Applications of the Basic Equations Chapter 3

Paul A. Ullrich

paullrich@ucdavis.edu

Part 1: Natural Coordinates

Question: Why do we need *another* coordinate system?

Our goal is to **simplify** the equations of motion. Sometimes complicated equations are simple if looked at in the right way.

At large scales, the atmosphere is in a state of balance. At large scales, mass fields (ρ , ρ , Φ) balance with wind fields (**u**).

But mass fields are generally much easier to observe than wind.

Balance provides a way to infer the wind from the observed pressure or geopotential.

Geostrophic Balance

Paul Ullrich

Applications of the Basic Equations

March 2014

Paul Ullrich

Applications of the Basic Equations

March 2014

Describe the Previous Figure...

At upper levels (where friction is negligible) the observed wind is parallel to geopotential height contours (on a constant pressure surface).

Wind is *faster* when height contours are close together.

Wind is *slower* when height contours are farther apart.

Horizontal Momentum

Assume no viscosity

Geostrophic Approximation

Think about this a minute

Think about this a minute

We have derived a formula for the **i** (eastward or x) component of the geostrophic wind.

We have estimated the derivatives based on *finite differences.* Recall we also used finite differences in deriving the equations of motion.

There is a consistency:

- Direction comes out correctly (towards east)
- The strength of the wind is proportional to the strength of the gradient.

Think about this a minute

What about the observed wind?

- Flow is parallel to geopotential height lines
- **But** there is curvature in the flow as well.

IMPORTANT NOTE: This is not curvature due to the Earth, but curvature on a constant pressure surface due to bends and wiggles in the flow.

Paul Ullrich

Applications of the Basic Equations

March 2014

What about the observed wind?

- Flow is parallel to geopotential height lines
- **But** there is curvature in the flow as well.

$$\left(\frac{\partial \Phi}{\partial x}\right)_p = fv_g$$
$$-\left(\frac{\partial \Phi}{\partial y}\right)_p = fu_g$$

Question: Where is curvature in these equations?

Think about the observed (upper level) wind:

- Flow is parallel to geopotential height lines
- There is curvature in the flow

Geostrophic balance describes flow parallel to geopotential height lines.

BUT Geostrophic balance does not account for curvature.

Question: How do we include curvature in our diagnostic equations?

Question: Why do we need *another* coordinate system?

Our goal is to **simplify** the equations of motion. Sometimes complicated equations are simple if looked at in the right way.

At large scales, the atmosphere is in a state of balance. At large scales, mass fields (ρ , ρ , Φ) balance with wind fields (**u**).

But mass fields are generally much easier to observe than wind.

We need to describe balance between dominant terms: Pressure gradient, Coriolis and curvature of the flow.

A "natural" set of direction vectors. When standing at a point, sometimes the only indication of direction is the direction of the flow.

- Assumes no "local" changes in geopotential height. Flow is along contours of constant geopotential height.
 - Assume horizontal flow only (on a constant pressure surface). An analogous method could be defined for height surfaces.
 - Assume no friction (no viscous term)

Analogous to a Lagrangian parcel approach.

Regardless of position:

- t always points in the direction of the flow
- **n** always points perpendicular to **t**, to the left of the flow

$$\left[{\left. {{{f{n}} = {f{k} imes {f{t}} }}
ight.}
ight]
ight.$$
 Right-ha

Right-hand rule for vectors

Advantages:

- We can look at a geopotential height (on a pressure surface) and estimate the winds.
 - In general it is difficult to measure winds, so we can now estimate winds from geopotential height (or pressure).
 - Useful for *diagnostics* and *interpretation*.

However, for diagnostics and interpretation of flows, we need an *equation*.

Paul Ullrich

Applications of the Basic Equations

March 2014

Between the initial and final positions, the tangent vector changes by an amount Δt .

Recall the use of circle geometry (from derivation of Coriolis / centrifugal force)

Paul Ullrich

Applications of the Basic Equations

March 2014

Zoomed in...

Observe that for small displacements (and using the fact that tangent vectors are unit length):

 $|\Delta \mathbf{t}| \approx \Delta \theta$

Consequently:

 $\Delta \mathbf{t} \approx \Delta \theta \mathbf{n}_1$

Zoomed in...

Paul Ullrich

Applications of the Basic Equations

Zoomed in...

Remember our goal is to quantify acceleration...

Recall from physics 101 centripetal acceleration:

An object traveling at velocity V forced to remain along a circular trajectory will experience a centripetal force with magnitude V^2/R towards the center of the circle

Now that we have an equation for change in horizontal momentum in terms of tangental and normal vectors, we would like to derive a momentum equation.

The momentum equation must contain terms:

- Acceleration
- Coriolis force
- Pressure gradient force

Coriolis Force

Coriolis force always acts normal to the velocity, with magnitude f:

$$\left[\mathbf{F}_{cor} = -f\mathbf{k} \times \mathbf{u} = -fV\mathbf{n} \right]$$

Pressure Gradient Force

Pressure gradient force acts in the opposing direction of the pressure gradient. On a surface of constant pressure this leads to:

$$\left(\mathbf{F}_p = -\nabla_p \Phi = -\left(\mathbf{t}\frac{\partial \Phi}{\partial s} + \mathbf{n}\frac{\partial \Phi}{\partial n}\right)\right)$$

Using the vector form of the momentum equation:

$$\frac{D\mathbf{u}}{Dt} + f\mathbf{k} \times \mathbf{u} = -\nabla_p \Phi$$

Make all substitutions:

$$\mathbf{F}_{p} = -\nabla_{p}\Phi = -\left(\mathbf{t}\frac{\partial\Phi}{\partial s} + \mathbf{n}\frac{\partial\Phi}{\partial n}\right)$$
$$\mathbf{F}_{cor} = -f\mathbf{k} \times \mathbf{u} = -fV\mathbf{n}$$

$$\left(\frac{DV}{Dt}\mathbf{t} + \frac{V^2}{R}\mathbf{n} + fV\mathbf{n} = -\left(\mathbf{t}\frac{\partial\Phi}{\partial s} + \mathbf{n}\frac{\partial\Phi}{\partial n}\right)\right)$$

$$\left[\frac{DV}{Dt}\mathbf{t} + \frac{V^2}{R}\mathbf{n} + fV\mathbf{n} = -\left(\mathbf{t}\frac{\partial\Phi}{\partial s} + \mathbf{n}\frac{\partial\Phi}{\partial n}\right)\right]$$

In component form:

$$\overline{\begin{array}{c} \frac{DV}{Dt} = -\frac{\partial\Phi}{\partial s} \\ \frac{V^2}{R} + fV = -\frac{\partial\Phi}{\partial n} \end{array}}$$

Along flow direction (t)

Across flow direction (n)

Is this a simplification?

Recall we are only considering flow along geopotential height contours:

Along flow direction (t)

Across flow direction (n)

By using natural coordinates, we only require one diagnostic equation to describe velocity.

One diagnostic equation for curved flow:

