as weak (BI < 2),

moderate (2 < BI < 4.3), and strong (BI > 4.3).

This equation was modified in Wiedenmann et al. (2002) to accommodate longitudinally-

varying detection methods, where RC was calculated as the average between MZ and

selected height values that are upstream (Zu) and downstream (Zd) from the coordinate

of MZ:

RC =
(Zu +MZ)× 0.5 + (Zd +MZ)× 0.5

2
(B.1.2)

We further modify Equation B.1.2 to accommodate the results from our blocking

detection algorithm, which produces 2D blocking results as opposed to the 1D results
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from (LS95) and (W02). MZ is the average of the highest 5% and Zmin is the average of

the lowest 5% of Z500 values in the detected region. Thus,

RC = (MZ + Zmin)× 0.5 (B.1.3)

Thus, plugging MZ and the RC value from Equation B.1.3 into B.1.1, we obtain a

blocking intensity index.

B.2 Anomaly intensity calculation

This metric was inspired by the total power dissipation measure used in hurricane studies,

which accounts for the hurricane size in the quantification of hurricane energy. Here,

we account for detected block size when assessing the height anomaly magnitude of a

particular block.

The anomaly index, AI, is defined as

AI =

m,n∑

i,j=1,1

Z∗ijAij (B.2.1)

where Aij is the area of a single grid box, in km2, and Z∗ is the average of the four

anomaly values at the corners of the grid boxes. For ease of comparison, the values in

Chapter 3 have been divided by 108. The units are effectively m3, but as this does not

make sense in the context of the variable, we omit the units from the discussion.

B.3 Difference charts methodology

The difference plot for the block characteristics (Figure 3.7) displays a set of variables

with a wide range of units and values on a single normalized scale. The calculations for

the metrics and fields differences are similar in concept but contain some slight differences

in methodology. The calculation steps are outlined in the following sections.

B.3.1 Field differences

The differences in two spatial fields is difficult to collapse down into a single number,

particularly when there are competing positive and negative differences that can cancel

each other out. Root mean square error is a useful metric in that it quantifies the average
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absolute deviation from the expected value, but does not work for our purposes because

it does not include the overall sign of the difference between the fields.

We utilize a block bootstrap resampling method to generate distributions for model

and reanalysis fields. This method involves generating a 10 (latitude) x20 (longitude)

degree boundary box (this size captures significant features on the averaged maps fairly

well while avoiding averaging out significant features) and taking subregion samples from

both the model and reanalysis time-averaged fields.

The following steps are repeated over 5000 iterations (sampling with replacement) to

generate the distributions:

1. Generate a sample coordinate pair, (φs, λs) from the array of possible latitude values

[φmin, (φmax − 10)] and longitude values [λmin, (λmax − 20)]

2. Take subsample boxes Rs and Ms with boundaries [φs, (φs+10)], [λs, (λs+20)] from

the time-averaged fields R and M

3. Find the box averages Rb and Mb

4. append Rb and Mb to corresponding lists of average values RL and ML

5. Find the difference between the two lists, DL = ML − RL. The median bias value

of the field is defined as the median of DL

This method is necessary to maintain some semblance of spatial information in the

median difference; the difference between the two lists is determined on a per-index basis,

so the most common difference value will theoretically be the median value (note: this

method becomes problematic in cases where there is significant bimodality with positive

and negative differences in the field, but doing the block bootstrapping is an attempt to

remedy this issue).
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B.4 Linear regression and influence plots: a brief ex-

planation of the statistical terms and equations

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC):

AIC and BIC are often used in conjunction to measure relative model goodness-of-fit. The

formula for AIC is

AIC = 2p− 2 ln (L) (B.4.1)

where p is the number of model parameters and L is the maximum of the likelihood

function, which is an estimate of goodness-of-fit for possible models with a varying number

of parameters.

BIC has a similar purpose as AIC, but it imposes a larger penalty for more model

parameters; the first terms is also scaled by the number of observations n:

BIC = ln (n)p− 2 ln (L) (B.4.2)

For both criteria, models with lower values are considered to have a better fit.

Leverage: In the influence plots, the x-axis denotes the models’ leverage values. Points

with high leverage have unusually divergent input values compared to the rest of the

inputs.

In the influence plot function, the threshold for significant influence values is deter-

mined by

T = 2× DFM + 1

N
(B.4.3)

where threshold T is a function of the model degrees of freedom (DFM) and the

number of observations (N).

Studentized Residuals: In the influence plots, the y-axis denotes the models’ studen-

tized residuals. Points with high studentized residuals have significantly large deviations

from the other predicted outcome values.

In the influence plot function, the threshold for significant residuals is determined by

T = T.PPF
(

1− α

2
, DFR

)
(B.4.4)
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where threshold T is determined by the inverse of the t-distribution, T.PPF , which

here is a function of parameter α (set to 0.05 by default in the function) and the residual

degrees of freedom DFR. The percent point function is the inverse of the cumulative

distribution function, and returns the 97.5th percentile value of the distribution.

Cook’s Distance: The size of the points in the influence plots is scaled by Cook’s

distance:

Di =

∑n
j=1(Ŷj − ˆYj(i))

2

(p+ 1)σ̂2
(B.4.5)

The distance Di is a measure of how much the values in the regression model change

when the ith observation is removed from the calculations; Ŷj is the fit, and ˆYj(i) is the

fit excluding i. Large points denote models that significantly impact the resulting fit of

the regression equation.

The rule of thumb for the Cook’s distance threshold T is determined by the number

of observations,

T =
4

N
(B.4.6)

Variance inflation factor (VIF): The procedure can be generally described as follows:

1. Calculate the regression between the chosen input and all other inputs:

Xi = a0 + a1X1 + a2X2... (B.4.7)

and obtain the R2 value for each Xi

2. Calculate VIF:

V IFi =
1

1−R2
i

(B.4.8)

3. If V IFi is above 5, drop Xi from the list of all possible X

4. Repeat the above steps until there are no V IFi greater than 5
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Figure C.1: More detailed version of Figure 3.7, for NP JJA. Boxes are shaded according
to the normalized bias values, while numbers indicate the actual bias values. Boxes with
numbers indicate significant differences.
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Figure C.2: As for Figure C.1, with NP DJF.

124



Figure C.3: As for Figure C.1, with SP DJF.
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Figure C.4: As for Figure C.1, with SP JJA.
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Figure C.5: Blocking frequency for NP JJA, with the reanalysis mean (top left), the
CMIP5 model mean frequency, and the individual model frequency patterns as filled con-
tours in 0.01 interval spacing. For each model, the differences from the reanalysis average
are denoted by the black contours in 0.02 interval spacing, with negative differences rep-
resented by dashed lines. Regions with significant differences are denoted by stippling.
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Figure C.6: Blocking frequency variability for NP JJA, with the reanalysis mean stan-
dard deviation (top left), the CMIP5 model mean standard deviation frequency, and the
individual model frequency standard deviation patterns as filled contours in 0.05 interval
spacing. For each model, the differences from the reanalysis average are denoted by the
black contours in 0.05 interval spacing, with negative differences represented by dashed
lines. Regions with significant differences are denoted by stippling.
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Figure C.7: Taylor plot of (left) the seasonal mean BF field and (right) the temporal vari-
ability in the seasonal BF field (measured as the standard deviation of the per-gridpoint
time series). The plot axes denote the standard deviation of the field magnitudes (and
black dotted lines denote the axis ticks); the reference reanalysis standard deviation for
the NP JJA field is denoted as a magenta broken line. The blue broken lines denote
the level of pattern correlation between the models and the reanalysis, and the green
dashed lines denote the centered root mean square deviation (RMSD) values relative to
the reanalysis. The positions of the individual model points are plotted according to their
values along these axes. The large black dot signifies the CMIP5 (excluding the Hadley
models) average. Note that the maximum extent of the standard deviation axis is 0.06
for the mean plot while it is 0.10 for the variability plot.
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Figure C.8: As for Figure C.5, with NP DJF
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Figure C.9: As for Figure C.6, with NP DJF
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Figure C.10: As for Figure C.7, with NP DJF.
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Figure C.11: As for Figure C.5, with SP DJF
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Figure C.12: As for Figure C.6, with SP DJF
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Figure C.13: As for Figure C.7, with SP DJF. Note that the Hadley models are missing
from the mean plot, as their standard deviation values exceeded the left plot axis limits.
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Figure C.14: As for Figure C.5, with SP JJA
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Figure C.15: As for Figure C.6, with SP JJA
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Figure C.16: As for Figure C.7, with SP JJA.
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Figure C.17: 500 mb geopotential height for NP JJA, with the reanalysis mean (top left),
the CMIP5 model mean geopotential height, and the individual model geopotential height
averages as filled contours with 100 mb interval spacing. For each model, the differences
from the reanalysis average are denoted by black contours in 25 mb interval spacing, with
negative differences represented by dashed lines. Regions with significant differences are
denoted by stippling.
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Figure C.18: 500 mb geopotential height variability for NP JJA, with the reanalysis
standard deviation (top left), the CMIP5 model mean standard deviation of geopotential
height, and the individual model geopotential height averages as filled contours with 20 mb
interval spacing. For each model, the differences from the reanalysis average are denoted
by black contours in 10 mb interval spacing, with negative differences represented by
dashed lines. Regions with significant differences are denoted by stippling.
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Figure C.19: Taylor plot of (left) the seasonal mean Z500 field and (right) the temporal
variability in the seasonal Z500 field (measured as the standard deviation of the per-
gridpoint time series). The plot axes denote the standard deviation of the field magnitudes
(and black dotted lines denote the axis ticks); the reference reanalysis standard deviation
for the NP JJA field is denoted as a magenta broken line. The blue broken lines denote
the level of pattern correlation between the models and the reanalysis, and the green
dashed lines denote the centered root mean square deviation (RMSD) values relative to
the reanalysis. The positions of the individual model points are plotted according to their
values along these axes. The large black dot signifies the CMIP5 (excluding the Hadley
models) average. Note that the maximum extent of the standard deviation axis is 300 for
the mean plot while it is 50 for the variability plot.
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Figure C.20: As for Figure C.17, with NP DJF
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Figure C.21: As for Figure C.18, with NP DJF
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Figure C.22: As for Figure C.19, with NP DJF.
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Figure C.23: As for Figure C.17, with SP DJF
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Figure C.24: As for Figure C.18, with SP DJF
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Figure C.25: As for Figure C.19, with SP DJF.
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Figure C.26: As for Figure C.17, with SP JJA
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Figure C.27: As for Figure C.18, with SP JJA
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Figure C.28: As for Figure C.19, with SP JJA.
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Figure C.29: 500 mb zonal wind for NP JJA, with the reanalysis mean (top left), the
CMIP5 model mean zonal wind, and the individual model zonal wind averages as filled
contours with 2 m/s interval spacing. For each model, the differences from the reanalysis
average are denoted by black contours in 3 m/s interval spacing, with negative differences
represented by dashed lines. Regions with significant differences are denoted by stippling.

151



Figure C.30: 500 mb zonal wind variability for NP JJA, with the reanalysis mean standard
deviation (top left), the CMIP5 model mean standard deviation of zonal wind, and the
individual model zonal wind averages as filled contours with 1 m/s interval spacing. For
each model, the differences from the reanalysis average are denoted by black contours in 1
m/s interval spacing, with negative differences represented by dashed lines. Regions with
significant differences are denoted by stippling.
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Figure C.31: Taylor plot of (left) the seasonal mean U field and (right) the temporal
variability in the seasonal U field (measured as the standard deviation of the per-gridpoint
time series). The plot axes denote the standard deviation of the field magnitudes (and
black dotted lines denote the axis ticks); the reference reanalysis standard deviation for
the NP JJA field is denoted as a magenta broken line. The blue broken lines denote
the level of pattern correlation between the models and the reanalysis, and the green
dashed lines denote the centered root mean square deviation (RMSD) values relative to
the reanalysis. The positions of the individual model points are plotted according to their
values along these axes. The large black dot signifies the CMIP5 (excluding the Hadley
models) average. Note that the maximum extent of the standard deviation axis is 15 for
the mean plot while it is 3 for the variability plot.
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Figure C.32: As for Figure C.29, with NP DJF
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Figure C.33: As for Figure C.30, with NP DJF
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Figure C.34: As for Figure C.31, with NP DJF.
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Figure C.35: As for Figure C.29, with SP DJF
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Figure C.36: As for Figure C.30, with SP DJF
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Figure C.37: As for Figure C.31, with SP DJF.
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Figure C.38: As for Figure C.29, with SP JJA
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Figure C.39: As for Figure C.30, with SP JJA
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Figure C.40: As for Figure C.31, with SP JJA.
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Figure C.41: 500 mb meridional wind for NP JJA, with the reanalysis mean (top left), the
CMIP5 model mean meridional wind, and the individual model meridional wind averages
as filled contours with 2 m/s interval spacing. For each model, the differences from the
reanalysis average are denoted by black contours in 1 m/s interval spacing, with negative
differences represented by dashed lines. Regions with significant differences are denoted
by stippling.
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Figure C.42: 500 mb meridional wind variability for NP JJA, with the reanalysis mean
standard deviation (top left), the CMIP5 model mean standard deviation of meridional
wind, and the individual model meridional wind standard deviations as filled contours with
1 m/s interval spacing. For each model, the differences from the reanalysis average are
denoted by black contours in 1 m/s interval spacing, with negative differences represented
by dashed lines. Regions with significant differences are denoted by stippling.
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Figure C.43: Taylor plot of (left) the seasonal mean V field and (right) the temporal
variability in the seasonal V field (measured as the standard deviation of the per-gridpoint
time series). The plot axes denote the standard deviation of the field magnitudes (and
black dotted lines denote the axis ticks); the reference reanalysis standard deviation for
the NP JJA field is denoted as a magenta broken line. The blue broken lines denote
the level of pattern correlation between the models and the reanalysis, and the green
dashed lines denote the centered root mean square deviation (RMSD) values relative to
the reanalysis. The positions of the individual model points are plotted according to their
values along these axes. The large black dot signifies the CMIP5 (excluding the Hadley
models) average. Note that the maximum extent of the standard deviation axis is 6 for
the mean plot while it is 3 for the variability plot.
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Figure C.44: As for Figure C.41, with NP DJF
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Figure C.45: As for Figure C.42, with NP DJF
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Figure C.46: As for Figure C.43, with NP DJF.
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Figure C.47: As for Figure C.41, with SP DJF
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Figure C.48: As for Figure C.42, with SP DJF
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Figure C.49: As for Figure C.43, with SP DJF.
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Figure C.50: As for Figure C.41, with SP JJA
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Figure C.51: As for Figure C.42, with SP JJA
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Figure C.52: As for Figure C.43, with SP JJA.
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Appendix D

Chapter 4 Supplemental Figures
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Figure D.1: (left) Reanalysis average, (middle left) CMIP5 average, (middle right) CMIP6
average, and (right) CMIP5/CMIP6 comparison of relative error change for blocking
frequency in NP JJA.
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Figure D.2: (left) Reanalysis average, (middle left) CMIP5 average, (middle right) CMIP6
average, and (right) CMIP5/CMIP6 comparison of relative error change for blocking
frequency variability in NP JJA.
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Figure D.3: Taylor plot of (left) the seasonal mean BF field and (right) the temporal vari-
ability in the seasonal BF field (measured as the standard deviation of the per-gridpoint
time series) for CMIP5 (smaller points) and CMIP6 (larger points) models. The plot axes
denote the standard deviation of the field magnitudes (and black dotted lines denote the
axis ticks); the reference reanalysis standard deviation for the NP JJA field is denoted
as a magenta broken line. The blue broken lines denote the level of pattern correlation
between the models and the reanalysis, and the green dashed lines denote the centered
root mean square deviation (RMSD) values relative to the reanalysis. The positions of
the individual model points are plotted according to their values along these axes. Note
that the maximum extent of the standard deviation axis is 0.06 for the mean plot while
it is 0.10 for the variability plot.
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Figure D.4: As for Figure D.1, with NP DJF
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Figure D.5: As for Figure D.2, with NP DJF
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Figure D.6: As for Figure D.3, with NP DJF.
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Figure D.7: As for Figure D.1, with SP DJF
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Figure D.8: As for Figure D.2, with SP DJF
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Figure D.9: As for Figure D.3, with SP DJF.
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Figure D.10: As for Figure D.1, with SP JJA
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Figure D.11: As for Figure D.2, with SP JJA
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Figure D.12: As for Figure D.3, with SP JJA.
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Figure D.13: (left) Reanalysis average, (middle left) CMIP5 average, (middle right)
CMIP6 average, and (right) CMIP5/CMIP6 comparison of relative error change for Z500
in NP JJA.

188



Figure D.14: (left) Reanalysis average, (middle left) CMIP5 average, (middle right)
CMIP6 average, and (right) CMIP5/CMIP6 comparison of relative error change for Z500
variability in NP JJA.
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Figure D.15: Taylor plot of (left) the seasonal mean BF field and (right) the temporal
variability in the seasonal Z500 field (measured as the standard deviation of the per-
gridpoint time series) for CMIP5 (smaller points) and CMIP6 (larger points) models.
The plot axes denote the standard deviation of the field magnitudes (and black dotted
lines denote the axis ticks); the reference reanalysis standard deviation for the NP JJA
field is denoted as a magenta broken line. The blue broken lines denote the level of
pattern correlation between the models and the reanalysis, and the green dashed lines
denote the centered root mean square deviation (RMSD) values relative to the reanalysis.
The positions of the individual model points are plotted according to their values along
these axes. Note that the maximum extent of the standard deviation axis is 300 for the
mean plot while it is 50 for the variability plot.
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Figure D.16: As for Figure D.13, with NP DJF

191



Figure D.17: As for Figure D.14, with NP DJF
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Figure D.18: As for Figure D.15, with NP DJF.
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Figure D.19: As for Figure D.13, with SP DJF
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Figure D.20: As for Figure D.14, with SP DJF
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Figure D.21: As for Figure D.15, with SP DJF.
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Figure D.22: As for Figure D.13, with SP JJA
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Figure D.23: As for Figure D.14, with SP JJA
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Figure D.24: As for Figure D.15, with SP JJA.
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Figure D.25: (left) Reanalysis average, (middle left) CMIP5 average, (middle right)
CMIP6 average, and (right) CMIP5/CMIP6 comparison of relative error change for U
in NP JJA.
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Figure D.26: (left) Reanalysis average, (middle left) CMIP5 average, (middle right)
CMIP6 average, and (right) CMIP5/CMIP6 comparison of relative error change for U
variability in NP JJA.

201



Figure D.27: Taylor plot of (left) the seasonal mean BF field and (right) the temporal
variability in the seasonal U field (measured as the standard deviation of the per-gridpoint
time series) for CMIP5 (smaller points) and CMIP6 (larger points) models. The plot axes
denote the standard deviation of the field magnitudes (and black dotted lines denote the
axis ticks); the reference reanalysis standard deviation for the NP JJA field is denoted
as a magenta broken line. The blue broken lines denote the level of pattern correlation
between the models and the reanalysis, and the green dashed lines denote the centered
root mean square deviation (RMSD) values relative to the reanalysis. The positions of
the individual model points are plotted according to their values along these axes. Note
that the maximum extent of the standard deviation axis is 15 for the mean plot while it
is 3 for the variability plot.
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Figure D.28: As for Figure D.25, with NP DJF
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Figure D.29: As for Figure D.26, with NP DJF
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Figure D.30: As for Figure D.27, with NP DJF.
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Figure D.31: As for Figure D.25, with SP DJF
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Figure D.32: As for Figure D.26, with SP DJF
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Figure D.33: As for Figure D.36, with SP DJF.
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Figure D.34: As for Figure D.25, with SP JJA
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Figure D.35: As for Figure D.26, with SP JJA
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Figure D.36: As for Figure D.27, with SP JJA.
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Figure D.37: (left) Reanalysis average, (middle left) CMIP5 average, (middle right)
CMIP6 average, and (right) CMIP5/CMIP6 comparison of relative error change for V
in NP JJA.
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Figure D.38: (left) Reanalysis average, (middle left) CMIP5 average, (middle right)
CMIP6 average, and (right) CMIP5/CMIP6 comparison of relative error change for V
variability in NP JJA.
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Figure D.39: Taylor plot of (left) the seasonal mean BF field and (right) the temporal
variability in the seasonal V field (measured as the standard deviation of the per-gridpoint
time series) for CMIP5 (smaller points) and CMIP6 (larger points) models. The plot axes
denote the standard deviation of the field magnitudes (and black dotted lines denote the
axis ticks); the reference reanalysis standard deviation for the NP JJA field is denoted
as a magenta broken line. The blue broken lines denote the level of pattern correlation
between the models and the reanalysis, and the green dashed lines denote the centered
root mean square deviation (RMSD) values relative to the reanalysis. The positions of
the individual model points are plotted according to their values along these axes. Note
that the maximum extent of the standard deviation axis is 6 for the mean plot while it is
3 for the variability plot.
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Figure D.40: As for Figure D.37, with NP DJF
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Figure D.41: As for Figure D.38, with NP DJF
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Figure D.42: As for Figure D.39, with NP DJF.
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Figure D.43: As for Figure D.37, with SP DJF
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Figure D.44: As for Figure D.38, with SP DJF
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Figure D.45: As for Figure D.39, with SP DJF.
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Figure D.46: As for Figure D.37, with SP JJA
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Figure D.47: As for Figure D.38, with SP JJA
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Figure D.48: As for Figure D.39, with SP JJA.
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