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Part 1: Natural Coordinates 



Natural Coordinates 

Question: Why do we need 
another coordinate system? 

Our goal is to simplify the equations of motion.  
Sometimes complicated equations are simple if 
looked at in the right way. 

At large scales, the atmosphere is in a state of balance.  At 
large scales, mass fields (ρ, p, Φ) balance with wind fields (u). 

But mass fields are generally much easier to observe than wind. 

Balance provides a way to infer the wind from the 
observed pressure or geopotential. 
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Geostrophic Balance 

Flow initiated by 
pressure gradient 

Flow turned by 
Coriolis force 

Low	  Pressure	  

High	  Pressure	  
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Geostrophic & Observed Wind 
Upper Tropo (300mb) 
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At upper levels (where friction is negligible) the 
observed wind is parallel to geopotential height 
contours (on a constant pressure surface). 
 
Wind is faster when height contours are close together. 
 
Wind is slower when height contours are farther apart. 

Describe the Previous Figure… 
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Geopotential contours are 
depicted on a constant 
pressure surface. 
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Geopotential contours are 
depicted on a constant 
pressure surface. 
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Geopotential contours are 
depicted on a constant 
pressure surface. 
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Geopotential contours are 
depicted on a constant 
pressure surface. 
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Horizontal Momentum 
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Meridional gradient of 
geopotential appears here 

Assume no viscosity 



Geostrophic Approximation 
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Meridional gradient of 
geopotential appears here 
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Geopotential contours are 
depicted on a constant 
pressure surface. 
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Geopotential contours are 
depicted on a constant 
pressure surface. 
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The Upper Troposphere 

South 

North 
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Think about this a minute 



We have derived a formula for the i (eastward or x) 
component of  the geostrophic wind. 
 
We have estimated the derivatives based on finite 
differences.  Recall we also used finite differences in 
deriving the equations of motion. 
 
There is a consistency: 
•  Direction comes out correctly (towards east) 
•  The strength of the wind is proportional to the 

strength of the gradient. 

The Upper Troposphere 
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Think about this a minute 



The Upper Troposphere 
Think about this a minute 
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What about the observed wind? 
 
•  Flow is parallel to geopotential height lines 

•  But there is curvature in the flow as well. 

IMPORTANT NOTE:  This is not curvature due to 
the Earth, but curvature on a constant pressure 
surface due to bends and wiggles in the flow. 



Geostrophic & Observed Wind 
Upper Tropo (300mb) 
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The Upper Troposphere 
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What about the observed wind? 
 
•  Flow is parallel to geopotential height lines 

•  But there is curvature in the flow as well. 

✓
@�

@x

◆

p

= fvg

�
✓
@�

@y

◆

p

= fug

Question: Where is curvature 
in these equations? 



The Upper Troposphere 
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Think about the observed (upper level) wind: 
 
•  Flow is parallel to geopotential height lines 

•  There is curvature in the flow 

Geostrophic balance describes flow parallel to 
geopotential height lines. 

BUT Geostrophic balance does not account for 
curvature. 

Question: How do we include curvature 
in our diagnostic equations? 



Natural Coordinates 

Question: Why do we need 
another coordinate system? 

Our goal is to simplify the equations of motion.  
Sometimes complicated equations are simple if 
looked at in the right way. 

At large scales, the atmosphere is in a state of balance.  At 
large scales, mass fields (ρ, p, Φ) balance with wind fields (u). 

But mass fields are generally much easier to observe than wind. 

We need to describe balance between dominant terms:  
Pressure gradient,  Coriolis and curvature of the flow. 
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Natural Coordinates 
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A “natural” set of direction vectors.  When standing at 
a point, sometimes the only indication of direction is 
the direction of the flow. 

•  Assumes no “local” changes in geopotential height.  Flow 
is along contours of constant geopotential height. 

•  Assume horizontal flow only (on a constant pressure surface).  
An analogous method could be defined for height surfaces. 

•  Assume no friction (no viscous term) 

Analogous to a Lagrangian parcel approach. 
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Define one component of these 
coordinates tangent to the 
direction of the wind. 

t t

t

�� > 0



The Upper Troposphere 
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Define the other component of 
these coordinates normal to the 
direction of the wind. 

t t

t

�� > 0

n
n

n



Natural Coordinates 
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Regardless of position: 
 
•  t  always points in the direction of the flow 

•  n  always points perpendicular to t, to the left of the flow 

t

n

n = k⇥ t Right-hand rule for vectors 



Natural Coordinates 
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Advantages: 
 
•  We can look at a geopotential height (on a pressure surface) and 

estimate the winds.  

t

n

•  In general it is difficult to measure winds, so we can now 
estimate winds from geopotential height (or pressure). 

•  Useful for diagnostics and interpretation. 



Natural Coordinates 
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However, for diagnostics and interpretation 
of flows, we need an equation. 

t
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Natural Coordinates 
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Do you observe that the normal arrows seem 
to point at something in the distance? 



Natural Coordinates 
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Imagine that the fluid is experiencing 
centripetal acceleration due to a force in the 
normal direction.  How would a fluid parcel 
react? 



Natural Coordinates 
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Definition: The radius of curvature          of the 
flow is the radius of a circle with tangent vector t 
that shares the same curvature as the local flow. 

R



Natural Coordinates 
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Velocity in Natural 
Coordinates 

Velocity Vector 

Velocity Magnitude 

Unit vector tangent 
to the flow 

1.   Velocity is always in the direction of t 
 
2.  The value of        is always positive u

Simplifications: 

u = V t V = |u|



Natural Coordinates 
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Acceleration in 
Natural Coordinates 

Change in speed 

Change in direction 

Definition of 
acceleration 

Du

Dt
=

D(V t)

Dt
=

DV

Dt
t+ V

Dt

Dt



Natural Coordinates 

Question: How do we get            as a function of      ,       ?  
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Dt

Dt
R

Recall the use of circle 
geometry (from 
derivation of Coriolis / 
centrifugal force) 

R

t1

t2

Radius of curvature 

�✓

Initial position of 
fluid parcel 

Final position of 
fluid parcel 

For simplicity, consider a 
fluid parcel moving along 
a circular trajectory. 

V



Natural Coordinates 
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Recall the use of circle 
geometry (from 
derivation of Coriolis / 
centrifugal force) 

R

t1

Radius of curvature 

�✓

Between the initial and final positions, 
the tangent vector changes by an 
amount          .  

t2 = t1+�t

�t
�t

Triangle 



Natural Coordinates 

R t1
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�✓

Zoomed in… 

Using geometry, this 
triangle has an 

internal angle         . �✓

n1

Use the law of sines and the fact 
that tangent vectors have unit 
length: 

Define 
angle 

 ↵

sin↵ = sin (⇡ � ↵��✓)

Since all angles are < 90° 

↵ = ⇡ � ↵��✓

↵ =
⇡

2
� �✓

2

For small displacements,            
will point in the same direction 
as n1   (= 90° to t1)  

�t



Natural Coordinates 
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�✓

Zoomed in… 

Using geometry, this 
triangle has an 

internal angle         . �✓

n1

Observe that for small 
displacements (and using the 
fact that tangent vectors are 
unit length): 

|�t| ⇡ �✓

Consequently: 

�t ⇡ �✓n1



Natural Coordinates 
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�✓

Zoomed in… 

Using geometry, this 
triangle has an 

internal angle         . �✓

n1

From the last slide: 

�t ⇡ �✓n1

Distance traveled by 
fluid parcel 

 �s = R�✓

�t ⇡ �s

R
n1



Natural Coordinates 
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�✓

Zoomed in… 

Using geometry, this 
triangle has an 

internal angle         . �✓
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From the last slide: 
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Distance / 
Time = 

Velocity 

In the limit of  �t ! 0
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Natural Coordinates 
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Remember our goal is to quantify acceleration… 

Change in speed 

? 
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=
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Natural Coordinates 
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Recall from physics 101 centripetal acceleration: 

Change in speed Centripetal acceleration due 
to curvature in the flow 

An object traveling at velocity V forced to remain 
along a circular trajectory will experience a 
centripetal force with magnitude V2/R towards 
the center of the circle 

Du

Dt
=

DV

Dt
t+

V 2

R
n



Momentum Equation 
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Now that we have an equation for change in horizontal 
momentum in terms of tangental and normal vectors, we 
would like to derive a momentum equation. 

The momentum equation must contain terms: 
 
•  Acceleration 

•  Coriolis force 

•  Pressure gradient force 



Momentum Equation 
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Coriolis force always acts normal to the velocity, with 
magnitude  f : 

Coriolis Force 

F
cor

= �fk⇥ u = �fV n



Momentum Equation 
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Pressure gradient force acts in the opposing direction of the 
pressure gradient.  On a surface of constant pressure this 
leads to: 

Pressure Gradient Force 

Fp = �rp� = �
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Momentum Equation 
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Using the vector form of the momentum equation: 

Du

Dt
+ fk⇥ u = �rp�

DV
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Momentum Equation 
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DV
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In component form: 

DV

Dt
= �@�

@s
V 2

R
+ fV = �@�

@n

Along flow direction (t) 

Across flow direction (n) 



Momentum Equation 
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Recall we are only considering flow 
along geopotential height contours: 

DV

Dt
= �@�

@s
V 2

R
+ fV = �@�

@n

Along flow direction (t) 

Across flow direction (n) 

Is this a simplification? 

0	  0	  

By using natural coordinates, 
we only require one diagnostic 
equation to describe velocity. 



Momentum Equation 
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One diagnostic equation for curved flow: 

V 2

R
+ fV = �@�

@n

Centripetal 
acceleration 

Coriolis force 

Pressure gradient 
force 

Question: How does this 
generalize the geostrophic 
approximation? 


