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Introduction
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Continuous vs. Discrete

Atmospheric Modeling — Question Number One

* How do we best represent continuous data when only a
(very) limited amount of information can be stored?

* Equivalently, what is the best way to represent continuous
data discretely?
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The Regular Latitude-Longitude Grid

Grid lines are represented by lines of
constant latitude and longitude.

Polar singularity leads to accumulation
. of elements and increase of resolution
' near the pole.

Grid faces individually regular

Orthogonal coordinate lines




The Cubed-Sphere

][]

The cubed-sphere grid is obtained by
placing a cube inside a sphere and
“inflating” it to occupy the total
volume of the sphere.

No polar singularities

Grid faces individually regular

Some difficulty at panel edges

Non-orthogonal coordinate lines



The Icosahedral Geodesic Grid

The grid is the “dual” grid of the refined
icoahedron, consisting of hexagonal and
pentagonal elements.

Most uniform element spacing
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Numerical Methods: Issues

GFDL FV3

surface pressure
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Numerical Methods: Issues

90N -
60N —

30N -

0
%3 Although it is a standard in climate

s 4 modeling, the CAM-FV model is

0  60E  120E 180  120W  60W known to possess a strong diffusive
signature. Diffusion is enhanced as
one approaches the poles in order

to maintain stability.

60S
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Numerical Methods: Issues

4 )
Both the GFDL FV3 (FVcubed) model suface pressure

and CAM-SE (spectral element) model =
are built on the cubed-sphere. This ooN ) ) YN
leads to an enhancement of the k=4 : %9
wave mode. The use of high-order

308 —:
numerics in CAM-SE is more effective 60s _W

at repressing this mode. %08 F———F————T——T——

0 60E 120E 180 120W 60W

GFDL FV3
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Numerical Methods: Issues

-

Both the ICON model CSU model are
built on an icosahedral grid (results
from 2008 workshop). This leads to
an enhancement of the k=5 wave
mode.

~
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Numerical Methods: Issues

-

CAM-EUL (Eulerian) and CAM-SE (spectral
element) use spectral methods, which are
known to be prone to spectral ringing. This
ringing is characterized by rapid oscillations due
to enhancement of the high-frequency mode.

~
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Numerical Methods: Staggering

/ \ u, v, N v, n
H ' lk ’U,V,n

Unstaggered (Arakawa A-grid) finite-difference L

and finite-volume methods are known to A-grid

support artificially support high-frequency el oo qu v,
modes. Additional diffusion is typically required

to eliminate high-frequency imprinting. pds v lmvn uvn

i i+l

N J

Summary: When it comes to designing
discretizations, there’s no free lunch!
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Parallel Performance

e ~\ CAM Performance by Dynamics Model
Methods which make the B e
most use of local data will > 0 ¥
perform better on massively ~ 60 i
parallel computers (compact § I
schemes). Conversely, ; 40 i
methods which make use of e :
global data (spectral E 20 - :
transform) tend to perform n i
more poorly in parallel. 0 - — e

10 100 1000 10000

- / Number of Processors

10-day adiabatic runs with 1 tracer on Cray
machine Jaguar XT4 (#4). The resolution
is ~ 1 degree in the horizontal with 26
vertical levels. Source: Art Mirin (LLNL)
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The Atmospheric Equations

Du wvtang ww

1 Op . 2
_ = _ 20 — 21} V
D . + . prcosgb@A+ v sin ¢ wcos ¢ +vVu
Dv  w?tan¢ ow 1 Op
— — = ——— — 2Q0usi V2
Dt—l_ T i r pr 0¢ using +vv=
D 2 2 10
le_u j:v :_;8—];_ + 2Qu cos ¢ + vV3w
Dp
7 g A
Material derivative:
DT 1Dp_J
= pR,T Dt ot
. J
Dag;
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Advection of a Tracer

We are interested in solving the advection equation:

Dq o
— =0 — +u-Vg=0
Dt ot !
For now, we only consider 1D: [q represents the mixing
P P ratio of a certain tracer
q y q 0 species.
| —
ot Ox - y,
4
( Temporal A Spatial
component component
(next lecture) (this lecture)
- Y, - Y,
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Advection of a Tracer

-

Lagrangian Frame \

Dq 0q
D7 8t+u Vqg=20

- J

Eulerian Frame

What does this mean?

e

| [ Tracer mixing ratio is constant ]

following a fluid parcel.
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Advection of a Tracer

~

Lagrangian Frame

Dq 0q
D 8t+u Vg =20

- J

Eulerian Frame

What does this mean?

4 )

Local change in mixing ratio
is determined by “rate of
change” of g in the

q q upstream wind direction.

\_ J
SRR
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Basic Finite Differences

q;+1 Jj+2

dj-1 q;
-

Data is known
pointwise
(DISCRETE)
\ ~ o " 1D Advection Equation
Eulerian Frame
How do we understand the
[CONTINUOUS behavior of q? J 8q Y 8q — 0
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Basic Finite Differences

Consider some arbitrary values associated with q at each
point. Grid points are distance Ax apart.

qJj-2 gj+1
@)
’ dj-1 % dj+2
O | O
©
Jj—2 j—-1 J j+1 j+2
>
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Basic Finite Differences

 The simplest approximation to the continuous field is
obtained by connecting nodal points by straight lines.

qJj-2 gj+1
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Basic Finite Differences

*  We need first derivatives in space
to approximate the advection
equation

/1 D Advection Equatio

Eulerian Frame

~

n

Jj—-2 j—-1 J j+1 j+2
<« >
Ax
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Basic Finite Differences

4 N\ )

“Left” Derivative “Right” Derivative

99\ _ 4 —3gi 9q +:qj’+1_Qj
ox | . Ax ox | . Az
J J Yy,

;-2 gj+1

Jj—2 j—-1 J j+1 j+2
>
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Basic Finite Differences

A more accurate approximation can be made by fitting a
parabola through three neighboring points.

Qi1 —2¢;+ g1\ (@ —x5)° | (qiy1— g1
q(x):<]+ J J )( 2]) _|_(J-|- J )(ZIZ—SEj)-I—Qj

Ax? 2Ax
qj+1
( “Central” Derivative )
0 gj+2
@ _ 4+1 — 951
oz ) . 2Ax ; ©
— —
Jj—2 j—-1 j j+1 j+2
< ->
AQZ The “central” derivative is just the average

of the “left” and “right” derivatives.
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Basic Finite Differences /5 i ecton Equation

Eulerian Frame
The previously mentioned discrete

derivatives then lead to two discrete 8q 8q .
o . — 4+ u— =20

approximations of the advection Ot O
equation. N J
Oa.: .

& — —uj qj q] 1 Upwind Scheme

ot Ax

0q; o [ DL~ 951

—~, — — Wy Central Scheme

ot J 201
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1D Wave Equation

A bit more complicated (two coupled equations):

Oh ou ou ] oh
ot r ot 7 ox

Used to model small amplitude gravity waves in a shallow ocean
basin.

=0

h
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1D Linear Wave Equation

Assume h and u are both stored at the same points (Arakawa A-grid)

o U1 @ u, @

u ! ) | j+2 :

v @ e u @ i
e. ; ; : ;

| | | | | | | | | |

h, @ h.

-2 () j+1 . h; @
: . i i .

| | | | | | | | | |

Jj—-2 j—-1 J j+1 j+2
<« >
Ax
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1D Linear Wave Equation

Again using the central difference approximation we derived
earlier, the wave equation takes the following discrete form:

6hj Ui+l — Uj—1
ot 2Ax
8Uj hj_|_1 — hj—l

ot J 2Ax =0

=0
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1D Linear Wave Equation

Other arrangements of h and u nodes are possible (Arakawa C-grid)

Uz, @ Hi2 . U1 @ Ha2 . Hisi2 .
J- ! i i E E
—>
. @ N
hJ-2 th . hj ® i1 . hj+2 .
-2 j-1 J i+1 j+2
>
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1D Linear Wave Equation

With staggered velocities, we can tighten the
discretization:

Oh; pplit1/z —Ui-1/2 0

ot Ax N

Oujy1/2 ghj+1 — h;

| — O
ot Ax

This choice tends to greatly improve errors
associated with the discretization.

Paul Ullrich ATM 265: Lecture 03 April 8, 2019 31




Arakawa Grid Types (2D)

u, v, 7 v, N mn n
CAM-SE | ! i 1w P pgha] u, v I
A-grid ] M
NICAM w v, n u, v, T v n ) N n
i® o oWV, M ¢ ® ®
% v ll., v
j-l.u’ v, N ‘l.l, v, T .ll, v, 1 .T] ‘T] ® n
i-1 A i i+1 <T
mn u n u n v v
® C @ d @ <> oM @ @ @ . on
-gri
WRF ve E ..... T A ¢ D-grid 4 u Lu [ CAM-FV ]
SlF UBDL W LEDL R 4 ¢l 3 o1 J gn
| Y :l--—--‘-,-.- ..... _: .v .u l.l- .ll
oo P 'u o Pl 1 o o8 n
A A

Image: http://trac.mcs.anl.gov/projects/parvis/wiki/Discretizations
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Finite Difference Methods

* Finite-difference methods are easy to implement, and
consequently are typically fast.

 These methods are very easy to implement implicitly
or semi-implicitly (to avoid issues with fast wave).

* One needs to be careful to ensure conservation (not
guaranteed by the finite-difference method) and avoid
spurious wave solutions.
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Finite Volume Methods

* Scalar variables (density, energy, tracers) are stored as
element-averaged values (conservation)

* Velocities can be stored as pointwise values or as
element-averaged momentum.

[ CAM-FV '
hPa surface pressure
90N p 1 1 1 1 I
; i I%
60N - — 60N —
- 22 B
30N - = é— 30N - é

GFDL FV3

0 L o
308 L 305
60S -w- 60S —W %&
8908 +——T——T——T——T—— T 985 T
0 60E 120E 180 120W 60W 1 20E 1 80 1 20W 60W
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Conservative Shallow Water Eqn’s

Oh

> V:(hu) =0

Oh

(‘%u V- (hu®u+ 2gh®) =S

h Fluid height
u Fluid velocity vector
p Fluid pressure
S Source terms (geometry, Coriolis, topography)
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Finite Volume Methods

Given conservation law

oq 1
A, v.F=8
o 7V

Integrate over an element Z with boundary (2 and apply
Gauss divergence theorem. This gives

Ja
= + f F.-nds = ] SdV
Ut o2 Z
- - > Hﬂ
Time evolution of Flux through Element-averaged
element-averaged state element boundary source term
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Sub-Grid Scale Reconstruction

e Scalar variables (density, energy, tracers) are stored as
element-averaged values.

* Neighboring values are needed to build a sub-grid-
scale reconstruction.

Example: Surface
temperature data

—
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Sub-Grid Scale Reconstruction

State variables (density, energy, tracers) are stored as
element-averaged values.

* Neighboring values are needed to build a sub-grid-
scale reconstruction.

*
i—2 j—1 i j+1 j+2
Paul Ullrich
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Sub-Grid Scale Reconstruction

* Alinear profile: ¢i(z) = qb +(g¢) (x — ;)
J

* Anapproximation to the slope in element j can be
obtained by differencing neighboring elements.
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Sub-Grid Scale Reconstruction

When applied to all elements, our sub-grid scale
reconstruction captures features which are not apparent at

the grid scale.
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Sub-Grid Scale Reconstruction

A reconstructed cubic
polynomial through an 2D Stencil
element and its four
nearest neighbors
provides very accurate
sub-grid accuracy.

In higher dimensions
the reconstruction
stencil incorporates
neighboring elements
in both directions.
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Sub-Grid Scale Reconstruction

Using polynomials information on the sub-grid-scale
(continuous) behavior of each state variable is recovered.

40

38

=36

34

32

30

28

26

24

- T T T T
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Solving for Fluxes

Since the sub-grid reconstruction can be discontinuous at cell
interfaces (we have a left value q; and right value (), we have
several options for computing the flux (Riemann solver).

qr if z <0,

qr if x > 0.
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Finite Volume Methods

With appropriately defined fluxes, finite-volume
methods do not generally suffer from “spectral

ringing” and generally only realize physically attainable
states (diffusive errors are dominant)

* Finite-volume methods can be easily made to satisfy
monotonicity and positivity constraints (i.e. to avoid
negative tracer densities)

* These methods are generally very robust, and are
heavily used in other fields.
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2D Shallow Water Equations

Continuous Equations (Flux Form) Semi-Discrete Equations
Oh _ U oV Ohi ;
ot dxr dy ot
S =~ 5 (U /b gh?2) — + S (UV/R) Wi _,
o =~ UV/b) = 5L (V?/h-+ g2 L = F,
Flux terms F}, = —UiH’jz;fi_l’j — m’j+12;f’j_l,
F“:_Qi [Uiy13/ v + ghiya 5/2 = Uil j/hica g — ghiy 5/2]
— ﬁ Ui j+1Vig+1/hij+1 — Ui j—1Vij—1/hij-1],
F, = 22 [Uit1,5Vit1,5/hiv1,5 — Uiz1,5Vie1,5/hi—1,5]
1

" 5au | Vigar/higer + ghij11/2 = Vi 1 /hij1 = ghi; /2]
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CAM-EUL
ECMWF
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Linear Harmonics

©
S
=

Instead of writing state

variables as pointwise 2 /\/\/ p2()

qguantities, we can instead
write the continuous field as a 3 /\/\/\/
linear combination of modes: 3()
N XaVAVAVAVET
S, t) =Y ar(t)pr(x) .
=1 AVAVAVAVAVALS
AVAVAVAVAVAVE-IC)

4 Linear Harmonics: Orthogonality h

P
Wi (z) = exp(ikz) /8 wkwndS:{ (2)” if;’; #Z )
\_
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Spherical Harmonics

On the sphere there is a natural basis of modes
known as spherical harmonics.

(=0 cos(m@) P;"(cos )

| " | 2R | 4
v @ @

mﬁO m=1 m=2 m=3

Spherical Harmonics: Orthogonality
| Iym, k=land m=n
/S(’De’mspk’”ds B { 0, k#+/lorm#n
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Spectral Methods: Advection

4 . c )
Expand g in terms of basis functions: 1D Advection Equation
N dq C 0q 0
| —
q(z,t) = > an(t)en () ot Ox
—1 - /
Substitute into the 1D advection equation:
dt " " Ox
n=1 n=1
Multiply by @k and integrate over domain :
N N
dCLn awn
- dr = —u a d
3G [t u o [ G
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Spectral Methods: Advection

Use orthogonality. For a linear differential equation, this leads to an
exact separation of wave modes:

da,,

dt
Observe for exact time integration:
Gy = Gy 0 €xp(—inut) Advection at
speed u
And so q(x.,t) is computed exactly!
N N \l
q(x,t) = Z Ap Py = Z an,0 exp(in(x — ut))
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Energy Spectrum

Wavelength (km)

108 102 10'
108 T Decay of energy
F \ . k3 ——— Lindborg (1999), eqn 71 .
O\ AW 700-200 m avg with wavenumber
8 R —— rotational component
106 L ’ = (ivergent component
F = (eformational component
o N
mé 104 R
m L]
4 Upward tick of N
102} \ energy spectrum
‘ 24 h forecast valid 0 UTC 5 June 2005 lmplles w.eak
F 2005 spring forecast exp. domain accumulatlon of
100 Ld gl i Laaaal PR B\ TR
10° 10% 10 109 energy at smallest
Wavenumber (radians m-1)

Wavenumber is proportional to the
inverse wavelength. Hence, larger
wavenumbers = shorter waves.

Paul Ullrich
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Source: WRF Decomposed Spectra Spring
Experiment 2005 Forecast. Courtesy of Bill
Skamarock.
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Non-Linear Equations

Non-linear differential equations, such as the ones that govern
atmospheric motions include products of state variables with

themselves:
Wavelength (km)

108 102 10’

108 g

Lindborg (1999), egn 71

ARW 700-200 mb avg E |
- [otational component E
= (ivergent component
= (eformational component 3

~.
S k-5f3

\\

-

-
£
=

104
Non-linearity! ]

... causes mixing :
between wavenumbers! | 5000 e oenst . o

100 L A i gl i A g gl 1 P T
106 10° 104 103

Wavenumber (radians m-1)

>
~~
E(k) (m3/s2)
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Spectral Methods

* The spatial component of the spectral transform method is
“perfect” for linear differential equations. Errors are only
introduced by the temporal discretization.

* In practice, the spectral transform method is not used for tracer
advection since it is difficult to maintain monotonicity and
positivity.

a
* Errors typically emerge as ::: £
“spectral ringing.” '

30 . cz==

60S
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Spectral Methods

* Non-linear mixing can cause an accumulation of energy at the
smallest grid scales, so additional diffusion is typically needed to
remove energy here.

* The spectral transform method requires global communication to
accurately handle non-linear terms. This tends to hurt the parallel
performance of this method.

BON =

30N — “55

308 ..

60S
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Finite Element Methods

* Finite element methods take the benefits of the spectral transform
method with the locality principal of finite-volume methods.

e (Can be thought of as spectral transform “in an element”

[ Basis functions ]

of element j of element j+1

3
3

[Basis functions]

AVAVAVAVAV AVAVAVAVAV,

|
|

S

S
-+
[
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Spectral Element Method

A nth order finite element
method requires n? basis
functions within each element
(dimension d).

* To construct basis functions,
use GLL nodes within a 2D
element.

p . * Fit polynomials so that each
Fourth order GLL nodes basis function is 1 at one node

and 0 at all other nodes.

Image: http://trac.mcs.anl.gov/projects/parvis/wiki/Discretizations
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Finite Element Method

Expand g in terms of basis functions within an element:

a(x,t) = ) an(t)in(@)

[ Element | ]
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Finite Element Methods

Note that the use of GLL nodes means that there is an implicit
discrete integration rule:

/ ¢(z,t)dr =~ wip;1 + wad;2 + W3d;3 + Wadj 4
S

®i1 ®j2 ®;,3 Pj4
——©@ ——

[ Element | ]
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Finite Element Methods ( 1b conservation Eqn

dqg O

Expand g in terms of basis functions | F(q) =0
within an element: \at ox y

N
— Z an(t)wn(x)
n=1
Substitute into the 1D conservation equation:

Y da
o U __F (Z aWn)

Multiply by wk and integrate over an element:

dan/ by de = — /Sa—F@kdfC

J

n=1
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~

Finite Element Methods " 1D Conservation Eq'n
dg 0
Apply integration by parts: at | axF(Q) =
- Y,

i,
F d
5S. +/3 @) dx *

] J

Time evolution Flux through Internal
of coefficients edges exchange

With mass matrix: My, = / VY dx
S
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Finite Element Methods

N
da,, — dw
> M= @G|+ [Pt
To evaluate internal exchange term, Internal
use integration property on interior: exchange

/ ¢(z,t)dr =~ wig;1 + Wadj2 + W3d;3 + Wadj 4
S

a 1D Conservation Eq’n A
dqg O
| F(g) =0
ot Oz (9)
- /
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Finite Element Methods

N N

i Mo = —F @0+ A RICF

n=1
Flux through
edges

e Spectral Element method: Enforce continuity at element
boundaries. Flux function is simple function evaluation.

e Discontinuous Galerkin method: Discontinuous at element
edges. A Riemann solver must be applied to evaluate flux here.
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Finite Element Methods

Q: How does Spectral Element method enforce continuity?

A: Easy! Evolve nodal values in both elements. Then take average:

St = gl i1 T @5 14
g1 = @j-14= 5
Pj.1 P2 ?;.3 P4
—Q—@ —@—
= Qj_1.4 [ Element | ] = Qjt+1.1
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Equivalence with Finite Difference

The spectral element method can be e ) )
interpreted as a finite difference scheme. 1D Advection Equation
aq ’ dq 0
| —
“Spectral” Derivative A \ (7 t 333 y

Paul Ullrich
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