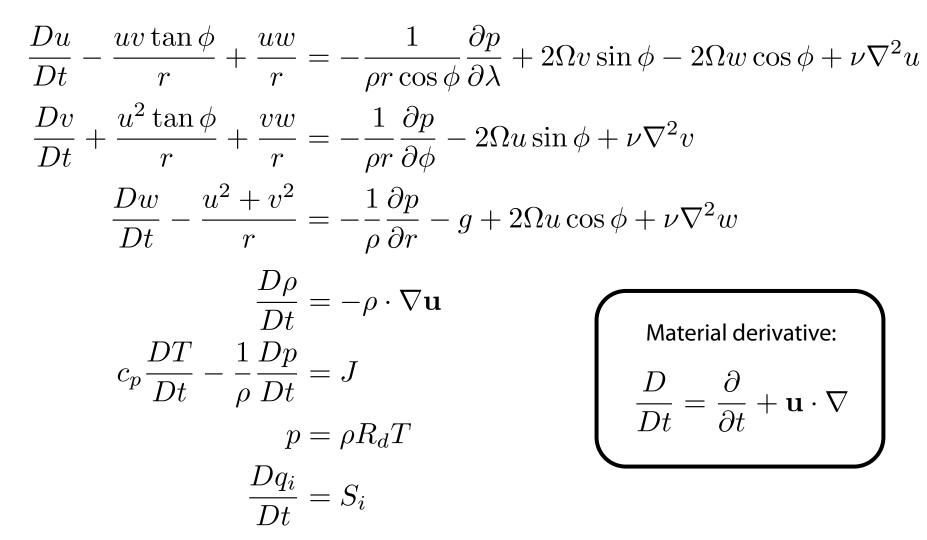

Analysis of the Dynamical Equations Chapter 2


Paul A. Ullrich

paullrich@ucdavis.edu

Part 1: Scale Analysis of the Momentum Equation

The Atmospheric Equations

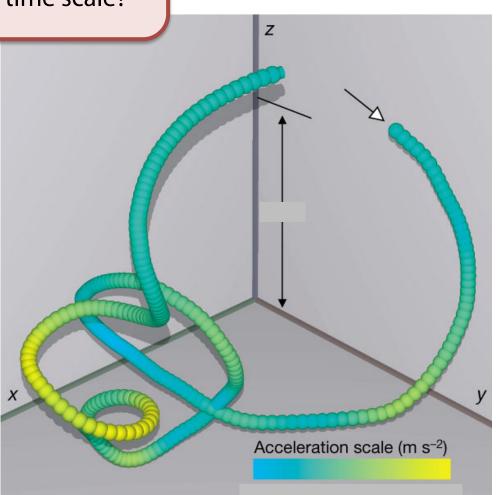
Question: What is the size (in time and space) of atmospheric phenomena that are relevant for large-scale mid-latitude dynamics?

Question: What are the terms in the equations of motion that are most relevant for large-scale mid-latitude dynamics?

These questions are closely connected: **Scale analysis** provides us a means to an answer.

Consider x and y components of the momentum equations:

$$\frac{Du}{Dt} - \frac{uv\tan\phi}{r} + \frac{uw}{r} = -\frac{1}{\rho}\frac{\partial p}{\partial x} + 2\Omega v\sin\phi - 2\Omega w\cos\phi + \nu\nabla^2 u$$
$$\frac{Dv}{Dt} + \frac{u^2\tan\phi}{r} + \frac{vw}{r} = -\frac{1}{\rho}\frac{\partial p}{\partial y} - 2\Omega u\sin\phi + \nu\nabla^2 v$$


Remember the units—each term must have units of *acceleration*

- Define: *L* Some characteristic distance
 - T Some characteristic time

All terms should have units of L/T^2

Question: How do we define a time scale?

Idea: Take a **typical** trajectory and ask "how far does a parcel go in a 'characteristic time?'"

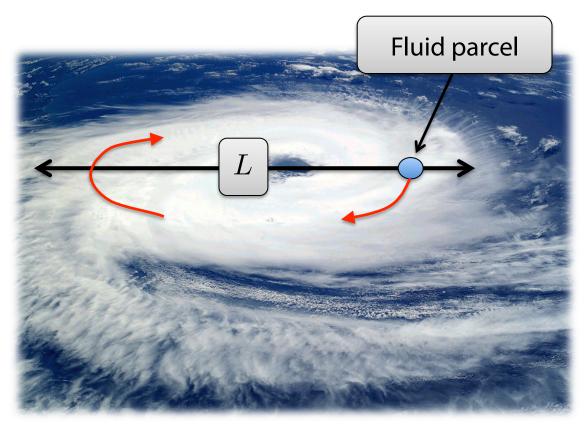
Paul Ullrich

Analysis of the Dynamical Equations

We would like to define scales in terms of wind, pressure and density.

Recall:
$$\langle \text{Distance} \rangle = \langle \text{Velocity} \rangle \times \langle \text{Time} \rangle$$

Define: U Some characteristic horizontal velocity


In terms of characteristic scales: $L = U \times T$

So the characteristic time scale is given by

$$T = \frac{L}{U}$$

What do these scales mean?

Consider, for example, a typical tropical cyclone:

Look at the organization of the flow. The **length scale** is the diameter of the storm. The velocity scale is the **maximum velocity** of the flow. So the time scale is approximately the **time required for the parcel to move around the storm**.

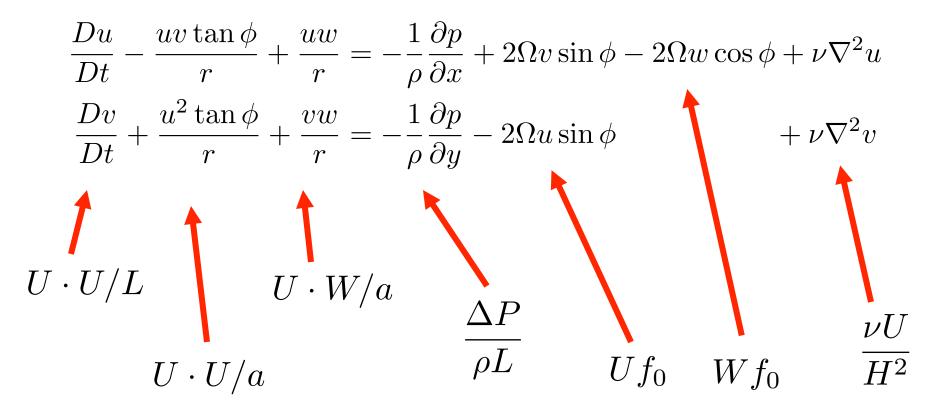
Paul Ullrich

(
Definition:	L	Horizontal distance scale	
	U	Horizontal velocity scale	
	T	Time scale $(T = L/U)$	
	H	Vertical distance scale	
	W	Vertical velocity scale	
	$\Delta P/ ho$	Scale of horizontal pressure fluctuations	

The material derivative $\frac{D}{Dt}$ represents change on the time-scale of motion.

Hence, its scale is given by $\left[\frac{D}{Dt}\right] = \frac{1}{T} = \frac{U}{L}$

Typical scales associated with large-scale mid-latitude storm systems:


 $U \approx 10 \text{ m s}^{-1}$ $W \approx 0.01 \text{ m s}^{-1}$ $L \approx 10^{6} \text{ m}$ $H \approx 10^{4} \text{ m}$ $L/U \approx 10^{5} \text{ s}$

 $\Delta P \approx 10 \text{ hPa} = 1000 \text{ Pa}$ $\rho \approx 1 \text{ kg m}^{-3}$ $\Delta \rho / \rho \approx 10^{-2}$ $f_0 \approx 10^{-4} \text{ s}^{-1}$

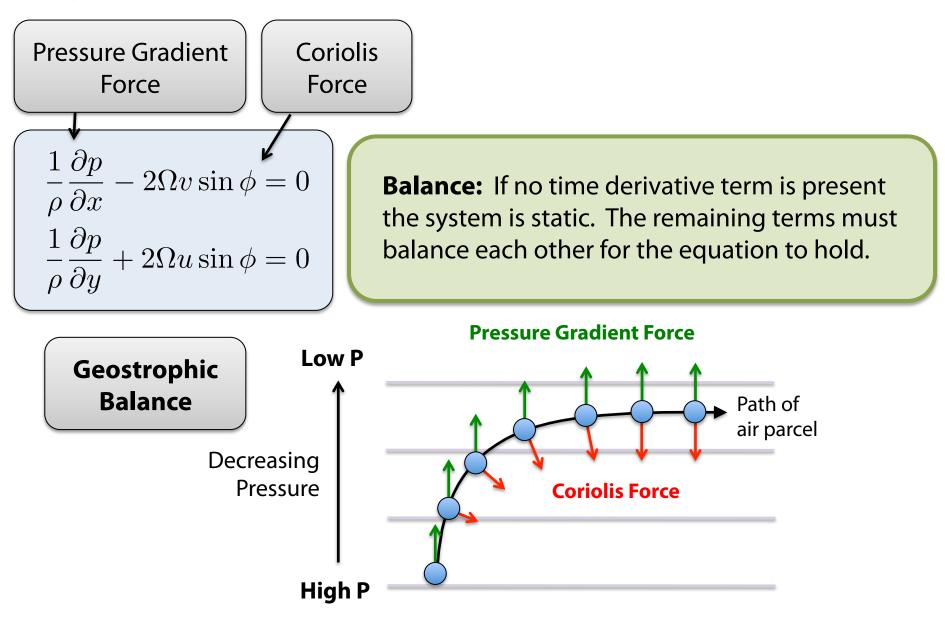
$$a \approx 10^7 \text{ m}$$
 (Radius of Earth)
 $g \approx 10 \text{ m s}^{-2}$ (Gravity)
 $\nu \approx 10^{-5} \text{ m}^2 \text{ s}^{-1}$ (Kinematic Viscosity)

Scale Analysis (Horizontal Momentum)

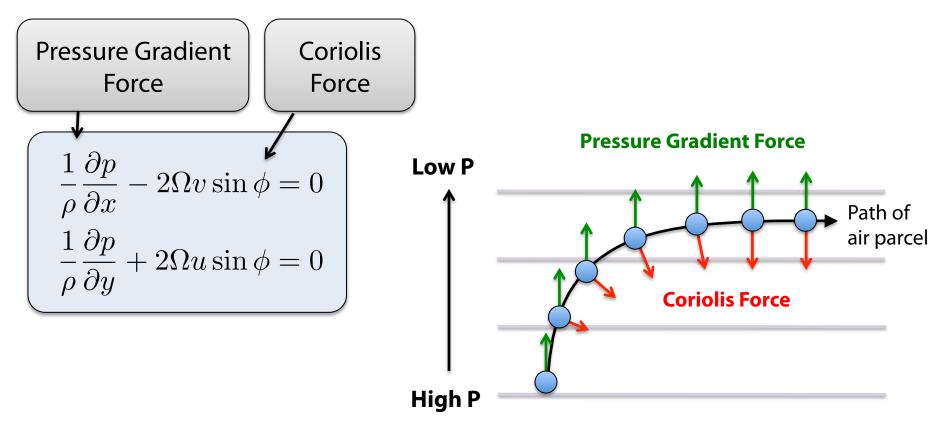
Here is what each term of the momentum equation looks like in terms of characteristic scales:

(Horizontal Momentum Equation)

U	$\sim 10 \text{ m s}$	5-1	Sco	ales		
W	$W \approx 0.01 \text{ m s}^{-1}$			1000 Pa		
	$L \approx 10^6 \text{ m}$			1 kg m^{-3}	$a \approx 10^7 \text{ m}$	
	$\approx 10^4 \mathrm{m}$		$\Delta \rho / \rho \approx 10^{-2}$		$g \approx 10 \text{ m s}^{-2}$	
L/U	$\sim 10^5 \text{ s}$		$f_0 \approx$	10^{-4} s^{-1}	$\nu \approx 10^{-5} \mathrm{r}$	$n^2 s^{-1}$
$rac{Du}{Dt}$ –	$\frac{uv\tan\phi}{r}$	+ - =			$-2\Omega w\cos\phi$	$+ \nu \nabla^2 u$
$\frac{Dv}{Dt}$ +	$-\frac{u^2\tan\phi}{r}$	$+\frac{vw}{r} =$	$-\frac{1}{\rho}\frac{\partial p}{\partial y}$	$-2\Omega u\sin\phi$		$+ \nu \nabla^2 v$
U·U/L	U·U/a	U·W/a	ΔP/pL	Uf	Wf	vU/H ²
10-4	10 ⁻⁵	10 ⁻⁸	10 ⁻³	10 ⁻³	10 ⁻⁶	10 ⁻¹²

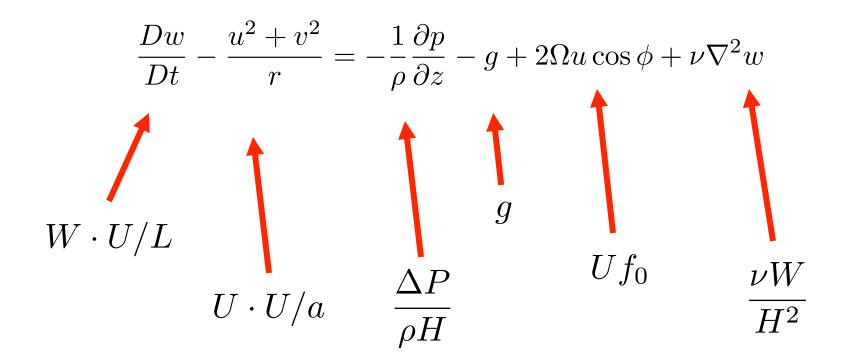

Paul Ullrich

Analysis of the Dynamical Equations


March 2014

(Horizontal Momentum Equation)						
			Large	est Terms		
$\frac{Du}{Dt} - \frac{Dv}{Dt} + Dv$	$\frac{uv\tan\phi}{r} - \frac{u^2\tan\phi}{r} - \frac{u^2}{r} - \frac{u^2}{r}$	$-\frac{uw}{r} =$ $+\frac{vw}{r} =$	$= -\frac{1}{\rho} \frac{\partial p}{\partial x} + 2\Omega v \sin \phi - \frac{1}{\rho} \frac{\partial p}{\partial y} - 2\Omega u \sin \phi$		$2\Omega w \cos \phi + \nu \nabla^2 u + \nu \nabla^2 v$	
U·U/L	U·U/a	U·W/ a	ΔP/pL	Uf	Wf	$\nu U/H^2$
10-4	10 ⁻⁵	10 ⁻⁸	10 ⁻³	10 ⁻³	10 ⁻⁶	10 ⁻¹²
			Dominant Balance			

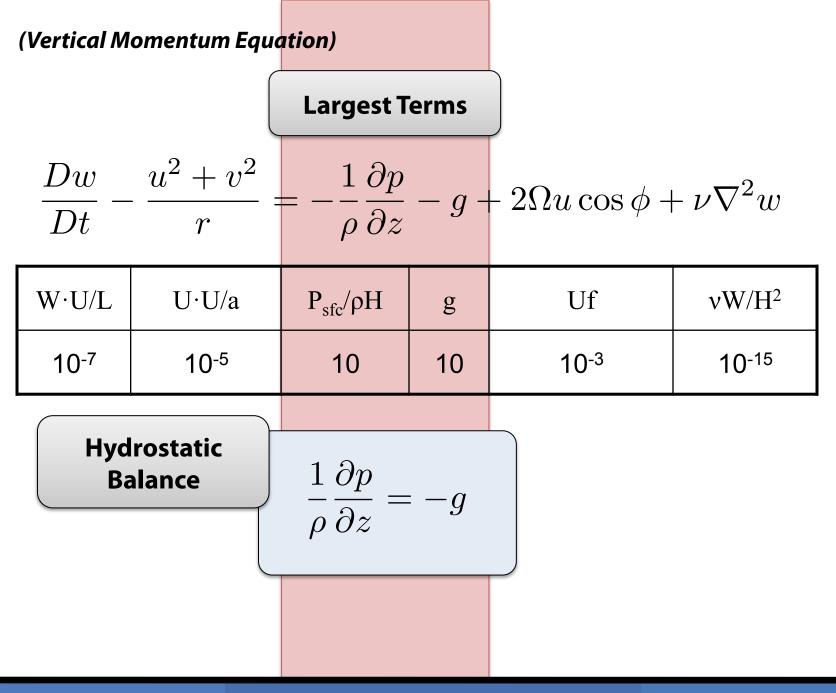
Only retain the largest terms...



(Horizontal Momentum Equation)

Definition: For large-scale mid-latitudinal flows there is an intrinsic **balance between pressure gradient force and Coriolis force**. This balance is known as **geostrophic balance** and leads to air parcels traveling along lines of constant pressure.

Scale Analysis (Vertical Momentum)

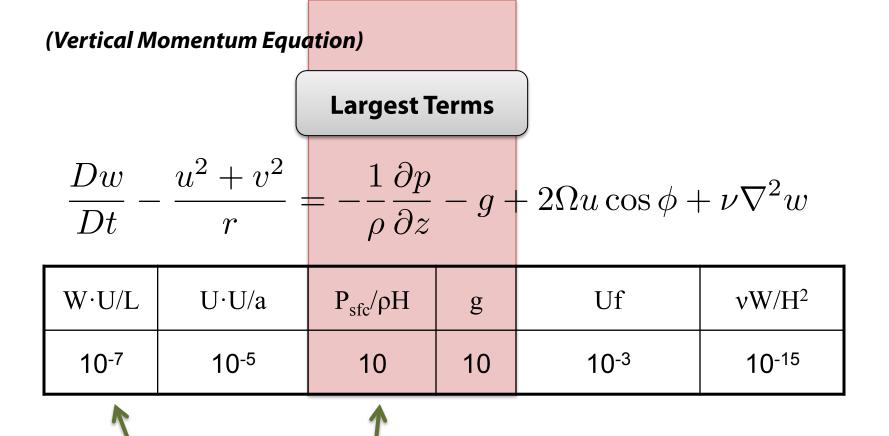


Analysis of the Dynamical Equations

March 2014

(Vertical Momentum Equation)

$\left(\right)$	$U \approx 10$	$m s^{-1}$	Scal	es		
	$W \approx 0.01 \text{ m s}^{-1}$		$\Delta P \approx 1$	000 Pa		\
	$L \approx 10^6 \text{ m}$		$ ho \approx 1 \ {\rm kg \ m^{-3}}$		$a^{-3} \mid a \approx 10^7 \text{ m}$	
$H \approx 10^4 \text{ m}$		4 m	$\Delta \rho / \rho \approx 10^{-2}$		$g \approx 10 \text{ m s}^{-2}$	
	$\left(L/U \approx 10^5 \text{ s} \right)$		$f_0 \approx 10^{-4} \mathrm{s}^{-1}$		$^{-1} \mid \nu \approx 10^{-5} \text{ m}^2 \text{ s}^{-1}$	
	$\frac{Dw}{Dt}$ –	$\frac{u^2 + v^2}{r} =$	$= -rac{1}{ ho}rac{\partial p}{\partial z} -$	- g +	$-2\Omega u\cos\phi + \nu\nabla^2 w$	
	W·U/L	U·U/a	$P_{sfc}/\rho H$	g	Uf vW/H ²	
	10 ⁻⁷	10 ⁻⁵	10	10	10 ⁻³ 10 ⁻¹⁵	


Question: What are the terms in the equations of motion that are most relevant for large-scale mid-latitude dynamics?

The largest terms in the horizontal and vertical momentum equations lead to two types of balance that dominate the observed flow for **large-scale mid-latitudinal** storm systems:

- **Geostrophic Balance** (Pressure gradient and Coriolis)
- Hydrostatic Balance (Pressure gradient and gravity)

Aside: Why is "mid-latitudinal" important?

Paul Ullrich

The vertical acceleration Dw/Dt is 8 orders of magnitude smaller than **hydrostatic balance**. The ability of the vertical momentum equation to estimate w is essentially nonexistent.

Scale analysis of the vertical momentum equation revealed that computing vertical velocity using this equation requires taking the difference of two terms which are **8 orders of magnitude larger** than the acceleration!

Even tiny errors in computing the vertical pressure gradient will lead to **large** errors in the vertical velocity.

Motivates the next question...

Question: How can vertical velocity be computed?

Vertical Velocity?

Vertical motion is *important*: Rising motion leads to clouds and precipitation.

The vertical acceleration Dw/Dt is 8 orders of magnitude smaller than hydrostatic balance.

The ability to use the vertical momentum equation to estimate w is essentially nonexistent.

- Vertical velocity must be "diagnosed" from some balance
- Note that small scales, thunderstorms, tornadoes use very different characteristic scales, so the vertical momentum equation can be employed in this regime.

We will return to this in a moment...