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Part 4: The Geopotential
Tendency Equation




Vorticity & Geopotential
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QG Geopotential Tendency

Starting from here:
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QG Geopotential Tendency

4 )
Definition: The geopotential tendency of a L)

flow is the Eulerian rate of change in
geopotential with respect to time.
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QG Geopotential Tendency
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Only unknowns are @ and w J
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The previous equation for geopotential
tendency used these three equations.
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For barotropic systems (w=0) this leads to a closed
prognostic equation for geopotential.
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QG Geopotential Tendency
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However, for baroclinic systems (horizontal temperature / density
gradients), all four equations must be used.
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QG Geopotential Tendency

[ Replace this term J
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QG Geopotential Tendency
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QG Geopotential Tendency

Geopotential tendency equation from before:
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From QG thermodynamic equation:
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[ Different sign! J

Adding these two equations will eliminate the omega term.
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QG Geopotential Tendency

[ QG Geopotential Tendency Eq'n (Adiabatic) } N
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Local Proportional to Proportional to
geopotential absolute vorticity (differential) thickness
tendency advection (temperature) advection

( Only the initial distribution of ® needs to be known! ]
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QG Geopotential Tendency

For wave-like flows, second derivatives of y are
proportional to -x.

Forexample, X = SInX :> gX _ —sinx = —x
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QG Equations

( Question: What's the point? J

We want to describe the evolution of two key
features of the atmosphere:

* Large-scale waves (in particular, the connection between large-
scale waves and geopotential)

« Midlatitude cyclones (that is, the development of low pressure
systems in the lower troposphere)
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QG Geopotential Tendency

Let’s look at the absolute vorticity advection term
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Paul Ullrich Quasi-Geostrophic Theory March 2014



An Upper Tropospheric Wave

Short W
ortraves C < (); anticyclonic

Advectlon of C > 0 Advection of C < O

By — AD Ad77f<0 B Advect|<<f>0
\ Short waves: Short waves: /
®o + AD Advection of C is Advectlon of Cis
\ dominant here. dominant here.
[ AP > 0 AKAdvectlon of n > O./ kAdvectlon of n < O’/C
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An Upper Tropospheric Wave

Short Waves
Advection of C >0 Advection of C <0 }
By — AD Advection of f< 0 B Advection of f> 0
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An Upper Tropospheric Wave
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An Upper Tropospheric Wave

[ Advection of C >0 H Advection of C <0 }
By — AD Advection of f< 0 B Advection of f> 0

G !/// @ A\ G

4 )
Long waves: Long waves:
Advection of fis Advection of fis |,
dominant here. dominant here.
Advection of 1 < 0. Advection of 1 > 0.
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An Upper Tropospheric Wave

t_, < (); anticyclonic

-> Short waves, advection of relative vorticity is larger >
Dy — AD B
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QG Equations

( Question: What's the point? J

We want to describe the evolution of two key
features of the atmosphere:

« Large-scale waves (in particular, the connection between large-
scale waves and geopotential)

* Midlatitude cyclones (that is, the development of low pressure
systems in the lower troposphere)
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QG Geopotential Tendency

Let’s look at the differential temperature advection:

[ Differential }

00 . 0 90\ ~ 0
X =5 = % {—ug-V(—a—f)} R gp(—ug - VT)
)

[ | J ‘
Thickness Temperature
advection advection

Question: Why is thickness advection proportional
to temperature advection?
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QG Geopotential Tendency
Differential temperature advection:
X = %—f ~ a% [—ug -V (—g—i)} ~ a%(_ug -VT)

~ 0
mp x~ g5 (-ug - VT)
Differential temperature advection below 500 hPa:

+ (builds a ridge, increasing geopotential) in case
of decreasing warm air advection with height

— (deepens a trough, decreasing geopotential) in case
of decreasing cold air advection with height
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Warm Fronts

* ... are broader in shape than cold fronts
* ... tend to move more slowly than cold fronts
* ... have precipitation spread out over a larger distance

Figure 9.6 in The Atmosphere, 8th edition, Lutgens and Tarbuck, 8th edition, 2001.

Paul Ullrich Quasi-Geostrophic Theory March 2014



Cold Fronts

e ...arevertically steep
... tend to travel faster than warm fronts
... areassociated with strong storms at boundary

'éymu onimbus (Cb

“

Figure 9.6 in The Atmosphere, 8th edition, Lutgens and Tarbuck, 8th edition, 2001.
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Extratropical Cyclones

Extratropical Cylones are
important for driving
weather in the mid-
latitudes. They are
closely related to
weather fronts.

Particularly strong
extratropical systems are
responsible for large-
scale storm systems.

Figure: Extratropical Cyclones are associated with
severe winter storm systems, and are particularly
relevant for the US Northwest and Northern Europe.

CCWAS: Lecture 05 October 16, 2013
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Atmospheric Wave Motion
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Real Baroclinic Disturbances

850 hPa Temperature and Geopotential Thickness
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Norwegian Cyclone Model

The wave becomes a mature low pressure system, while the cold front,
moving faster than the warm front, "catches up" with the warm front. As the
cold front overtakes the warm front, an occluded front forms.

Overhead view

http://www.srh.weather.gov/jetstream/synoptic/cyclone.htm
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QG Geopotential Tendency

: : 0
Thickness advection o —=— [~y - VT

Vorticity advection X —Ugq - \% (Cg T f)

4 )

We see that:

» Geostrophic advection of geostrophic
vorticity causes waves to propagate

* The vertical difference in temperature
(thickness) advection causes waves to
amplify

- /
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Baroclinic Instability

Upper troposphere and surface
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Baroclinic Instability

Upper troposphere and surface
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Baroclinic Instability

Upper troposphere and surface

Q L Vorticity
O,
0 %, e e o
5 ge | B, Uouh S e L advection

Upper-Level Chart

[ Thickness advection }

sl

i Wintep Clouds
Warmer air snow-e thicken
Cod| o e oue®
air 0@ L W Precipitation
, O © e
Milky Clear & oW Falling
skies skies e pressure
< Rising press" I/
4

/

S dS"O /‘
Surface Map Clou

Cold Warm

© 2005 Thomson - Brooks/Cole

Paul Ullrich Quasi-Geostrophic Theory March 2014



Baroclinic Instability

Upper troposphere and surface
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