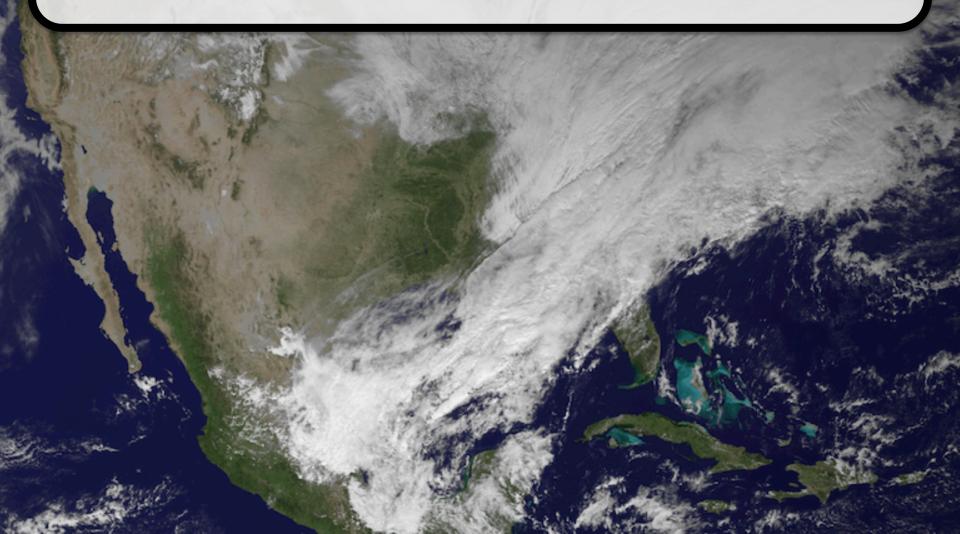
Quasi-Geostrophic Theory Chapter 5

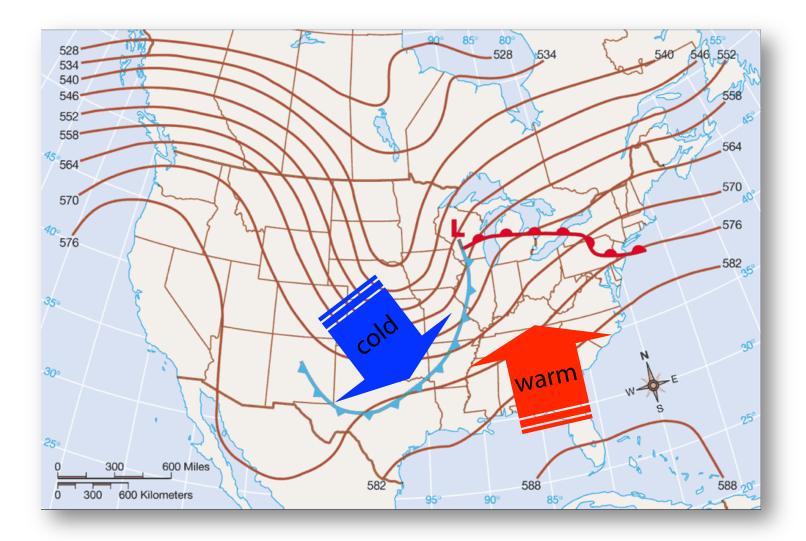
Paul A. Ullrich

paullrich@ucdavis.edu

Part 3: Synoptic Scale Waves



Atmospheric Wave Motion



Paul Ullrich

Quasi-Geostrophic Theory

QG Equations

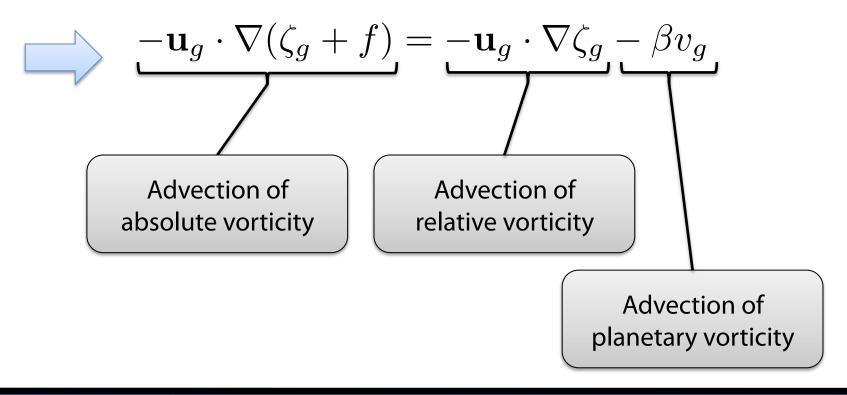
Question: What's the point?

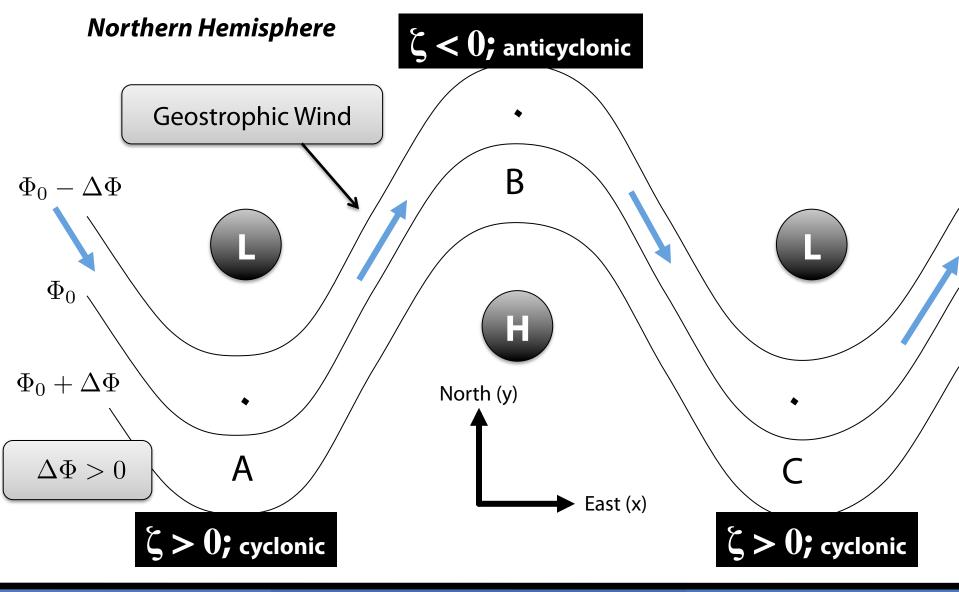
We want to describe the evolution of two key features of the atmosphere:

- Large-scale waves (in particular, the connection between largescale waves and geopotential)
- **Midlatitude cyclones** (that is, the development of low pressure systems in the lower troposphere)

QG Vorticity Equation
$$\frac{\partial \zeta_g}{\partial t} = f_0 \frac{\partial \omega}{\partial p} - \mathbf{u}_g \cdot \nabla(\zeta_g + f)$$

Consider only the last term

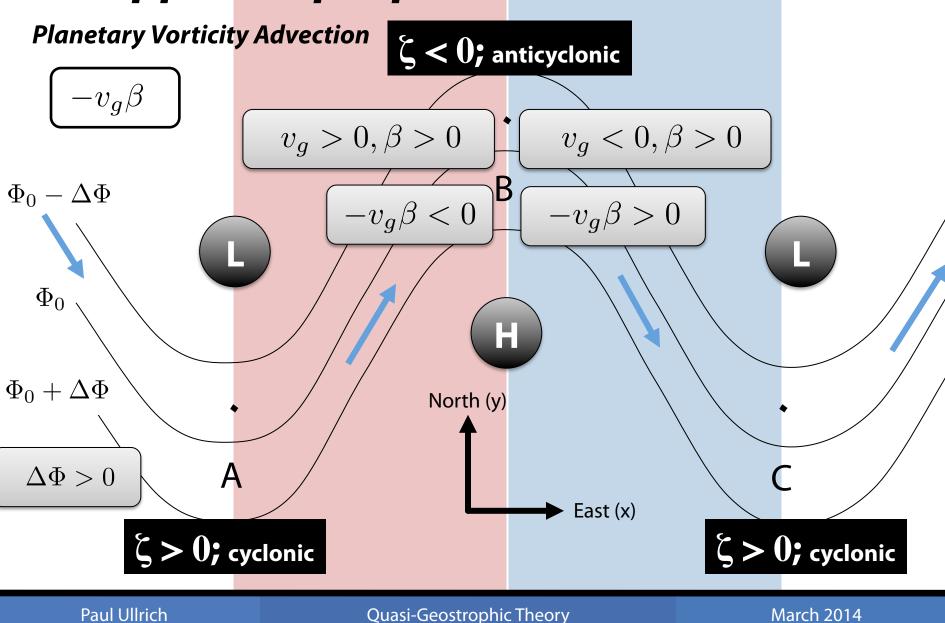


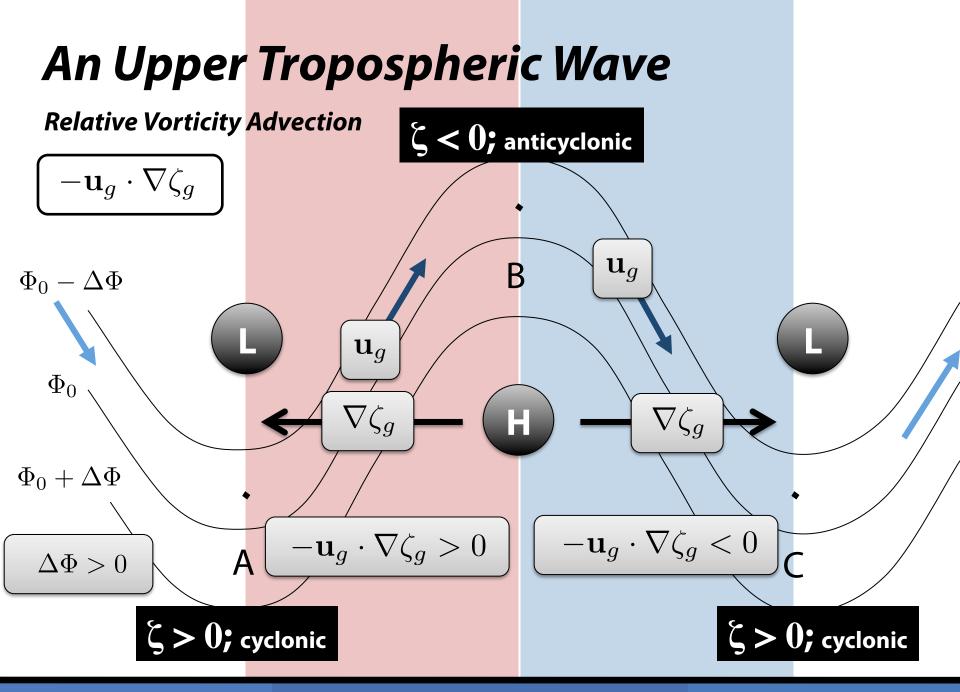


Paul Ullrich

Quasi-Geostrophic Theory

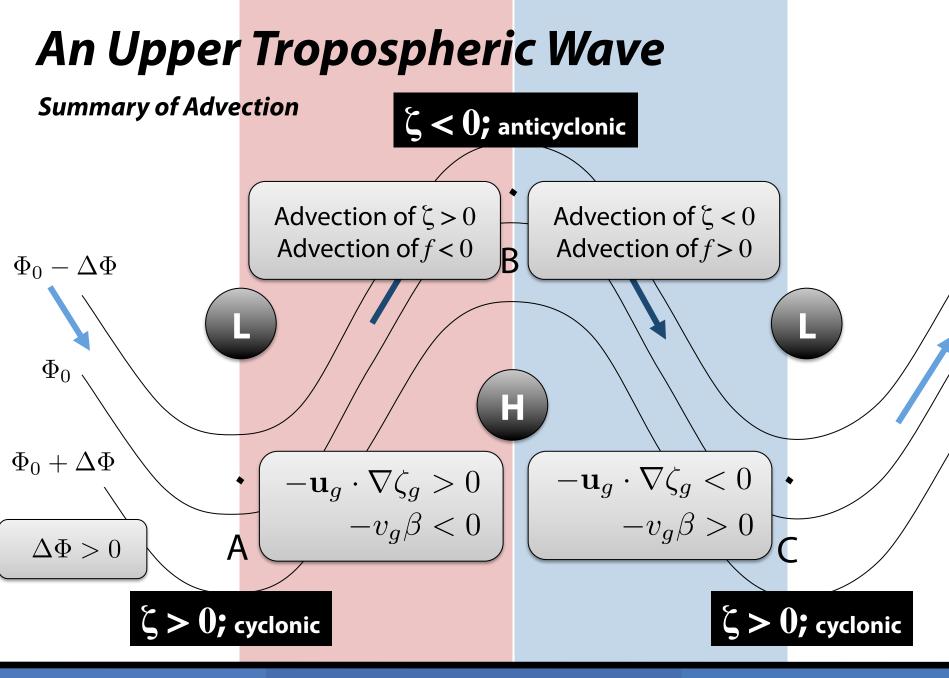
An Upper <mark>Tropospheri</mark>c Wave





Paul Ullrich

Quasi-Geostrophic Theory



Paul Ullrich

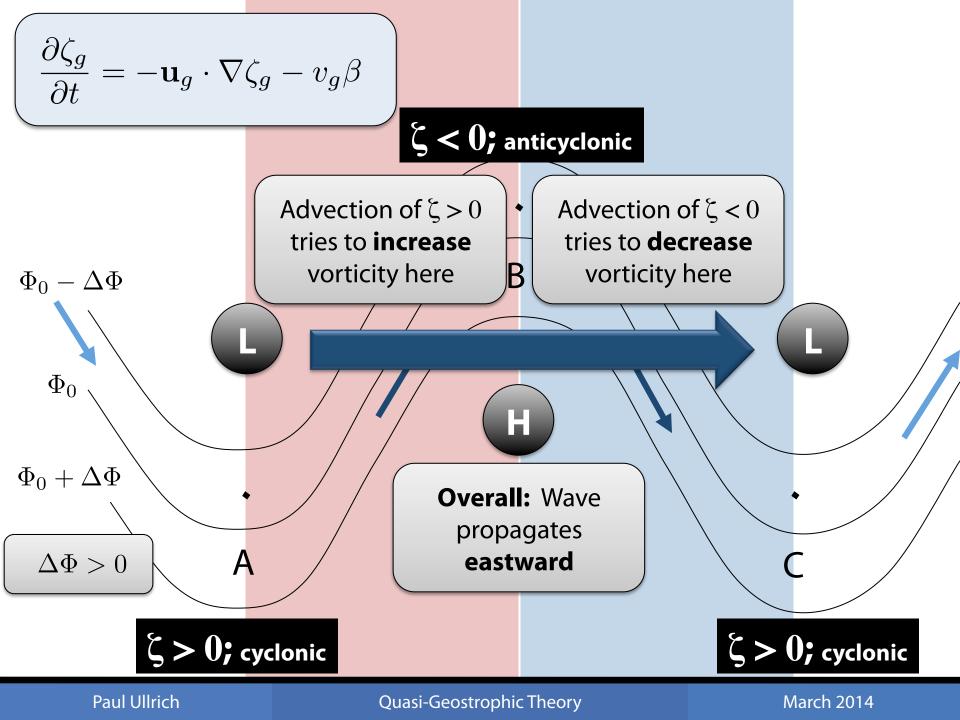
Quasi-Geostrophic Theory

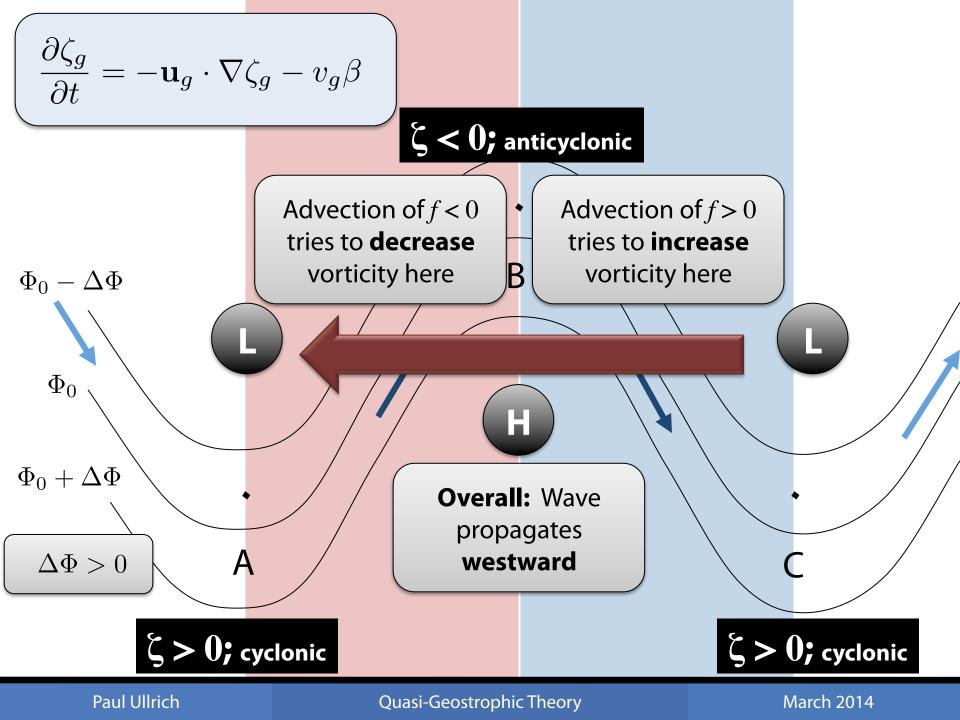
Summary of Advection

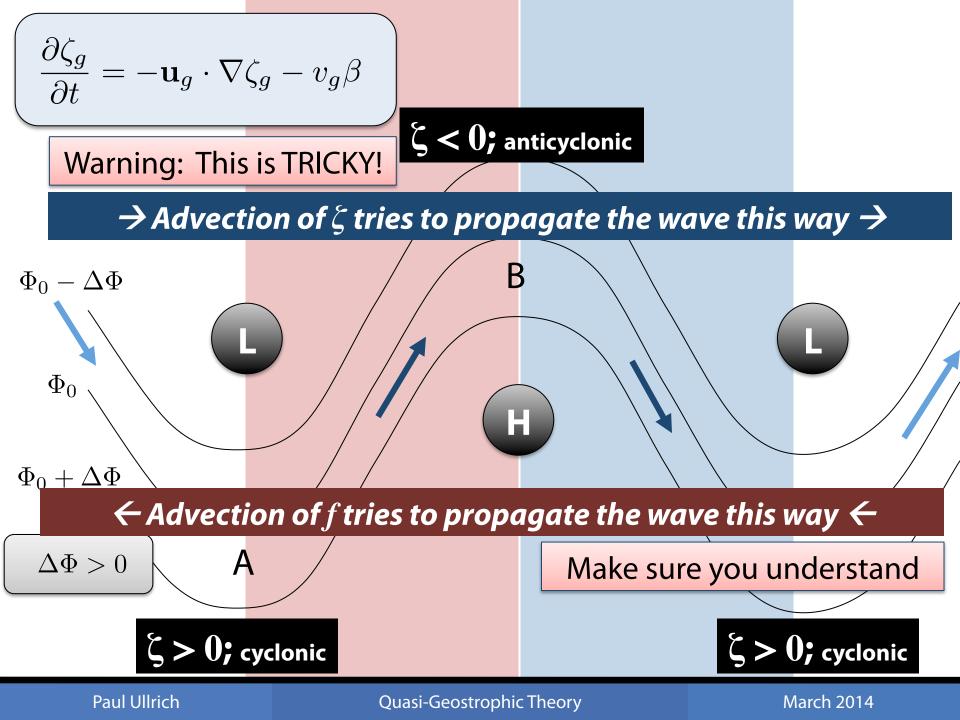
Planetary and relative vorticity advection in a wave **oppose each other**.

This is consistent with the balance that we intuitively derived from the conservation of absolute vorticity over the mountain.

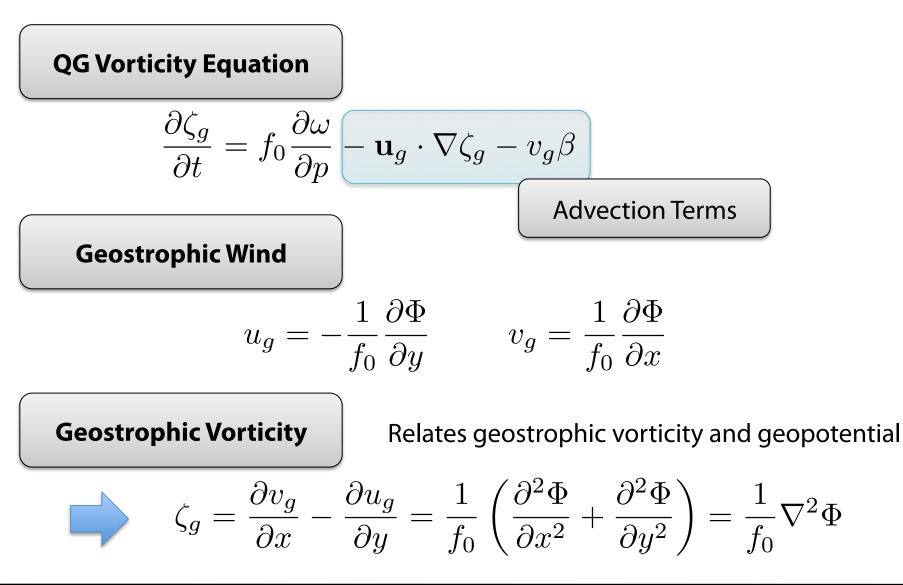
Question: What does this do to the wave?



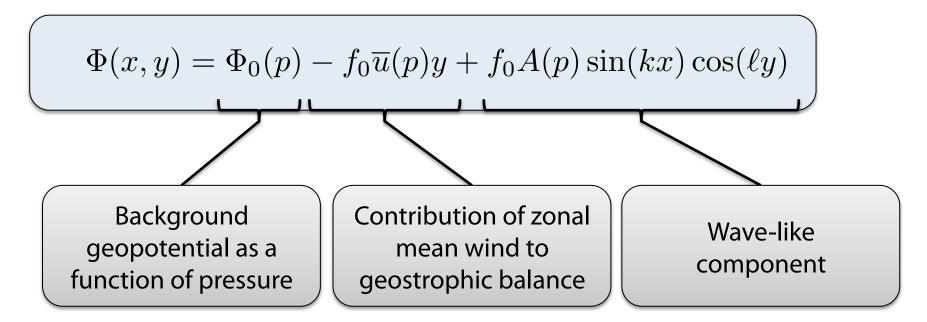




Vorticity & Geopotential



Assume geopotential is a wave



With wavenumbers k and ℓ and wavelengths L_x and L_y :

$$k = \frac{2\pi}{L_x} \qquad \ell = \frac{2\pi}{L_y}$$

Assume geopotential is a wave

$$\Phi(x,y) = \Phi_0(p) - f_0\overline{u}(p)y + f_0A(p)\sin(kx)\cos(\ell y)$$

The **geostrophic wind components** are then given by:

$$u_g = -\frac{1}{f_0} \frac{\partial \Phi}{\partial y} = \overline{u} + u'_g = \overline{u} + \ell A \sin(kx) \sin(\ell y)$$
$$v_g = -\frac{1}{f_0} \frac{\partial \Phi}{\partial x} = -v'_g = kA \cos(kx) \cos(\ell y)$$

Assume geopotential is a wave

$$\Phi(x,y) = \Phi_0(p) - f_0\overline{u}(p)y + f_0A(p)\sin(kx)\cos(\ell y)$$

$$u_{g} = -\frac{1}{f_{0}} \frac{\partial \Phi}{\partial y} = \overline{u} + u'_{g} = \overline{u} + \ell A \sin(kx) \sin(\ell y)$$
$$v_{g} = -\frac{1}{f_{0}} \frac{\partial \Phi}{\partial x} = -v'_{g} = kA \cos(kx) \cos(\ell y)$$
$$\zeta_{g} = \frac{\partial v_{g}}{\partial x} - \frac{\partial u_{g}}{\partial y} = -(k^{2} + \ell^{2})A \sin(kx) \cos(\ell y)$$

Assume geopotential is a wave

Vorticity

$$\zeta_g = \frac{\partial v_g}{\partial x} - \frac{\partial u_g}{\partial y} = -(k^2 + \ell^2)A\sin(kx)\cos(\ell y)$$

Relative vorticity advection:

$$-u_g \frac{\partial \zeta_g}{\partial x} - v_g \frac{\partial \zeta_g}{\partial y} \approx -\overline{u} \frac{\partial \zeta_g}{\partial x} = k\overline{u}(k^2 + \ell^2)A\cos(kx)\cos(\ell y)$$

Planetary vorticity advection:

$$-\beta v_g = -\beta kA\cos(kx)\cos(\ell y)$$

Assume geopotential is a wave

Comparison of the planetary and relative advection terms tells us that the **relative strength of these terms depends on wavelength**.

 $\frac{\text{Planetary Vorticity Advection}}{\text{Relative Vorticity Advection}} = \frac{-\beta v_g}{-\mathbf{u}_g \cdot \nabla \zeta_g} = \frac{\beta}{\overline{u} \left[\left(\frac{2\pi}{L_x} \right)^2 + \left(\frac{2\pi}{L_y} \right)^2 \right]}$

Assume geopotential is a wave

$$\frac{\text{Planetary Vorticity Advection}}{\text{Relative Vorticity Advection}} = \frac{-\beta v_g}{-\mathbf{u}_g \cdot \nabla \zeta_g} = \frac{\beta}{\overline{u} \left[\left(\frac{2\pi}{L_x} \right)^2 + \left(\frac{2\pi}{L_y} \right)^2 \right]}$$

Short waves: L_x and L_y small: **Denominator is large**

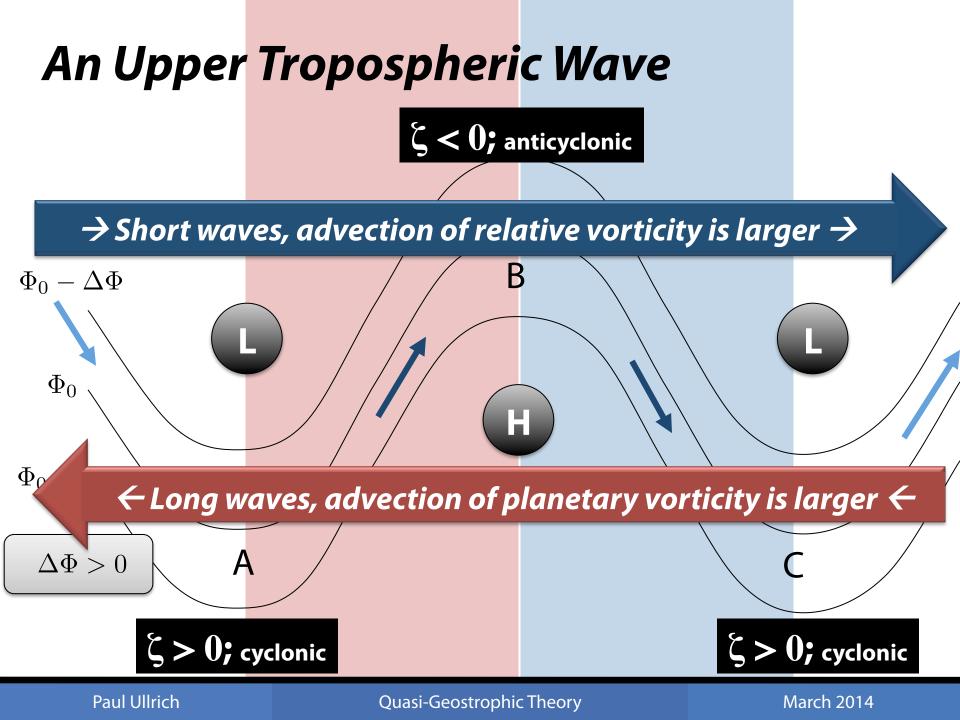
 \rightarrow Short waves, advection of relative vorticity is larger \rightarrow

Long waves: L_x and L_y large: **Denominator is small**

 \leftarrow Long waves, advection of planetary vorticity is larger \leftarrow

Paul Ullrich

Quasi-Geostrophic Theory



Summary

Short waves

- Strong curvature: **large** values of relative vorticity.
- Relatively **small** amplitude: Relatively **small** changes in coriolis parameter from trough to ridge.
- Advection of relative vorticity > advection of planetary vorticity
- Wave propagates to the east

Long waves

- Weak curvature: small values of relative vorticity.
- Relatively large amplitude: Relatively large changes in Coriolis parameter from trough to ridge.
- Advection of relative vorticity < advection of planetary vorticity
- Wave propagates to the west (depending on the mean wind speed)