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Non-Linear Equations

Non-linear differential equations, such as the ones that govern
atmospheric motions include products of state variables with

themselves:
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Energy Spectrum
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Energy Spectrum
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Motivation

e All dynamical cores need some form of dissipation, either explicitly added or
implicitly included via the choice of the numerical scheme.

* Due to truncation of the spatial scales:

e Dissipation is needed to prevent an accumulation of energy at the smallest
grid scales.

e Dissipation mechanisms...
... are often hidden in dynamical cores
... are rarely fully documented in publications (maybe in technical reports)

... and their coefficients are often empirically determined and resolution-
dependent (tuned) with no physical basis
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Keywords

» Explicit diffusion (dissipation)
* Horizontal diffusion / hyper-diffusion
e Divergence damping
e Vorticity damping
e External mode damping
* Rayleigh friction / model top sponge layers

* Implicit diffusion (dissipation)
e Order of accuracy
e Off-centering
* Monotonicity constraints and flux limiters

* Filters
» Spectral Fast-Fourier Transform (FFT) filters
» Digital filters (e.g. Shapiro filters)
* Time filters (e.g. Asselin filter)

* A posteriori Fixers: Mass, tracer mass, total energy
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Evolution Equations

Time tendency
from the dynamical
core (adiabatic)
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Time tendency of
forecast variable
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Time tendency
from dissipative
mechanisms and

fixers
/

— = Dyn(vy) + Phys(y A{F

Time tendency
from the physical
parameterizations

(diabatic)

This term is mostly
considered part of
the dynamical core.
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Evolution Equations
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Dissipative Signatures

Comparison of the 700 hPa zonal wind at day 25 in CAM FV and CAM EUL with
mountain wave test.

[ CAM FV 1° x 1° L26 } [ CAM EUL T106L26 }

700 hPa zonal wind Da); 2 | mis 700 hPa U Day 25 m/s

e
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With monotonicity constraint, With horizontal 4t order
divergence damping hyperdiffusion with default coefficient.
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Explicit Horizontal Dissipation

Diffusion applied to the prognostic variables.

* Includes regular diffusion (Vz)
* Also hyper-diffusion (V4, VG, VS, .. )

Example: Temperature diffusion with order 2q

oT

or = (FD) T K VT

!

Diffusion coefficent (here
constant), needs to
depend on horizontal
resolution
\ J
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Diffusion Scale Dependency

The diffusion coefficient is guided by the e-folding time t: How quickly are the
shortest waves damped so that the amplitude decreases by a factor of e.
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Higher order hyperdiffusion is more
scale-selective, less damping at large
scales (low wavenumbers)
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Impact on Baroclinic Wave

CAM EUL T85L26 with two diffusion coefficients

Default K, = 101> m4/s (8.6h) Increased K, = 101 m#/s (0.86h)
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Divergence Damping

Selectively damps the divergent part of the flow (this component is often
artificially enhanced by numerical methods).

[ Lapljcian ]
F, = (—1)7"'V (15, V?77?V - v)
\ A

[ Gradient ]

[ Divergence ]

0
a_‘t’ =+ V(cV-v) Example: 2"d order div damping
ov
V- il +V - -V(cV-v) Apply the divergence operator
0D
E:..._FVQ(CD) Define D =V - v
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Divergence Damping

CAM FV 1° x 1° L26, baroclinic wave at day 9
(Numerical stability of CAM FV depends on divergence damping)

[ 2" order 2D divergence damping ]
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Divergence Damping
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Divergence Damping

Divergence damping

PRECIPITATION
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Figure: Peter Lauritzen
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Vertically Propagating Waves
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Vertically Propagating Waves
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Sponge Layers / Rayleigh Friction

A wave absorbing layer near the top of a General Circulation Model (GCM) is
often desired to absorb vertically propagating waves and prevent wave
reflection.

Wave reflection arises from the upper boundary condition (e.g. fixed height
model top with w = 0 m/s) are perfect reflectors, undesireable.

Practical approach: Rayleigh Friction

ou Damps to a
E — ... — T(u — ﬂ) background state with

e-folding time t
Also: Height-dependent diffusion

ou 2 Compare vs. divergence
E =t K(Z)V u damping

|

No physical justification }
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Sponge Layers / Rayleigh Friction

Held-Suarez experiment: Idealized temperature forcing, quasi-static equilibrium
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Implicit Numerical Diffusion

Implicit diffusion is numerical diffusion which is inherent to a numerical scheme.

The benefit of implicit diffusion is that it typically introduces the minimum
amount of diffusion necessary for maintaining stability.

Implicit diffusion is often associated with upwinding; that is, taking upstream
information to compute fluxes rather than centered information.

Other sources of implicit diffusion:
* Monotonicity constraints (nonlinear)

* Off-centering parameters in semi-implicit time-stepping schemes
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Implicit Numerical Diffusion

Change in the behavior of the baroclinic instability for three upwind-based
finite-volume methods (CAM FV 1° x 1°)
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Implicit Numerical Diffusion

Change in the behavior of the baroclinic instability for three upwind-based
finite-volume methods.

- Baroclinic wave test « 700 hPa kinetic energy

‘ CAM FV ? spectrum (day 30) at 1°
10° .. horizontal resolution
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Spatial Filtering

i\ i\

/Latitude-Longitude grid: On this\ No polar filtering needed
grid the CFL condition leads to on these grids.
numerical instability near the poles.
Polar filtering can be used to remove
unstable wavelengths.

\_ _
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Spatial Filtering

The most popular filter is the 1D Fourier filter (spectral filter) used in the zonal
direction (this is the direction of shortest grid spacing on the latitude-longitude grid)

Basic idea:
* Transform the grid point data into spectral space via Fourier transformation.

* Eliminate or damp high wave numbers (noise) by either setting the spectral
coefficients to 0 or multiplying them with a damping coefficient

* Transform the field back into grid point space: Result is a filtered data set
Filter strength is determined by the spectral damping coefficients (can be a function

of wave number), can be made to vary by scale and by latitude (often only applied
above 45N)

Drawback: Needs all data along latitude ring (poor scaling on parallel computers)
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Time Filtering

Used in models with 3-time level schemes (e.g. Leapfrog). Transforms temporal
discretization into a temporal discretization with more desirable properties (more
stability).

Most used: Robert-Asselin filter (Asselin, 1972)

Basic idea: Second-order diffusion in time

(‘w r ( ¢) Basic Leapfrog Scheme
Ot wn—l—l _ wn—l 4+ QAtF(wn)
Leapfrog Scheme with Robert-Asselin Filter Second-order

diffusion in time

prt = 9" 4 2ALF (")
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Conservation of Mass: Mass Fixers

Some dynamical cores are not mass-conserving by design (but this property is
needed for long term climate simulations)

One option: An a posteriori mass fixer

Basic idea: Adjust the mean value of the surface pressure (p,) after each time step,
so that total mass is conserved.

This technique does not alter the pressure gradients which are the driving force in
the momentum equations.
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Conservation of Mass: Mass Fixers

e Weather forecast model IFS run with Held-Suarez test

 Compare the time-mean zonal-mean temperature of a run with and

without mass fixer

Temperature

(without mass fixer)

Temperature
(with mass fixer - without)

e IR
208

wan

ST aming).

~.cooling | .
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Conservation of Total Energy

Total energy, which is not relevant for weather prediction models, is a relevant
guantity to conserve in climate models.

When running for long times the violation of total energy conservation leads to
artificial drifts in the climate system (e.g. ocean heat fluxes)

In nature:
* Conservation of total energy
* Energy lost by molecular diffusion (into eddies) provides heat

In atmospheric models:

* Energy is lost due to explicit or implicit diffusion

* Molecular diffusion is not represented on the model grid (spatial scales too big)
* An unstable numerical method might also lead to an increase in total energy

Therefore: Some models provide an a posteriori energy fixer that restores the
conservation of total energy by modifying the temperature.
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Conservation of Total Energy

Goal: Total energy at each time step should be constant

Compute residuals RFE'S — Et - E-

Compute total energy before (-) and after (+) each time step (here shown in hybrid

pressure coordinates):

E+/A<: :;(ﬁ’g)?
E_:/A<\ _;((V;)Q
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+ Cka_> (pOAAk; —|—]?S_ABk)

+ O pt

+ O.p,

\

/

\

> dA

> dA

/

Idea: Correct the temperature field to achieve the conservation of total energy

How to return energy? Correct proportional to T? Correction is constant

everywhere?
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Summary

Diffusion and filters help maintain the numerical stability (removing aphysical effects
such as numerical instability and replacing them with aphysical diffusion)

Some diffusion (either explicit or implicit) is always needed to prevent accumulation
of energy at the smallest scale (due to truncated energy cascade)

But: Use these techniques selectively and know their consequences!

Word of caution: It is very easy to compute nice-looking smooth, highly diffusion,
but very inaccurate solutions to the equations of motion.
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