Atmospheric Waves Chapter 6

Paul A. Ullrich

paullrich@ucdavis.edu

Part 1: Wave-like Motion

Atmospheric Waves

The equations of motion contain many forms of wavelike solutions, true for the atmosphere and ocean. Waves are important since they **transport energy** and **mix the air** (especially when breaking).

Some are of interest depending on the problem: Rossby waves, internal gravity (buoyancy) waves, inertial waves, inertial-gravity waves, topographic waves, shallow water gravity waves.

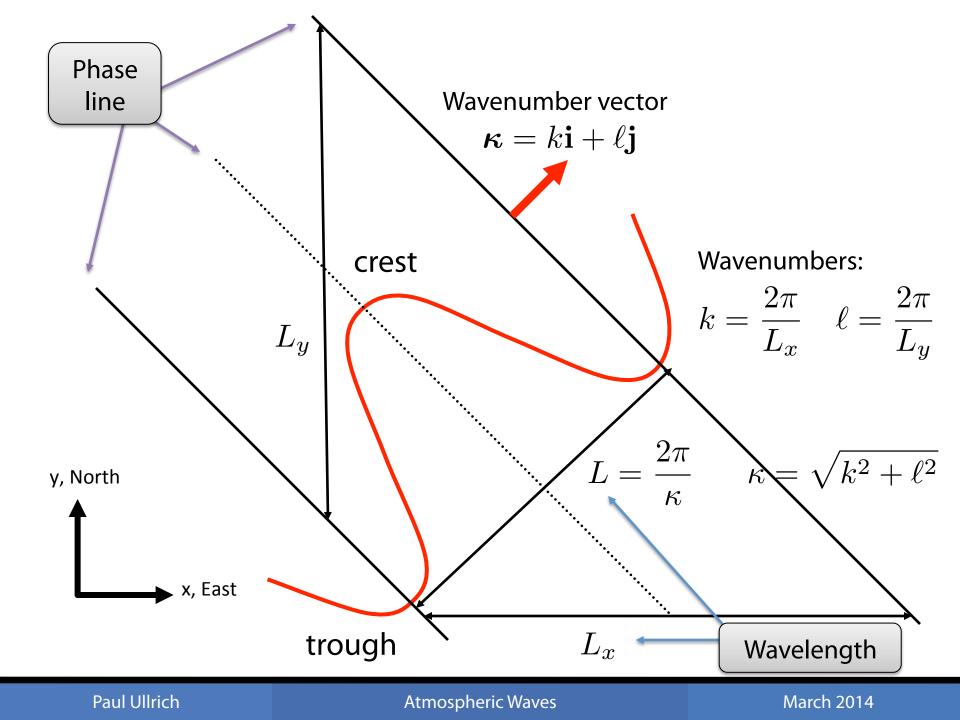
Some are not of interest to meteorologists, for instance sound waves.

Atmospheric Waves

Large-scale mid-latitudinal waves (**Rossby waves**) are critical for weather forecasting and transport (see Atmospheric Waves).

Large-scale waves in the tropics (Kelvin waves, mixed Rossby-gravity waves) are also important, but of very different character.

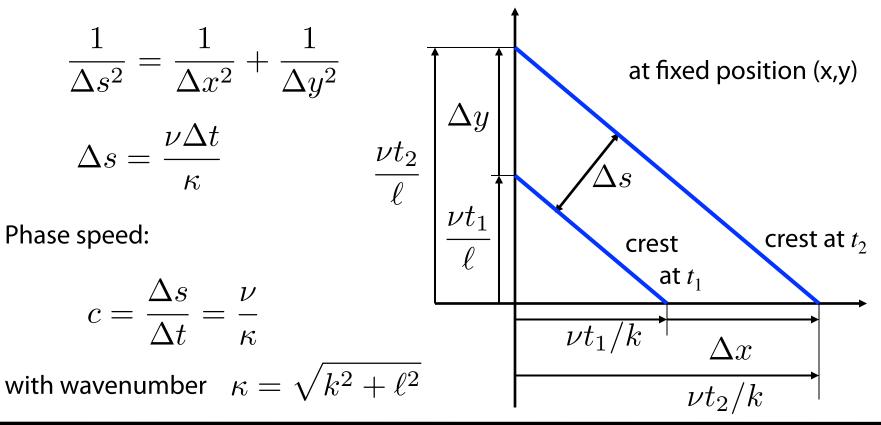
Waves can be unstable. That is they start to grow, rather than just bounce back and forth.


Atmospheric Waves

Atmospheric Wave Example

Paul Ullrich

Waves in 2D


Wavelengths:
$$L_x = \frac{2\pi}{k}$$
 $L_y = \frac{2\pi}{\ell}$
From geometric considerations: $\frac{1}{L^2} = \frac{1}{L_x^2} + \frac{1}{L_y^2} = \frac{k^2 + \ell^2}{4\pi^2}$
 $\boxed{L = \frac{2\pi}{\kappa} \quad \kappa = \sqrt{k^2 + \ell^2}}$
Wavenumber vector: $\kappa = k\mathbf{i} + \ell \mathbf{j}$
Constant phase lines: $kx + \ell y = \mathbf{k} \cdot \mathbf{r}$
Vector position: $\mathbf{r} = x\mathbf{i} + y\mathbf{j}$ \mathbf{j} \mathbf{i}

Paul Ullrich

2D Traveling Waves

Wave frequency: $\nu = \frac{2\pi}{T}$ with *T* wave period

Geometric considerations provide:

Paul Ullrich

2D Traveling Waves

The crests are translated over a distance:

$$\Delta x = \frac{\nu t_2}{k} - \frac{\nu t_1}{k} = \frac{\nu \Delta t}{k}$$

Propagation speed of the wave:

$$c_x = \frac{\Delta x}{\Delta t} = \frac{\nu}{k}$$
$$c_y = \frac{\Delta y}{\Delta t} = \frac{\nu}{\ell}$$

in x-direction

in y-direction

Propagation speed of the crest line: phase speed

$$c = \frac{\Delta s}{\Delta t} = \frac{\nu}{\kappa}$$

direction is parallel to wavenumber vector κ

Phase speed c is less than either c_x or c_y

Paul Ullrich

Atmospheric Waves

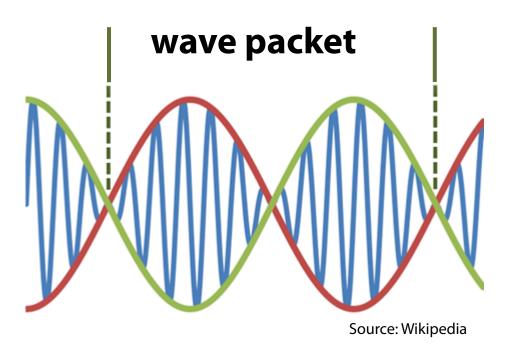
Dispersion Relationship

If the frequency v is a function of the wavenumber components, so is the phase speed:

$$c(k,\ell) = \frac{\nu(k,\ell)}{\sqrt{k^2 + \ell^2}}$$

Physically, this implies that various waves of a composite signal will all travel at different speeds.

As a result, there is distortion of the signal over time.


This phenomenon is called **wave dispersion**.

Definition: The dispersion relationship is then defined by $\ \nu(k,\ell)$

Wave Envelope

In general, a wave pattern consists of a series of superimposed waves, leading to destructive and constructive interference.

Therefore: Energy distribution is a property of a set of waves rather than a single wave.

Atmospheric Waves

Wave Envelope

A wave pattern is a succession of wave packets.

Within each packet (here 1D), the wave propagates at the phase speed $c = \frac{\nu}{k}$

While the packet or envelope (and therefore the energy) travels at the **group velocity** (here in 1D)

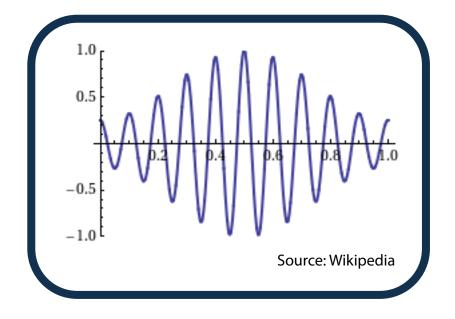
Definition: The **group velocity** of a system is defined as

The **group velocity vector** (in 2D) is defined as

Components of group velocity vector:

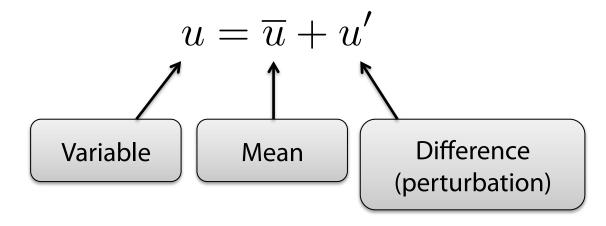
$$_{gx} = rac{\partial
u}{\partial k} \quad c_{gy} = rac{\partial
u}{\partial \ell}$$

 $c_g =$


 $\mathbf{c}_q \equiv \nabla_{\mathbf{k}} \nu$

 \mathcal{C}

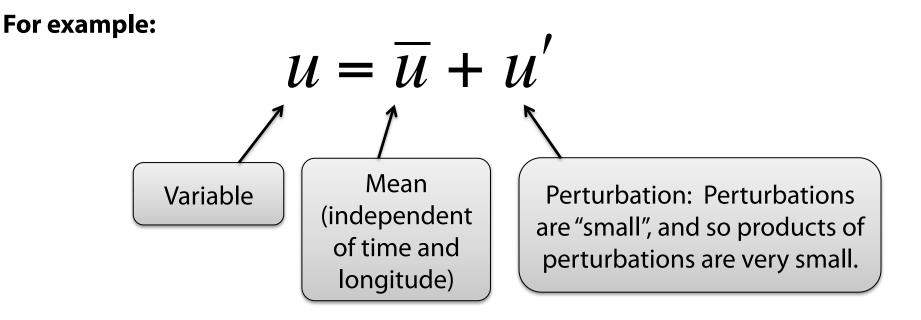
Group Velocity


 \sim $\sim\sim$

Source: Wikipedia

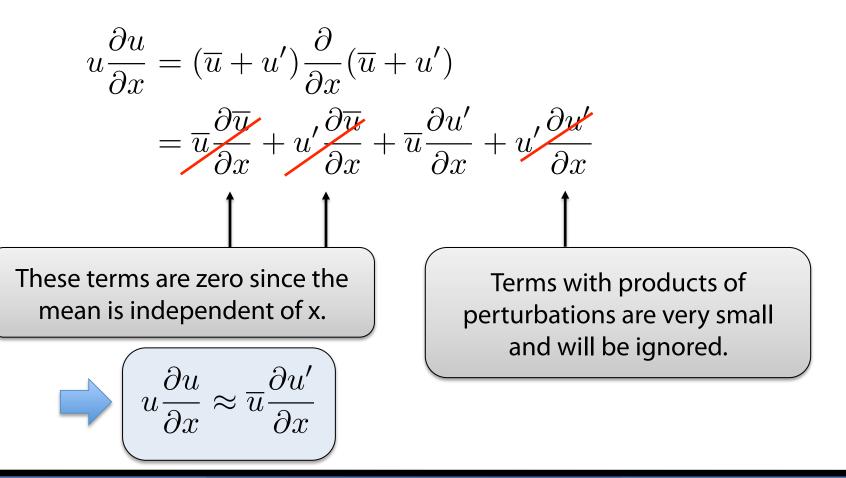
Linear Perturbation Theory

Assume that each variable is equal to the mean state plus a perturbation from that mean:



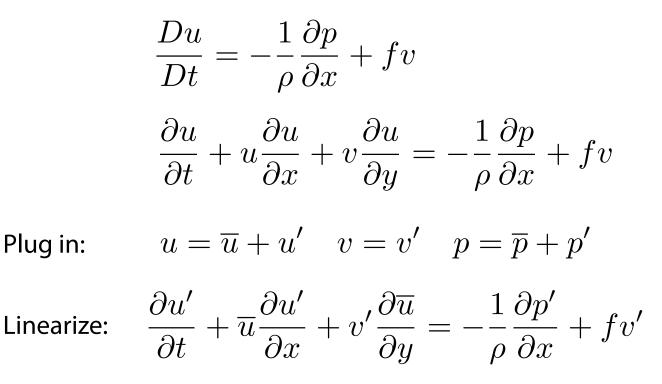
This is a very general approach, and can always be done.

Linear Perturbation Theory


Impose assumptions and constraints on the mean and perturbations

Assumptions need to be physically sensible and justified

Linear Perturbation Theory


With these assumptions **non-linear terms** (like the one below) become **linear**:

Linearization

Assume that the mean state satisfies the equations of motion

For example: u-momentum equation becomes (here with constant density, frictionless):

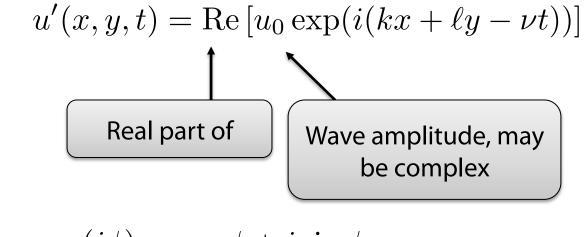
1D Wave Solutions

Assume we have derived a set of linearized equations with constant coefficients.

Look for simple wave-like solutions:

$$u'(x,t) = u_0 \cos(kx - \nu t)$$
 with $k = \frac{2\pi}{L_x}$ $\nu = \frac{2\pi}{T}$

However, this form of the wave fixes the "phase" over the wave. That is at x=0 and t=0 all solutions must have $u' = u_0$.


More general solution: Use complex numbers

$$\fbox{i=\sqrt{-1}}$$

$$u'(x,t) = \operatorname{Re} [u_0 \exp(ikx - i\nu t)]$$
 $u_0 = \operatorname{Re}(u_0) + i\operatorname{Im}(u_0)$

2D Wave Solutions

2D waves that propagate horizontally in the x and y direction with constant wave amplitude u_0

Recall:

$$\exp(i\phi) = \cos\phi + i\sin\phi$$

$$\operatorname{Re}\left[u_0 \exp(i\phi)\right] = \operatorname{Re}(u_0) \cos\phi - \operatorname{Im}(u_0) \sin\phi$$

Note: Only the real part Re[] has physical meaning!

3D Wave Solutions

In 3D search for general wave solutions of the form:

$$u'(x, y, z, t) = \operatorname{Re} \left[u_0 \exp(i(kx + \ell y + mz - \nu t)) \right]$$

Wave amplitude, may
be complex

Such a wave propagates in all three dimensions.

Alternatively: Horizontally propagating waves with varying amplitude $u_0(z)$ in the vertical direction:

$$u'(x, y, z, t) = \operatorname{Re}\left[u_0(z)\exp(i(kx + \ell y - \nu t))\right]$$