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Introduction
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• How do we best represent continuous data when only a 
(very) limited amount of information can be stored?

Atmospheric Modeling – Question Number One

• Equivalently, what is the best way to represent continuous 
data discretely?

Continuous vs. Discrete
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The Regular Latitude-Longitude Grid

Grid lines are represented by lines of 
constant latitude and longitude.

Polar singularity leads to accumulation 
of elements and increase of resolution 
near the pole.

Grid faces individually regular

Orthogonal coordinate lines
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The Cubed-Sphere

The cubed-sphere grid is obtained by 
placing a cube inside a sphere and 
�inflating� it to occupy the total 
volume of the sphere.

No polar singularities

Grid faces individually regular

Some difficulty at panel edges

Non-orthogonal coordinate lines
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The Icosahedral Geodesic Grid

The grid is the “dual” grid of the refined 
icoahedron, consisting of hexagonal and 
pentagonal elements.

No polar singularities

Grid largely unstructured

Most uniform element spacing
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GFDL FV3

CAM-SECAM-EUL

CAM-FV

Numerical Methods: Issues
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GFDL FV3

CAM-SECAM-EUL

CAM-FV

Numerical Methods: Issues

Although it is a standard in climate 
modeling, the CAM-FV model is 
known to possess a strong diffusive 
signature.  Diffusion is enhanced as 
one approaches the poles in order 
to maintain stability.
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GFDL FV3

CAM-SE

Numerical Methods: Issues

Both the GFDL FV3 (FVcubed) model 
and CAM-SE (spectral element) model 
are built on the cubed-sphere.  This 
leads to an enhancement of the k=4 
wave mode.  The use of high-order 
numerics in CAM-SE is more effective 
at repressing this mode.
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ICON

CSU

Numerical Methods: Issues

Both the ICON model CSU model are 

built on an icosahedral grid (results 

from 2008 workshop).  This leads to 

an enhancement of the k=5 wave 

mode.
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CAM-SECAM-EUL

Numerical Methods: Issues

CAM-EUL (Eulerian) and CAM-SE (spectral 
element) use spectral methods, which are 
known to be prone to spectral ringing.  This 
ringing is characterized by rapid oscillations due 
to enhancement of the high-frequency mode.
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Summary: When it comes to designing 

discretizations, there’s no free lunch!

Numerical Methods: Staggering

Unstaggered (Arakawa A-grid) finite-difference 

and finite-volume methods are known to 

support artificially support high-frequency 

modes.  Additional diffusion is typically required 

to eliminate high-frequency imprinting. 
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10-day adiabatic runs with 1 tracer on Cray 
machine Jaguar XT4 (#4).  The resolution 

is ~ 1 degree in the horizontal with 26 
vertical levels.  Source: Art Mirin (LLNL)

FV3
CAM-SE
CAM-FV

Parallel Performance

Methods which make the 
most use of local data will 
perform better on massively 
parallel computers (compact 
schemes).  Conversely, 
methods which make use of 
global data (spectral 
transform) tend to perform 
more poorly in parallel.
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Finite Difference Methods



17Paul Ullrich ATM 265: Lecture 03 April 8, 2019

We are interested in solving the advection equation:

For now, we only consider 1D:

Dq

Dt
= 0

�q

�t
+ u ·�q = 0

�q

�t
+ u

�q

�x
= 0

q represents the mixing 
ratio of a certain tracer 

species.

Advection of a Tracer
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What does this mean?

�q

�t
+ u ·�q = 0

q

q

Dq

Dt
= 0

Lagrangian Frame Eulerian Frame

Advection of a Tracer

Tracer mixing ratio is constant 
following a fluid parcel.
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What does this mean?

q

Dq

Dt
= 0

Lagrangian Frame Eulerian Frame

�q

�t
+ u ·�q = 0

q

u

Advection of a Tracer

Local change in mixing ratio 
is determined by “rate of 
change” of q in the 
upstream wind direction.
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qj-1 qj qj+1 qj+2

How do we understand the 
CONTINUOUS behavior of q? �q

�t
+ u

�q

�x
= 0

Eulerian Frame

Basic Finite Differences
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j – 2 j – 1 j j + 1 j + 2

Consider some arbitrary values associated with q at each 
point.  Grid points are distance Δx apart.

qj-1 qj

qj+1

qj+2

qj-2

�x

Basic Finite Differences
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j – 2 j – 1 j j + 1 j + 2

• The simplest approximation to the continuous field is 
obtained by connecting nodal points by straight lines.

qj-1 qj

qj+1

qj+2

qj-2

�x

Basic Finite Differences
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j – 2 j – 1 j j + 1 j + 2

• We need first derivatives in space 
to approximate the advection 
equation

qj-1 qj

qj+1

qj+2

qj-2

�q

�t
+ u

�q

�x
= 0

Eulerian Frame

�x

Basic Finite Differences
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j – 2 j – 1 j j + 1 j + 2

qj-1 qj

qj+1

qj+2

qj-2

�x

✓
�q

�x

◆�

j

=
qj � qj�1

�x

✓
�q

�x

◆+

j

=
qj+1 � qj

�x

“Left” Derivative “Right” Derivative

Basic Finite Differences
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j – 2 j – 1 j j + 1 j + 2

qj-1 qj

qj+1

qj+2

�x

A more accurate approximation can be made by fitting a 
parabola through three neighboring points.

q(x) =

✓
qj+1 � 2qj + qj�1

�x2

◆
(x� xj)2

2
+

✓
qj+1 � qj�1

2�x

◆
(x� xj) + qj

✓
�q

�x

◆0

j

=
qj+1 � qj�1

2�x

“Central” Derivative

Basic Finite Differences

The “central” derivative is just the average 
of the “left” and “right” derivatives.
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�q

�t
+ u

�q

�x
= 0

Eulerian Frame

�qj
�t

= �uj

✓
qj � qj�1

�x

◆

�qj
�t

= �uj

✓
qj+1 � qj�1

2�x

◆

The previously mentioned discrete 
derivatives then lead to two discrete 
approximations of the advection 
equation.

Upwind Scheme

Central Scheme

Basic Finite Differences
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A bit more complicated (two coupled equations):

Used to model small amplitude gravity waves in a shallow ocean 
basin.

�h

�t
+H

�u

�x
= 0

�u

�t
+ g

�h

�x
= 0

h

H
u

1D Wave Equation
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j – 2 j – 1 j j + 1 j + 2

�x

Assume h and u are both stored at the same points (Arakawa A-grid)

hj-2 hj-1 hj
hj+1 hj+2

uj-2
uj-1 uj

uj+1 uj+2

1D Linear Wave Equation



29Paul Ullrich ATM 265: Lecture 03 April 8, 2019

Again using the central difference approximation we derived 
earlier, the wave equation takes the following discrete form:

�uj

�t
+ g

hj+1 � hj�1

2�x
= 0

�hj

�t
+H

uj+1 � uj�1

2�x
= 0

1D Linear Wave Equation
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j – 2 j – 1 j j + 1 j + 2

�x

Other arrangements of h and u nodes are possible (Arakawa C-grid)

hj-2 hj-1 hj
hj+1 hj+2

uj-3/2
uj-1/2 uj+1/2

uj+3/2 uj+5/2

1D Linear Wave Equation
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With staggered velocities, we can tighten the 
discretization:

�hj

�t
+H

uj+1/2 � uj�1/2

�x
= 0

�uj+1/2

�t
+ g

hj+1 � hj

�x
= 0

This choice tends to greatly improve errors 
associated with the discretization.

1D Linear Wave Equation
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Image: http://trac.mcs.anl.gov/projects/parvis/wiki/Discretizations

Arakawa Grid Types (2D)
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• Finite-difference methods are easy to implement, and 
consequently are typically fast.

• These methods are very easy to implement implicitly 
or semi-implicitly (to avoid issues with fast wave).

• One needs to be careful to ensure conservation (not 
guaranteed by the finite-difference method) and avoid 
spurious wave solutions.

Finite Difference Methods
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Finite Volume Methods
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• Scalar variables (density, energy, tracers) are stored as 

element-averaged values (conservation)

• Velocities can be stored as pointwise values or as 

element-averaged momentum.

CAM-FV GFDL FV3

Finite Volume Methods
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h Fluid height
u Fluid velocity vector
p Fluid pressure
S Source terms (geometry, Coriolis, topography)

�h

�t
+⇥ · (hu) = 0

�hu

�t
+⇥ · (hu� u+ 1

2gh
2) = S

Conservative Shallow Water Eqn’s
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Given conservation law

Integrate over an element         with boundary           and apply 
Gauss� divergence theorem.  This gives

Time evolution of 
element-averaged state

Flux through
element boundary

Element-averaged 
source term

Finite Volume Methods
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• Scalar variables (density, energy, tracers) are stored as 

element-averaged values.

• Neighboring values are needed to build a sub-grid-

scale reconstruction.

Example:  Surface 

temperature data

Sub-Grid Scale Reconstruction
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• State variables (density, energy, tracers) are stored as 

element-averaged values.

• Neighboring values are needed to build a sub-grid-

scale reconstruction.

j – 2 j – 1 j j + 1 j + 2

Sub-Grid Scale Reconstruction
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j – 2 j – 1 j j + 1 j + 2

• A linear profile:

• An approximation to the slope in element j can be 
obtained by differencing neighboring elements.

Sub-Grid Scale Reconstruction
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j – 2 j – 1 j j + 1 j + 2

When applied to all elements, our sub-grid scale 

reconstruction captures features which are not apparent at 

the grid scale.

Sub-Grid Scale Reconstruction
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j – 2 j – 1 j j + 1 j + 2

A reconstructed cubic 

polynomial through an 

element and its four 

nearest neighbors 

provides very accurate 

sub-grid accuracy.

2D Stencil

In higher dimensions 

the reconstruction 

stencil incorporates 

neighboring elements 

in both directions.

Sub-Grid Scale Reconstruction
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Using polynomials information on the sub-grid-scale 
(continuous) behavior of each state variable is recovered.

Sub-Grid Scale Reconstruction
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qL
qR

Since the sub-grid reconstruction can be discontinuous at cell 
interfaces (we have a left value qL and right value qR), we have 
several options for computing the flux (Riemann solver).

Solving for Fluxes
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• With appropriately defined fluxes, finite-volume 
methods do not generally suffer from �spectral 
ringing� and generally only realize physically attainable 
states (diffusive errors are dominant)

• Finite-volume methods can be easily made to satisfy 
monotonicity and positivity constraints (i.e. to avoid 
negative tracer densities)

• These methods are generally very robust, and are 
heavily used in other fields.

Finite Volume Methods
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2D Shallow Water Equations
Continuous Equations (Flux Form) Semi-Discrete Equations

Flux terms
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Spectral Methods
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Instead of writing state 
variables as pointwise
quantities, we can instead 
write the continuous field as a 
linear combination of modes:

�(x, t) =
NX

k=1

ak(t)⇥k(x)

�1(x)

�2(x)

�3(x)

�4(x)

�5(x)

�6(x)

�0(x)0

�k(x) = exp(ikx)

Z

S
⇥k⇥ndS =

⇢
2�, if m = n
0, if m 6= n

Linear Harmonics
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On the sphere there is a natural basis of modes 
known as spherical harmonics.  

Z

S
��,m�k,ndS =

⇢
I�,m, k = ⇥ and m = n
0, k 6= ⇥ or m 6= n

Spherical Harmonics
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Expand q in terms of basis functions:
�q

�t
+ u

�q

�x
= 0

Substitute into the 1D advection equation:

Multiply by          and integrate over domain :

q(x, t) =
NX

n=1

an(t)�n(x)

 k
NX

n=1

dan
dt

Z

S
�n�kdx = �u

NX

n=1

an

Z

S

⇥�n

⇥x
�kdx

NX

n=1

dan
dt

�n = �u
NX

n=1

an
⇥�n

⇥x

Spectral Methods: Advection
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Use orthogonality.  For a linear differential equation, this leads to an 
exact separation of wave modes:

Observe for exact time integration:

�k(x) = exp(ikx)

q(x, t) =
NX

n=1

an�n =
NX

n=1

an,0 exp(in(x� ut))

dan
dt

= �inuan

an = an,0 exp(�inut)

And so q(x,t) is computed exactly!

Spectral Methods: Advection
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Wavenumber is proportional to the 
inverse wavelength.  Hence, larger 

wavenumbers = shorter waves.

Source: WRF Decomposed Spectra Spring 
Experiment 2005 Forecast.  Courtesy of Bill 
Skamarock.

Energy Spectrum
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Non-linear differential equations, such as the ones that govern 
atmospheric motions include products of state variables with 
themselves:

⇥u

⇥t
+ u ·⇥u = �1

�
⇥p+ g

Non-Linear Equations
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• The spatial component of the spectral transform method is 
“perfect” for linear differential equations.  Errors are only 
introduced by the temporal discretization.

• In practice, the spectral transform method is not used for tracer 
advection since it is difficult to maintain monotonicity and 
positivity.

• Errors typically emerge as
“spectral ringing.”

Spectral Methods
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• Non-linear mixing can cause an accumulation of energy at the 

smallest grid scales, so additional diffusion is typically needed to 

remove energy here.

• The spectral transform method requires global communication to 

accurately handle non-linear terms.  This tends to hurt the parallel 

performance of this method.

Spectral Methods
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Finite Element Methods
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• Finite element methods take the benefits of the spectral transform 

method with the locality principal of finite-volume methods.

• Can be thought of as spectral transform “in an element”

j j+1

Finite Element Methods
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Image: http://trac.mcs.anl.gov/projects/parvis/wiki/Discretizations

• A nth order finite element 
method requires nd basis 
functions within each element 
(dimension d).

• To construct basis functions, 
use GLL nodes within a 2D 
element.

• Fit polynomials so that each 
basis function is 1 at one node 
and 0 at all other nodes. 

Spectral Element Method
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Expand q in terms of basis functions within an element:

q(x, t) =
NX

n=1

an(t)�n(x)

�1(x)
�2(x) �3(x)

�4(x)

xj,1 xj,2 xj,3 xj,4

Finite Element Method
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Note that the use of GLL nodes means that there is an implicit 
discrete integration rule:
Z

Sj

�(x, t)dx ⇡ w1�j,1 + w2�j,2 + w3�j,3 + w4�j,4

�j,1 �j,2 �j,3 �j,4

Finite Element Methods
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Expand q in terms of basis functions 
within an element:

Substitute into the 1D conservation equation:

Multiply by          and integrate over an element:

q(x, t) =
NX

n=1

an(t)�n(x)

 k

�q

�t
+

�

�x
F (q) = 0

NX

n=1

dan
dt

�n = � ⇥

⇥x
F

 
NX

n=1

an�n

!

NX

n=1

dan
dt

Z

Sj

�n�kdx = �
Z

Sj

⇥F

⇥x
�kdx

Finite Element Methods
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Apply integration by parts:

�q

�t
+

�

�x
F (q) = 0

NX

n=1

dan
dt

Mn,k = �F (x)�k

����
�Sj

+

Z

Sj

F (x)
d�k

dx
dx

Mn,k =

Z

Sj

�n�kdxWith mass matrix:

Finite Element Methods
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�q

�t
+

�

�x
F (q) = 0

NX

n=1

dan
dt

Mn,k = �F (x)�k

����
�Sj

+

Z

Sj

F (x)
d�k

dx
dx

To evaluate internal exchange term, 
use integration property on interior:
Z

Sj

�(x, t)dx ⇡ w1�j,1 + w2�j,2 + w3�j,3 + w4�j,4

Finite Element Methods
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NX

n=1

dan
dt

Mn,k = �F (x)�k

����
�Sj

+

Z

Sj

F (x)
d�k

dx
dx

• Spectral Element method:  Enforce continuity at element 
boundaries.  Flux function is simple function evaluation.

• Discontinuous Galerkin method:  Discontinuous at element 
edges.  A Riemann solver must be applied to evaluate flux here.

Finite Element Methods
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Q: How does Spectral Element method enforce continuity?

A: Easy!  Evolve nodal values in both elements.  Then take average:

�j,1 �j,2 �j,3 �j,4

= �j+1,1= �j�1,4

�n+1
j,1 = �n+1

j�1,4 =
�⇤
j,1 + �⇤

j�1,4

2

Finite Element Methods
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xj,1 xj,2 xj,3 xj,4

The spectral element method can be 
interpreted as a finite difference scheme. 

�q

�t
+ u

�q

�x
= 0

“Spectral” Derivative
✓
⇥q

⇥x

◆

x=xj,3

=
NX

n=1

an
d�

dx
(xj,3)

Equivalence with Finite Difference


