A Rotational View of the Atmoshere Chapter 4

Paul A. Ullrich

paullrich@ucdavis.edu

Part 1: Vorticity

Question: What are the goals of dynamic meteorology?

1. Understand the structure of atmospheric motions (diagnosis)

2. Predict future atmospheric motions (prognosis)

Wind Around a System

At the simplest level, the atmosphere can be described using **vortex dynamics**.

Definition: A **vortex** is an area of closed, circular or near-circular fluid motion.

Definition: Vorticity is a measure of the local spinning motion of the flow. It consists of a vector which denotes the local axis of rotation and the local magnitude (or rotation rate).

Rotation in the Flow

In accordance with the Helmholtz theorem, 2D fluid motion can be thought of as being composed of a **rotational component** and a **divergent component**.

Rotation is important in the development of high and low pressure systems.

There is an interplay between rotation, divergence and vertical motion.

Types of Flow

Consider an arbitrary Eulerian region embedded in a flow.

Paul Ullrich

Introduction to Atmospheric Dynamics

Divergent Motion

Fluid motion associated with this region can be described in terms of **(a)** the motion of fluid in / out of this region (flux).

Paul Ullrich

Introduction to Atmospheric Dynamics

Gauss' Theorem

Flow into / out of a region must be associated with a particular **region**.

On the other hand, **divergence** is a closely connected concept which is described **at a point**.

These concepts are connected via Gauss' theorem:

Divergent Motion

Paul Ullrich

Introduction to Atmospheric Dynamics

March 2014

Divergent Motion

The **3D divergence operator** has the form

$$\nabla \cdot \mathbf{u} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}$$

The 2D divergence operator (in the horizontal plane) has the form

Rotational Motion

Fluid motion associated with this region can be described in terms of **(b)** the motion of fluid around this region.

Introduction to Atmospheric Dynamics

Circulation

Fluid motion associated with this region can be described in terms of **(b)** the motion of fluid around this region.

Introduction to Atmospheric Dynamics

Circulation

$$C \equiv \oint \mathbf{u} \cdot d\mathbf{l}$$

Circulation is a measure of rotational part of the flow within a region.

It is an analogue to angular momentum, and so induces a conservation law which describes its evolution. The "direction" of a circulation is defined by which direction we go around the circuit.

Cyclonic motion	Counterclockwise (in the Northern hemisphere)
Anticyclonic motion	Clockwise (in the Northern hemisphere)

Stokes' Theorem

Circulation is a concept which is valid along a **closed curve**.

On the other hand, **vorticity** is a closely connected concept which is described **at a point**.

These concepts are connected via Stokes' theorem:

Rotational Motion

Paul Ullrich

Introduction to Atmospheric Dynamics

March 2014

Introduction to Atmospheric Dynamics

March 2014

In accordance with geostrophic balance, **positive vorticity** is associated with **cyclonic rotation** in the northern hemisphere (low pressure systems)

> Predictions to changes in vorticity are then equivalent to predictions in changes in pressure.

> The first computer forecasts only predicted the changes in vorticity and still did a decent job...

Analogously, **negative vorticity** is associated with **anti-cyclonic rotation** in the northern hemisphere (high pressure systems)

Paul Ullrich

Introduction to Atmospheric Dynamics

The **3D vorticity** is associated with the curl of the vector field:

Paul Ullrich

For diagnostic purposes, the vertical component of vorticity is the most important:

$$\mathbf{k} \cdot (\nabla \times \mathbf{u})$$

Hence, the **2D vorticity** is associated with the quantity:

$$\boxed{\zeta = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}}$$

This is the **relative vorticity**, since it is computed locally and does not take into account the rotation of the coordinate system.

Consider only the horizontal component of the vorticity:

Paul Ullrich

Introduction to Atmospheric Dynamics

The **3D vorticity** is associated with the curl of the vector field:

$$\left(\nabla \times \mathbf{u} = \mathbf{i} \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z}\right) + \mathbf{j} \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x}\right) + \mathbf{k} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right)\right)$$

Since **u** is the velocity in the inertial coordinate system, both rotation of the planet and relative rotation need to be accounted for:

Definition: The component of vorticity due to relative motions is called **relative vorticity**.

Since angular momentum is only conserved in an inertial frame, rotation of the coordinate system must be accounted for.

Planetary Vorticity

Definition: The component of vorticity due to the rotation of the Earth is called **planetary vorticity**.

$$f = \mathbf{k} \cdot (\nabla \times \mathbf{u}_{earth}) = 2\Omega \sin \phi$$

Planetary vorticity is the contribution to angular momentum due to the rotation of the planetary surface.

Paul Ullrich

Introduction to Atmospheric Dynamics

March 2014

Absolute Vorticity

Definition: The **absolute (or total) vorticity (** η **)** is the sum of the relative vorticity and planetary vorticity.

Absolute Vorticity = Relative Vorticity + Planetary Vorticity

$$\eta \equiv \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right) + f$$

This concept arises immediately from $\mathbf{u}_a = \mathbf{u}_{earth} + \mathbf{u}$ and linearity of the curl:

$$\mathbf{k} \cdot (\nabla \times \mathbf{u}_a) = \mathbf{k} \cdot (\nabla \times \mathbf{u}_{earth}) + \mathbf{k} \cdot (\nabla \times \mathbf{u})$$

Divergence

What about the contribution of the Earth's rotation to the divergence?

$$\nabla \cdot \mathbf{u}_{earth} = \nabla \cdot (2\Omega \sin \phi \mathbf{i})$$
$$= \frac{\partial}{\partial x} (2\Omega \sin \phi)$$
$$= \frac{1}{r \cos \phi} \frac{\partial}{\partial \lambda} (2\Omega \sin \phi)$$
$$= 0$$

The rotation of the coordinate system does not contribute to the divergence of the flow.

Rotational vs. Divergent Flow

Rotation is an order of magnitude more important than divergence!

Paul Ullrich

Introduction to Atmospheric Dynamics

March 2014

At the simplest level, the atmosphere can be described using **vortex dynamics**. Vortices are dominated by rotation (curvature).

Observe: Vorticity is associated with pointwise spinning motion.

Question: Do all curved flows have vorticity? Are all flows with vorticity curved?

$$\left[\zeta = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right]$$

Answer: No. Not all curved flows have vorticity. Further, not all flows with vorticity are curved.

Relative velocity:

$$\mathbf{u} = (u, v, w)$$

3D vorticity vector: $abla imes \mathbf{u} = \mathbf{v}$

$$\nabla \times \mathbf{u} = \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z}, \frac{\partial u}{\partial z} - \frac{\partial w}{\partial x}, \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right)$$

Relative vorticity:
$$\zeta = \mathbf{k} \cdot (\nabla \times \mathbf{u}) = \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right)$$

Absolute vorticity: $\eta = {f k} \cdot (
abla imes {f u}_a) = \zeta + f$

Planetary vorticity:
$$f = \mathbf{k} \cdot (\nabla \times \mathbf{u}_{earth}) = 2\Omega \sin \phi$$

(local vertical component of the vorticity of the Earth)