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Part 5: Quasi-Geostrophic 
Potential Vorticity 



QG Geopotential Tendency Eq’n (Adiabatic) 

QG Geopotential Tendency 
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Only the initial distribution of Φ needs to be known! 
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QG Potential Vorticity 
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Observe that by chain rule the last term expands as: 

Starting from here: 
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Look closely at 
this term 



QG Potential Vorticity 
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Use thermal wind relationship (vector form): 
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QG Potential Vorticity 
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QG Potential Vorticity 
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Definition:  The quasi-geostrophic potential 
vorticity is defined as 
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QG Potential Vorticity Equation 

q is conserved following 
geostrophic motion. 
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Quasi-Geostrophic PV 

PV Comparison 
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Knowing PV is powerful:  By using inversion of the 
PV, one can determine Φ, and therefore ug and T can 
be deduced (with given boundary conditions). 
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QG Potential Vorticity 
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Absolute vorticity Vertical stretching 
(change in thickness 

with height) 



Definition:  In a barotropic fluid density 
depends only on pressure.  

Definition:  In a baroclinic fluid density 
depends on pressure and temperature.  

By the ideal gas law, this implies that 
surfaces of constant density are surfaces 
of constant pressure are surfaces of 
constant temperature. 

Barotropic / Baroclinic 
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Barotropic atmosphere: 
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Barotropic / Baroclinic 

Baroclinic atmosphere: 

A baroclinic fluid has 
energy that can be 
converted into motion. 
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Barotropic atmosphere: 
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Barotropic / Baroclinic 

Baroclinic atmosphere: 

In particular, diabatic 
heating drives the 
development of 
temperature gradients. 
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z	


Paul Ullrich Quasi-Geostrophic Theory March 2014 



QG Omega Equation 

! ⌘ Dp

Dt
Recall:  Definition of vertical pressure velocity 

Question: Can we use the QG system to 
understand vertical motion?  Stretching / 
vorticity generation?  Clouds / precipitation? 
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are independent variables, form a complete set if  
heating rate J is known 
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QG Equations 
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Step 1: Apply the horizontal Laplacian operator to 
the QG thermodynamic equation 

QG Omega Equation 
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Step 2:  Differentiate the geopotential height 
tendency equation with respect to pressure 

QG Omega Equation 
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Step 3:  Subtract the equations obtained from Step 1 
and 2 to eliminate 	


QG Omega Equation 
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Step 4:  Expand terms on right-hand-side using 
chain rule, observing that 2 of the 4 terms cancel:	


QG Omega Equation 
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Adiabatic (J = 0) 

Quasi-Geostrophic Omega Equation 



QG Omega Equation 
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Quasi-Geostrophic Omega Equation 

Generation of vertical velocity is 
governed by advection of absolute 
vorticity by the thermal wind. 



QG Omega 
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Although small, vertical velocity is in many 
ways the key to weather and climate.  It’s 
important to waves growing and decaying.  
It governs how far the atmosphere is away 
from “balance.”   



QG Omega Equation 
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Quasi-Geostrophic Omega Equation 

For large scale atmospheric 
waves, this term is 

essentially a negative sign. 
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Upward (downward) motion is forced if RHS of 
omega equation is positive (negative). 



QG Omega Equation 
The sign of w is proportional to the advection 
of absolute vorticity by the thermal wind 
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Baroclinic Instability 
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Due to westward tilt of system with height, isotherms 
are offset westward of geopotential contours. 



Baroclinic Instability 
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Thermal wind vectors 



Baroclinic Instability 
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Since thermal wind is 
purely eastward, for short 

waves only the zonal 
derivative of ζ is important 

dζ/dx<0 dζ/dx>0 



Baroclinic Instability 
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Eastward advection of 
relative vorticity by the 

thermal wind. 

dζ/dx<0 dζ/dx>0 

- uT × dζ/dx > 0 - uT × dζ/dx < 0 



Baroclinic Instability 
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Rising (sinking) motion 
appears to the east (west) 

of the low. 

- uT × dζ/dx > 0 - uT × dζ/dx < 0 

w > 0 
(rising motion) 

w < 0 
(sinking motion) 


