Applications of the Basic Equations Chapter 3

Paul A. Ullrich

paullrich@ucdavis.edu

Part 4: Vertical Motion in Pressure Coordinates

Dynamical Equations

Pressure Coordinates

Paul Ullrich

Applications of the Basic Equations

Connection between w and ω

By definition,

$$\begin{split} \omega &\equiv \frac{Dp}{Dt} = \frac{\partial p}{\partial t} + u \frac{\partial p}{\partial x} + v \frac{\partial p}{\partial y} + w \frac{\partial p}{\partial z} \\ & \text{Hydrostatic Balance} \quad \left[\frac{\partial p}{\partial z} = -\rho g \right] \\ \omega &= \frac{\partial p}{\partial t} + u \frac{\partial p}{\partial x} + v \frac{\partial p}{\partial y} - w g \rho \\ & \text{Geostrophic Decomposition} \quad \left[\mathbf{u} = \mathbf{u}_g + \mathbf{u}_a \right] \\ \omega &= \frac{\partial p}{\partial t} + (u_g + u_a) \frac{\partial p}{\partial x} + (v_g + v_a) \frac{\partial p}{\partial y} - w g \rho \end{split}$$

Connection between w and ω

$$\omega = \frac{\partial p}{\partial t} + (u_g + u_a)\frac{\partial p}{\partial x} + (v_g + v_a)\frac{\partial p}{\partial y} - wg\rho$$

Geostrophic
Balance

$$\omega = \frac{\partial p}{\partial t} + \left(u_a\frac{\partial p}{\partial x} + v_a\frac{\partial p}{\partial y}\right) - wg\rho$$

Question: What are the scales associated with these terms?

Applications of the Basic Equations

Scale Analysis

Typical scales associated with large-scale mid-latitude storm systems:

 $U \approx 10 \text{ m s}^{-1}$ $W \approx 0.01 \text{ m s}^{-1}$ $L \approx 10^{6} \text{ m}$ $H \approx 10^{4} \text{ m}$ $L/U \approx 10^{5} \text{ s}$

 $\Delta P \approx 10 \text{ hPa} = 1000 \text{ Pa}$ $\rho \approx 1 \text{ kg m}^{-3}$ $\Delta \rho / \rho \approx 10^{-2}$ $f_0 \approx 10^{-4} \text{ s}^{-1}$

$$a \approx 10^7 \text{ m}$$
 (Radius of Earth)
 $g \approx 10 \text{ m s}^{-2}$ (Gravity)
 $\nu \approx 10^{-5} \text{ m}^2 \text{ s}^{-1}$ (Kinematic Viscosity)

Connection between w and ω

$$\omega = \frac{\partial p}{\partial t} + \left(u_a \frac{\partial p}{\partial x} + v_a \frac{\partial p}{\partial y} \right) - wg\rho$$

Local change in pressure:

Pressure advection by ageostrophic wind:

are: $\frac{\partial p}{\partial t} \approx \frac{U\Delta P}{L} \approx 10^{-2} \text{ Pa s}^{-1}$ $\mathbf{u}_a \cdot \nabla_h p \approx 0.1 \times \frac{U\Delta P}{L} \approx 10^{-3} \text{ Pa s}^{-1}$ Ageostrophic velocity is "small"

Vertical velocity term:

 $wg\rho \approx Wg\rho \approx 10^{-1} \text{ Pa s}^{-1}$

Connection between w and ω

From scale analysis, to a close approximation the vertical pressure velocity is given by this relationship.

$$\omega\approx -wg\rho$$

Question: How do we diagnose the vertical pressure velocity?

Observe there are only two equations that include ω :

Continuity Equation

Thermodynamic Equation

$$\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)_p + \frac{\partial \omega}{\partial p} = 0$$
$$\frac{\partial T}{\partial t} + u\frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y} - S_p\omega = \frac{J}{c_p}$$

Each of these equations leads to one diagnostic equation for ω .

Kinematic Method

Continuity Equation

$$\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)_{p} + \frac{\partial \omega}{\partial p} = 0$$

Geostrophic Decomposition
$$\nabla_{p} \cdot (\mathbf{u}_{g} + \mathbf{u}_{a}) + \frac{\partial \omega}{\partial p} = 0$$

Geostrophic Balance

$$\frac{\partial}{\partial x} \left(-\frac{1}{f} \frac{\partial \Phi}{\partial y} \right) + \frac{\partial}{\partial y} \left(\frac{1}{f} \frac{\partial \Phi}{\partial x} \right) + \nabla_p \cdot \mathbf{u}_a + \frac{\partial \omega}{\partial p} = 0$$

Kinematic Method

connected to the divergence of the ageostrophic wind in pressure surfaces.

Kinematic Method

$$\frac{\partial \omega}{\partial p} \approx -\nabla_p \cdot \mathbf{u}_a$$
Integrate over a pressure interval (p_1, p_2)

$$\omega(p_1) \approx \omega(p_2) - (p_1 - p_2) \left(\frac{\partial \langle u \rangle}{\partial x} + \frac{\partial \langle v \rangle}{\partial y} \right)$$

Using the Kinematic method, vertical pressure velocity is diagnosed from the mean layer horizontal divergence.

Kinematic Method

$$\left(\omega(p_1) \approx \omega(p_2) - (p_1 - p_2) \left(\frac{\partial \langle u \rangle}{\partial x} + \frac{\partial \langle v \rangle}{\partial y} \right) \right)$$

However, if the flow is very close to geostrophic balance, then the divergence is small and calculating the mean layer divergence requires an accurate representation of horizontal velocities.

Therefore: Small errors in evaluating the winds $\langle u \rangle$ and $\langle v \rangle$ lead to large errors in ω . Consequently, the Kinematic method tends to be inaccurate.

Adiabatic Method

Adiabatic Method

If local time tendency is negligible (steady state)

Adiabatic Method

The adiabatic method is based on temperature advection, which is dominated by the geostrophic wind (large).

Hence, this method is a reasonable way to estimate local vertical velocity when advection is strong.